Ecology and Environment ›› 2021, Vol. 30 ›› Issue (12): 2303-2308.DOI: 10.16258/j.cnki.1674-5906.2021.12.004
• Research Articles • Previous Articles Next Articles
ZHANG Jian(), XU Ming, WANG Yang, WEN Chunyu, YANG Yunli, ZHANG Jiao, NIE Kun
Received:
2021-06-06
Online:
2021-12-18
Published:
2022-01-04
Contact:
ZHANG Jian
张健(), 徐明, 王阳, 文春玉, 杨云礼, 张姣, 聂坤
通讯作者:
张健
作者简介:
张健(1980年生),男,副教授,博士,从事生态环境效益评价与微生物生态学研究。E-mail: zhangjian12102@163.com
基金资助:
CLC Number:
ZHANG Jian, XU Ming, WANG Yang, WEN Chunyu, YANG Yunli, ZHANG Jiao, NIE Kun. Distribution Characteristics of the Glomalin-Related Soil Protein of Different Pinus massoniana Association in Central Guizhou[J]. Ecology and Environment, 2021, 30(12): 2303-2308.
张健, 徐明, 王阳, 文春玉, 杨云礼, 张姣, 聂坤. 黔中地区不同马尾松群丛土壤球囊霉素分布特征[J]. 生态环境学报, 2021, 30(12): 2303-2308.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.12.004
样地 Sites | 海拔 Elevation/m | 坡度 Slope/° | 郁闭度 Canopy density/% | 密度 Density/(plant∙hm-2) | 叶面积指数 LAI |
---|---|---|---|---|---|
马尾松-杉木群丛 Pinus massoniana-Cunninghamia lanceolata, Mp-Cl | 1132 | 10 | 85 | 800 | 1.50 |
马尾松-响叶杨群丛 P. massoniana+ Populus adenopoda, Mp-Pa | 1156 | 8 | 95 | 1500 | 1.45 |
马尾松-枫香群丛 P. massoniana+Liquidambar formosana, Mp-Lf | 1080 | 5 | 72 | 650 | 1.30 |
马尾松-白栎群丛 P. massoniana+Quercus fabri, Mp-Qf | 1162 | 10 | 93 | 1100 | 1.54 |
马尾松中龄纯林 P. massoniana Middle-age pure forest, Mp-Ma | 977 | 8 | 88 | 650 | 1.65 |
马尾松老龄林 P. massoniana Old-growth forest, Mp-Og | 943 | 12 | 68 | 150 | 1.49 |
Table 1 General description of different Pinus massoniana associations
样地 Sites | 海拔 Elevation/m | 坡度 Slope/° | 郁闭度 Canopy density/% | 密度 Density/(plant∙hm-2) | 叶面积指数 LAI |
---|---|---|---|---|---|
马尾松-杉木群丛 Pinus massoniana-Cunninghamia lanceolata, Mp-Cl | 1132 | 10 | 85 | 800 | 1.50 |
马尾松-响叶杨群丛 P. massoniana+ Populus adenopoda, Mp-Pa | 1156 | 8 | 95 | 1500 | 1.45 |
马尾松-枫香群丛 P. massoniana+Liquidambar formosana, Mp-Lf | 1080 | 5 | 72 | 650 | 1.30 |
马尾松-白栎群丛 P. massoniana+Quercus fabri, Mp-Qf | 1162 | 10 | 93 | 1100 | 1.54 |
马尾松中龄纯林 P. massoniana Middle-age pure forest, Mp-Ma | 977 | 8 | 88 | 650 | 1.65 |
马尾松老龄林 P. massoniana Old-growth forest, Mp-Og | 943 | 12 | 68 | 150 | 1.49 |
土层 Layers/cm | 统计 Statistics | pH | w(SOC)/(g∙kg-1) | w(TN)/(g∙kg-1) | w(TP)/(g∙kg-1) | w(AN)/(mg∙kg-1) | w(AP)/(mg∙kg-1) | w(AK)/(mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
0—20 | Mean | 4.62 | 27.27a | 1.29a | 0.24a | 33.88a | 12.97a | 56.22a |
SD | 0.19 | 6.18 | 0.44 | 0.12 | 15.24 | 3.72 | 14.78 | |
Min | 4.32 | 14.69 | 0.12 | 0.06 | 8.33 | 8.28 | 39.00 | |
Max | 4.91 | 33.74 | 1.98 | 0.51 | 68.31 | 21.52 | 83.00 | |
Kurtosis | -1.07 | -0.13 | 1.77 | 0.49 | 0.67 | -0.22 | -0.40 | |
Skewness | -0.19 | -1.04 | -0.77 | 1.06 | 0.61 | 0.81 | 0.76 | |
CV | 4.07 | 22.66 | 34.18 | 49.31 | 44.98 | 28.72 | 26.28 | |
20—40 | Mean | 4.58 | 7.79b | 0.56b | 0.16b | 15.68b | 10.31b | 28.06b |
SD | 0.18 | 2.69 | 0.29 | 0.08 | 11.96 | 2.81 | 8.02 | |
Min | 4.36 | 3.42 | 0.06 | 0.09 | 1.19 | 5.41 | 15.00 | |
Max | 4.86 | 11.16 | 1.24 | 0.38 | 51.17 | 15.91 | 42.00 | |
Kurtosis | -1.66 | -1.30 | 1.29 | 4.48 | 3.53 | -0.10 | -0.71 | |
Skewness | 0.37 | -0.47 | 0.14 | 2.25 | 1.53 | 0.44 | 0.12 |
Table 2 Statistics of soil physical and chemical indicators in different Pinus massoniana associations
土层 Layers/cm | 统计 Statistics | pH | w(SOC)/(g∙kg-1) | w(TN)/(g∙kg-1) | w(TP)/(g∙kg-1) | w(AN)/(mg∙kg-1) | w(AP)/(mg∙kg-1) | w(AK)/(mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
0—20 | Mean | 4.62 | 27.27a | 1.29a | 0.24a | 33.88a | 12.97a | 56.22a |
SD | 0.19 | 6.18 | 0.44 | 0.12 | 15.24 | 3.72 | 14.78 | |
Min | 4.32 | 14.69 | 0.12 | 0.06 | 8.33 | 8.28 | 39.00 | |
Max | 4.91 | 33.74 | 1.98 | 0.51 | 68.31 | 21.52 | 83.00 | |
Kurtosis | -1.07 | -0.13 | 1.77 | 0.49 | 0.67 | -0.22 | -0.40 | |
Skewness | -0.19 | -1.04 | -0.77 | 1.06 | 0.61 | 0.81 | 0.76 | |
CV | 4.07 | 22.66 | 34.18 | 49.31 | 44.98 | 28.72 | 26.28 | |
20—40 | Mean | 4.58 | 7.79b | 0.56b | 0.16b | 15.68b | 10.31b | 28.06b |
SD | 0.18 | 2.69 | 0.29 | 0.08 | 11.96 | 2.81 | 8.02 | |
Min | 4.36 | 3.42 | 0.06 | 0.09 | 1.19 | 5.41 | 15.00 | |
Max | 4.86 | 11.16 | 1.24 | 0.38 | 51.17 | 15.91 | 42.00 | |
Kurtosis | -1.66 | -1.30 | 1.29 | 4.48 | 3.53 | -0.10 | -0.71 | |
Skewness | 0.37 | -0.47 | 0.14 | 2.25 | 1.53 | 0.44 | 0.12 |
Fig. 1 Variation characteristics of GRSP in different Pinus massoniana associations See Table 1 for the meaning of different sites in the figure; w(EE-GRSP) indicate Easily extractable glomalin-related soil protein content (EE-GRSP); w(T-GRSP) indicate total glomalin-related soil protein content (EE-GRSP); w(EE-GRSP)/w(T-GRSP) indicate the ratio between w(EE-GRSP) and w(T-GRSP); w(EE-GRSP)/w(SOC) indicate the ratio between w(EE-GRSP) and soil organic carbon content; w(T-GRSP)/w(SOC) indicate the ratio between w(T-GRSP) and soil organic carbon content; The rest same
指标 Index | w(T-GRSP) | w(EE-GRSP)/w(T-GRSP) | w(EE-GRSP)/w(SOC) | w(T-GRSP)/w(SOC) | pH | w(SOC) | w(TP) | w(TN) | w(AN) | w(AP) | w(AK) |
---|---|---|---|---|---|---|---|---|---|---|---|
w(EE-GRSP) | 0.818** | 0.614* | -0.691* | -0.761** | -0.193 | 0.786** | 0.483 | 0.782** | 0.682* | 0.308 | 0.676* |
w(T-GRSP) | 0.050 | -0.763** | -0.765** | -0.154 | 0.874** | 0.437 | 0.814** | 0.563 | 0.448 | 0.594* | |
w(EE-GRSP)/w(T-GRSP) | -0.136 | -0.260 | -0.166 | 0.154 | 0.213 | 0.226 | 0.371 | -0.079 | 0.325 | ||
w(EE-GRSP)/w(SOC) | 0.990** | -0.178 | -0.779** | -0.515 | -0.677* | -0.608* | -0.444 | -0.706* | |||
w(T-GRSP)/w(SOC) | -0.131 | -0.786** | -0.530 | -0.698* | -0.621* | -0.443 | -0.718** |
Table 3 Correlation between GRSP and soil nutrient indicators in different Pinus massoniana associations
指标 Index | w(T-GRSP) | w(EE-GRSP)/w(T-GRSP) | w(EE-GRSP)/w(SOC) | w(T-GRSP)/w(SOC) | pH | w(SOC) | w(TP) | w(TN) | w(AN) | w(AP) | w(AK) |
---|---|---|---|---|---|---|---|---|---|---|---|
w(EE-GRSP) | 0.818** | 0.614* | -0.691* | -0.761** | -0.193 | 0.786** | 0.483 | 0.782** | 0.682* | 0.308 | 0.676* |
w(T-GRSP) | 0.050 | -0.763** | -0.765** | -0.154 | 0.874** | 0.437 | 0.814** | 0.563 | 0.448 | 0.594* | |
w(EE-GRSP)/w(T-GRSP) | -0.136 | -0.260 | -0.166 | 0.154 | 0.213 | 0.226 | 0.371 | -0.079 | 0.325 | ||
w(EE-GRSP)/w(SOC) | 0.990** | -0.178 | -0.779** | -0.515 | -0.677* | -0.608* | -0.444 | -0.706* | |||
w(T-GRSP)/w(SOC) | -0.131 | -0.786** | -0.530 | -0.698* | -0.621* | -0.443 | -0.718** |
[1] |
DENG C, ZHANG S G, LU Y C, et al., 2020. Thinning effects on forest evolution in Masson pine (Pinus massoniana Lamb.) conversion from pure plantations into mixed forests[J]. Forest Ecology and Management, DOI: 10.1016/j.foreco.2020.118503.
DOI |
[2] |
FORRESTER D I, 2014. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process[J]. Forest Ecology and Management, 312: 282-292.
DOI URL |
[3] |
FORRESTER D I, 2015. Transpiration and water-use efficiency in mixed-species forests versus monocultures: Effects of tree size, stand density and season[J]. Tree Physiology, 35(3): 289-304.
DOI URL |
[4] |
LOVELOCK C E, WRIGHT S F, CLARK D A, et al., 2004. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape[J]. Journal of Ecology, 92(2): 278-287.
DOI URL |
[5] |
PRETZSCH H, 2014. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures[J]. Forest Ecology and Management, 327: 251-264.
DOI URL |
[6] |
RILLIG M C, RAMSEY P W, MORRIS S, et al., 2003. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change[J]. Plant and Soil, 253(2): 293-299.
DOI URL |
[7] |
ROSIER C L, HOYE A T, RILLIG M C, 2006. Glomalin-related soil protein: Assessment of current detection and quantification tools[J]. Soil Biology and Biochemistry, 38(8): 2205-2211.
DOI URL |
[8] |
WRIGHT S F, UPADHYAYA A, 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 198(1): 97-107.
DOI URL |
[9] | 陈模芳, 丁贵杰, 张仁波, 2019. 不同马尾松群落类型结构及物种多样性特征[J]. 西部林业科学, 48(4): 57-65. |
CHEN M F, DING G J, ZHANG R B, 2019. The structure characteristics and species diversity of different Pinus massoniana communities[J]. Journal of West China Forestry Science, 48(4): 57-65. | |
[10] | 李敏, 丁贵杰, 孙学广, 等, 2016. 贵州马尾松群落植物多样性与土壤酶活性[J]. 森林与环境学报, 36(4): 434-441. |
LI M, DING G J, SUN X G, et al., 2016. Plant diversity and soil enzyme activity in 4 typical communities of Pinus massoniana in Guizhou[J]. Journal of Forest and Environment, 36(4): 434-441. | |
[11] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Soil agrochemical analysis methods[M]. Beijing: China Agricultural Science and Technology Press. | |
[12] | 景航, 史君怡, 王国梁, 等, 2017. 皆伐油松林不同恢复措施下团聚体与球囊霉素分布特征[J]. 中国环境科学, 37(8): 3056-3063. |
JING H, SHI J Y, WANG G L, et al., 2017. Distribution of the glomalin-related soil protein and aggregate fractions in different restoration communities after clear-cutting Pinus tabulaeformis plantation[J]. Chinese Environmental Science, 37(8): 3056-3063. | |
[13] | 简尊吉, 倪妍妍, 徐瑾, 等, 2021. 中国马尾松林土壤肥力特征[J]. 生态学报, 41(13): 5279-5288. |
JIAN Z J, NI Y Y, XU J, et al., 2021. Soil fertility in the Pinus massoniana forests of China[J]. Acta Ecologica Sinica, 41(13): 5279-5288. | |
[14] | 黄彬彬, 邢亚娟, 闫国永, 等, 2019. 兴安落叶松林球囊霉素相关土壤蛋白含量对年际间模拟氮沉降的响应[J]. 生态环境学报, 28(3): 446-454. |
HUANG B B, XING Y J, YAN G Y, et al., 2019. Response of GRSP content to interannual simulated nitrogen deposition in Larix gmelinii forest in Greater Khingan Mountains[J]. Ecology and Environmental Sciences, 28(3): 446-454. | |
[15] |
郭柯, 方精云, 王国宏, 等, 2020. 中国植被分类系统修订方案[J]. 植物生态学报, 44(2): 111-127.
DOI |
GUO K, FANG J Y, WANG G H, et al., 2020. A revised scheme of vegetation classification system of China[J]. Chinese Journal of Plant Ecology, 44(2): 111-127.
DOI |
|
[16] | 郭其强, 盘金文, 李慧娥, 等, 2019. 贵州高原山地马尾松人工林土壤碳、氮、磷生态化学计量特性[J]. 水土保持学报, 33(4): 293-298. |
GUO Q Q, PAN J W, LI H E, et al., 2019. Eco-stoichiometry characteristic of soil carbon, nitrogen and phosphorus of Pinus massoniana plantation in Plateau mountainous areas, Guizhou province[J]. Journal of Soil and Water Conservation, 33(4): 293-298. | |
[17] | 孟祥江, 何邦亮, 马正锐, 等, 2018. 我国马尾松林经营现状及近自然育林探索[J]. 世界林业研究, 31(3): 63-67. |
MENG X J, HE B L, MA Z R, et al., 2018. Current situation of masson pine forest management and its practice of close-to-nature silviculture in China[J]. World Forestry Research, 31(3): 63-67. | |
[18] | 权常欣, 马玲玲, 林钊凯, 等, 2020. 广东省森林球囊霉素相关土壤蛋白含量及影响因素[J]. 生态环境学报, 29(2): 240-249. |
QUAN C X, MA L L, LIN Z K, et al., 2020. Patterns and influence factors of glomalin-related soil protein in Guangdong forests[J]. Ecology and Environmental Sciences, 29(2): 240-249. | |
[19] | 杨云礼, 2021. 贵州不同马尾松群丛外生菌根真菌群落特征及影响因子分析[D]. 贵阳: 贵州大学. |
YANG Y L, 2021. Characteristics and influencing factors of ectomycorrhizal fungal community in different Pinus massoniana associations in Guizhou[D]. Guiyang: Guizhou University. | |
[20] | 王献溥, 蒋高明, 2002. 广西马尾松林分类、分布和演替的研究[J]. 植物研究, 22(2): 151-155. |
WANG X P, JIANG G M, 2002. Study on classification, distribution and succession of Pinus massoniana forest in Guangxi[J]. Bulletin of Botanical Research, 22(2): 151-155. | |
[21] | 王建, 周紫燕, 凌婉婷, 2016. 球囊霉素相关土壤蛋白的分布及环境功能研究进展[J]. 应用生态学报, 27(2): 634-642. |
WANG J, ZHOU Z Y, LING W T, 2016. Distribution and environmental function of glomalin-related soil protein: A review[J]. Chinese Journal of Applied Ecology, 27(2): 634-642. | |
[22] | 郑克举, 唐旭利, 张静, 等, 2013. 季风常绿阔叶林演替系列菌根资源及其与群落多样性的关系[J]. 生态环境学报, 22(5): 729-738. |
ZHENG K J, TANG X L, ZHANG J, et al., 2013. Mycorrhizae respond to plant diversity in monsoon evergreen broadleaved forest succession choronsequence[J]. Ecology and Environmental Sciences, 22(5): 729-738. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn