Ecology and Environment ›› 2022, Vol. 31 ›› Issue (3): 478-486.DOI: 10.16258/j.cnki.1674-5906.2022.03.006
• Research Articles • Previous Articles Next Articles
LIANG Lei1(), MA Xiuzhi1,*(
), HAN Xiaorong1, LI Changsheng2, ZHANG Zhijie2
Received:
2021-08-02
Online:
2022-03-18
Published:
2022-05-25
Contact:
MA Xiuzhi
梁蕾1(), 马秀枝1,*(
), 韩晓荣1, 李长生2, 张志杰2
通讯作者:
马秀枝
作者简介:
梁蕾(1995年生),女,硕士研究生,主要研究方向为森林温室气体通量。E-mail: 578121668@qq.com
基金资助:
CLC Number:
LIANG Lei, MA Xiuzhi, HAN Xiaorong, LI Changsheng, ZHANG Zhijie. Effects of Litter on Soil Greenhouse Gas Flux of Pinus tabulaeformis Plantation in Daqing Mountain under Simulated Warming[J]. Ecology and Environment, 2022, 31(3): 478-486.
梁蕾, 马秀枝, 韩晓荣, 李长生, 张志杰. 模拟增温下凋落物对大青山油松人工林土壤温室气体通量的影响[J]. 生态环境学报, 2022, 31(3): 478-486.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.03.006
处理 Treatment | CO2 | CH4 | N2O | 综合增温潜势 Comprehensive warming potential |
---|---|---|---|---|
CK | 19.89 | -0.03 | 0.38 | 20.24 |
W | 18.96 | -0.03 | 0.34 | 19.27 |
NL | 17.45 | -0.03 | 0.33 | 17.75 |
WNL | 15.69 | -0.03 | 0.30 | 15.96 |
Table1 Warming potential of soil greenhouse gases under four treatments of Pinus tabulaeformis Plantation in Daqing Mountain t∙hm-2
处理 Treatment | CO2 | CH4 | N2O | 综合增温潜势 Comprehensive warming potential |
---|---|---|---|---|
CK | 19.89 | -0.03 | 0.38 | 20.24 |
W | 18.96 | -0.03 | 0.34 | 19.27 |
NL | 17.45 | -0.03 | 0.33 | 17.75 |
WNL | 15.69 | -0.03 | 0.30 | 15.96 |
温室气体 Greenhouse gases | CO2 | CH4 | N2O | ||||||
---|---|---|---|---|---|---|---|---|---|
处理 Treatment | CK | W | CK | W | CK | W | |||
大气温度 Atmospheric temperature | 0.534** | 0.529** | -0.169 | -0.060 | 0.113 | 0.208 | |||
大气湿度 Atmospheric humidity | 0.746** | 0.717** | -0.313 | -0.569* | 0.020 | 0.004 | |||
土壤温度 Soil temperature | 0-5 cm | 0.530** | 0.505** | -0.225 | -0.117 | 0.081 | 0.220 | ||
5-10 cm | 0.569** | 0.606** | -0.236 | -0.165 | 0.070 | 0.221 | |||
10-20 cm | 0.697** | 0.702** | -0.282 | -0.188 | 0.082 | 0.212 | |||
土壤湿度 Soil humidity | 0-5 cm | 0.655** | 0.534** | -0.060 | 0.075 | -0.027 | -0.127 | ||
5-10 cm | 0.767** | 0.581** | -0.163 | 0.140 | 0.073 | -0.204 | |||
10-20 cm | 0.476* | 0.513** | -0.069 | 0.100 | -0.056 | -0.216 | |||
TN | 0-10 cm | -0.852** | -0.863** | 0.349 | 0.111 | -0.419 | -0.574* | ||
10-20 cm | -0.762* | -0.788* | 0.413 | 0.184 | -0.295 | -0.644* | |||
SOC | 0-10 cm | -0.675 | -0.667 | 0.630 | 0.424 | -0.398 | -0.342 | ||
10-20 cm | -0.345 | -0.363 | 0.565 | 0.380 | -0.433 | -0.465 |
Table 2 Correlation of soil greenhouse gas flux with environmental factors and soil properties
温室气体 Greenhouse gases | CO2 | CH4 | N2O | ||||||
---|---|---|---|---|---|---|---|---|---|
处理 Treatment | CK | W | CK | W | CK | W | |||
大气温度 Atmospheric temperature | 0.534** | 0.529** | -0.169 | -0.060 | 0.113 | 0.208 | |||
大气湿度 Atmospheric humidity | 0.746** | 0.717** | -0.313 | -0.569* | 0.020 | 0.004 | |||
土壤温度 Soil temperature | 0-5 cm | 0.530** | 0.505** | -0.225 | -0.117 | 0.081 | 0.220 | ||
5-10 cm | 0.569** | 0.606** | -0.236 | -0.165 | 0.070 | 0.221 | |||
10-20 cm | 0.697** | 0.702** | -0.282 | -0.188 | 0.082 | 0.212 | |||
土壤湿度 Soil humidity | 0-5 cm | 0.655** | 0.534** | -0.060 | 0.075 | -0.027 | -0.127 | ||
5-10 cm | 0.767** | 0.581** | -0.163 | 0.140 | 0.073 | -0.204 | |||
10-20 cm | 0.476* | 0.513** | -0.069 | 0.100 | -0.056 | -0.216 | |||
TN | 0-10 cm | -0.852** | -0.863** | 0.349 | 0.111 | -0.419 | -0.574* | ||
10-20 cm | -0.762* | -0.788* | 0.413 | 0.184 | -0.295 | -0.644* | |||
SOC | 0-10 cm | -0.675 | -0.667 | 0.630 | 0.424 | -0.398 | -0.342 | ||
10-20 cm | -0.345 | -0.363 | 0.565 | 0.380 | -0.433 | -0.465 |
[1] |
CORNELISSEN J, BODEGOM P, AERTS R, et al., 2010. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes[J]. Ecology Letters, 10(7): 619-627.
DOI URL |
[2] |
DAVIDSON E A, KANTER D, 2014. Inventories and scenarios of nitrous oxide emissions[J]. Environmental Research Letters, 9(10): 105012.
DOI URL |
[3] |
FAN J L, LUO R Y, MCCONKEY B G, et al., 2020. Effects of nitrogen deposition and litter layer management on soil CO2, N2O, and CH4 emissions in a subtropical pine forestland[J]. Entific Reports, DOI: 10.1038/s41598-020-65952-8.
DOI |
[4] |
FISHER D A, LACELLE D, POLLARD W, 2019. A model of unfrozen water content and its transport in icy permafrost soils: Effects on ground ice content and permafrost stability[J]. Permafrost and Periglacial Processes, 31(1): 184-199.
DOI URL |
[5] | FORSTER P, RAMASWAMY V, ARTAXO P, et al., 2007. Changes in Atmospheric Constituents in Radiative Forcing[M]. Cambridge, UK: Cambridge University Press. |
[6] | IPCC, 2013. Climate Change 2013: The Physical Science Basis[R]. Cambridge: Cambridge University Press. |
[7] |
KANEDA S, F ROUZ J, BALDRIAN P, et al., 2013. Does the addition of leaf litter affect soil respiration in the same way as addition of macrofauna excrements (of Bibio marci Diptera larvae) produced from the same litter?[J]. Applied Soil Ecology, 72: 7-13.
DOI URL |
[8] | LEITNER S, SAE-TUN O, KRANZINGER L, et al., 2016. Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest[J]. Plant & Soil, 403(1-2): 455-469. |
[9] |
LI Z L, ZENG Z Q, TIAN D S, et al., 2020. Global patterns and controlling factors of soil nitrification rate[J]. Global Change Biology, 26(7): 4147-4157.
DOI URL |
[10] |
LIU W X, ZHANG Z, WAN S Q, 2009. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland[J]. Global Change Biology, 15(1): 184-195.
DOI URL |
[11] |
MELILLO J M, FREY S D, DEANGELIS K M, et al., 2017. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world[J]. Science, 358: 101-105.
DOI URL |
[12] |
MELILLO J M, STEUDLER P A, ABER J D, et al., 2002. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 298(5601): 2173-2176.
DOI URL |
[13] |
NIINIST S M, SILVOLA J, KELLOMKI S, 2004. Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming[J]. Global Change Biology, 10(3): 1363-1376.
DOI URL |
[14] |
PENG F, XU M H, YOU Q G, et al., 2015. Different Responses of soil respiration and its components to experimental warming with contrasting soil water content[J]. Arctic, Antarctic, and Alpine Research, 47(2): 359-368.
DOI URL |
[15] |
RUSTAD L E, CAMPBELL J L, MARION G M, et al., 2001. A meta-analysis of the response of soil respiration,net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 126(2): 543-562.
DOI URL |
[16] |
SAYER E J, 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems[J]. Biological Reviews, 81(1): 1-31.
DOI URL |
[17] |
SONG C C, XU X F, SUN X X, et al., 2012. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region[J]. Environmental Research Letters, DOI: 10.1088/1748-9326/7/3/034009.
DOI |
[18] |
SONG X Y, WANG G X, RAN F, et al., 2017. Effects of topography and fire on soil CO2 and CH4 flux in boreal forest underlain by permafrost in northeast China[J]. Ecological Engineering, 106: 35-43.
DOI URL |
[19] |
WANG Y D, WANG H M, WANG Z L, et al., 2014. Effect of litter layer on soil-atmosphere N2O flux of a subtropical pine plantation in China[J]. Atmospheric Environment, 82: 106-112.
DOI URL |
[20] |
WU X W, ZANG S Y, MA D L, et al., 2019. Emissions of CO2, CH4, and N2O Fluxes from Forest Soil in Permafrost Region of Daxing'an Mountains, Northeast China[J]. International Journal of Environment Research and Public Health, DOI: 10.3390/ijerph16162999.
DOI |
[21] |
YU L J, HUANG Y, ZHANG W, et al., 2017. Methane uptake in global forest and grassland soils from 1981 to 2010 [J]. Science of the Total Environment, 607-608: 1163-1172.
DOI URL |
[22] | ZHANG J F, HAN X G, 2008. N2O emission form the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China[J]. Atmospheric Environment, 45(2): 291-302. |
[23] | 党旭升, 程淑兰, 方华军, 等, 2015. 温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系[J]. 生态学报, 35(19): 6530-6540. |
DANG X S, CHENG S L, FANG H J, et al., 2015. The controlling factors and coupling of soil CO2, CH4 and N2O fluxes in a temperate needle-broadleaved mixed forest[J]. Acta Ecologica Sinica, 35(19): 6530-6540. | |
[24] | 段北星, 蔡体久, 宋浩, 等, 2020. 寒温带兴安落叶松林凋落物层对土壤呼吸的影响[J]. 生态学报, 40(4): 1357-1366. |
DUAN B X, CAI T J, SONG H, et al., 2020. Effect of soil litterfall on soil respiration in cold-temperate Larch forest[J]. Acta Ecologica Sinica, 40(4): 1357-1366. | |
[25] |
耿元波, 罗光强, 2010. 内蒙古羊草草原呼吸的影响因素分析和区分[J]. 地理学报, 65(9): 1058-1068.
DOI |
GENG Y B, LUO G Q, 2010. Analysis of affecting factors and partitioning of respiration in a Leymus chinensis steppe in Inner Mongolia[J]. Acta Geographica Sinica, 65(9): 1058-1068. | |
[26] | 梁东丽, 同延安, Ove Emteryd, 等, 2002. 干湿交替对旱地土壤N2O气态损失的影响[J]. 干旱地区农业研究, 20(2): 28-31, 48. |
LIANG D L, TONG Y A, OVE E, et al., 2002. The effects of wetting and drying cycles on N2O emission in dryland[J]. Agricultural Research in the Arid Areas, 20(2): 28-31, 48. | |
[27] | 梁东哲, 赵雨森, 曹杰, 等, 2019. 不同恢复方式下大兴安岭重度火烧迹地林地土壤温室气体通量[J]. 生态学报, 39(21): 7950-7959. |
LIANG D Z, ZHAO Y S, CAO J, et al., 2019. Greenhouse gas emissions from woodland soils in a severely burned area under different restoration methods in the Greater Khingan Mountains[J]. Acta Ecologica Sinica, 39(21): 7950-7959. | |
[28] |
刘玲玲, 刘允芬, 温学发, 等, 2008. 千烟洲红壤丘陵区人工针叶林土壤CH4排放通量[J]. 植物生态学报, 32(2): 431-439.
DOI |
LIU L L, LIU Y F, WEN X F, et al., 2008. CH4 emission flux from soil of pine plantations in the Qian-Yanzhou red earth hill region of China[J]. Journal of Plant Ecology, 32(2): 431-439. | |
[29] | 李攀, 周梅, 王忠林, 等, 2012. 寒温带兴安落叶松林火烧迹地地表CO2通量研究[J]. 生态环境学报, 21(12): 1950-1954. |
LI P, ZHOU M, WANG Z L, et al., 2012. Study on soil surface CO2 flux in burned areas of Larix gmelinii forest in the cool temperate zone[J]. Ecology and Environmental Sciences, 21(12): 1950-1954. | |
[30] | 李伟, 刘小飞, 陈光水, 等, 2016. 凋落物对中亚热带米槠天然林和人工林土壤呼吸的影响[J]. 林业科学, 52(11): 11-18. |
LI W, LIU X F, CHEN G S, et al., 2016. Effects of litter manipulation on soil respiration in the natural forests and plantations of Castanopsis carlesii in mid-subtropical China[J]. Scientia Silvae Sinicae, 52(11): 11-18. | |
[31] | 马秀枝, 范雪松, 舒长禄, 等, 2016. 不同时间序列林火干扰对兴安落叶松林区土壤性质及温室气体通量的影响[J]. 生态环境学报, 25(6): 939-946. |
MA X Z, FAN X S, SHU C L, et al., 2016. Effects of forest fire disturbance in different time Series on Soil Properties and greenhouse gas flux in Larix gmelinii forest of cold-temperate zone[J]. Ecology and Environmental Sciences, 25(6): 939-946. | |
[32] | 牟长城, 程伟, 孙晓新, 等, 2010. 小兴安岭落叶松沼泽林土壤CO2、N2O和CH4的排放规律[J]. 林业科学, 46(7): 7-15. |
MU C C, CHENG W, SUN X X, et al., 2010. Seasonal variation of emission fluxes of CO2, N2O and CH4 from Larix gmelinii swamps soils in Xiaoxing'an mountains of China[J]. Scientia Silvae Sinicae, 46(7): 7-15. | |
[33] | 彭少麟, 侯爱敏, 周国逸, 2000. 气候变化对陆地生态系统第一性生产力的影响研究综述[J]. 地球科学进展, 15(6): 717-722. |
PENG S L, HOU A M, ZHOU G Y, 2000. Impact of climate change on the net primary productivity of terrestrial ecosystem[J]. Advance in Earth Sciences, 15(6): 717-722. | |
[34] | 彭信浩, 韩海荣, 徐小芳, 等, 2018. 间伐和改变凋落物输入对华北落叶松人工林土壤呼吸的影响[J]. 生态学报, 38(15): 85-95. |
PENG X H, HAN H R, XU X F, et al., 2018. Thinning treatment and litterfall changes influence soil respiration in a Larix principis-rupprechtii plantation[J]. Acta Ecologica Sinica, 38(15): 85-95. | |
[35] | 仝川, 黄佳芳, 王维奇, 等, 2012. 闽江口半咸水芦苇潮汐沼泽湿地甲烷动态[J]. 地理学报, 67(9): 1165-1180. |
TONG C, HUANG J F, WANG W Q, et al., 2012. Methane dynamics of a brackish-water tidal Phragmites australis marsh in the Minjiang river estuary[J]. Acta Geographica Sinica, 67(9): 1165-1180. | |
[36] | 王新源, 李玉霖, 赵学勇, 等, 2012. 干旱半干旱区不同环境因素对土壤呼吸影响研究进展[J]. 生态学报, 32(15): 4890-4901. |
WANG X Y, LI Y L, ZHAO X Y, et al., 2012. Responses of soil respiration to different environment factors in semi-arid and arid areas[J]. Acta Ecologica Sinica, 32(15): 4890-4901.
DOI URL |
|
[37] | 王金龙, 李艳红, 李发东, 2018. 博斯腾湖人工和天然芦苇湿地土壤CO2、CH4和N2O排放通量[J]. 生态学报, 38(2): 668-677. |
WANG J L, LI Y H, LI F D, 2018. Emission fluxes of CO2, CH4, and N2O from artificial and natural reed wetlands in Bosten lake, China[J]. Acta Ecologica Sinica, 38(2): 668-677. | |
[38] | 魏书精, 罗碧珍, 魏书威, 等, 2014. 森林生态系统土壤呼吸测定方法研究进展[J]. 生态环境学报, 23(3): 504-514. |
WEI S J, LUO B Z, WEI S W, et al., 2014. Methods of measuring of soil respiration in forest ecosystems: A review[J]. Ecology and Environmental Sciences, 23(3): 504-514. | |
[39] |
吴祥文, 臧淑英, 马大龙, 等, 2020. 大兴安岭多年冻土区森林土壤温室气体通量[J]. 地理学报, 75(11): 2319-2331.
DOI |
WU X W, ZANG S Y, MA D L, et al., 2020. Greenhouse gas fluxes from forest soil in permafrost regions of Greater Hinggan Mountains, Northeast China[J]. Acta Geographica Sinica, 75(11): 2319-2331. | |
[40] |
熊沛, 徐振锋, 林波, 等, 2010. 岷江上游华山松冬季土壤呼吸对模拟增温的短期响应[J]. 植物生态学报, 34(12): 1369-1376.
DOI |
XIONG P, XU Z F, LIN B, et al., 2010. Short-term response of winter soil respiration to simulated warming in a Pinus armandii plantation in the upper reaches of the Minjiang River, China[J]. Chinese Journal of Plant Ecology, 34(12): 1369-1376.
DOI |
|
[41] | 赵昕, 张万军, 沈会涛, 等, 2014. 针阔树种人工林地表凋落物对土壤呼吸的贡献[J]. 中国生态农业学报, 22(11): 1318-1325. |
ZHAO X, ZHANG W J, SHEN H T, et al., 2014. Contributions of aboveground litter to soil respiration in coniferous and deciduous Plantations[J]. Chinese Journal of Eco-Agriculture, 22(11): 1318-1325. | |
[42] |
张素彦, 蒋红志, 王扬, 等, 2018. 凋落物去除和添加处理对典型草原生态系统碳通量的影响[J]. 植物生态学报, 42(3): 349-360.
DOI |
ZHANG S Y, JIANG H Z, WANG Y, et al., 2018. Effects of litter removal and addition on ecosystem carbon fluxes in a typical steppe[J]. Chinese Journal of Plant Ecology, 42(3): 349-360.
DOI URL |
|
[43] | 张秀君, 徐慧, 陈冠雄, 2002. 影响森林土壤N2O排放和CH4吸收的主要因素[J]. 环境科学, 23(5): 8-12. |
ZHANG X J, XU H, CHEN G X, 2002. Important factors controlling rates of N2O emission and CH4 oxidation from forest soil[J]. Environmental Science, 23(5): 8-12. |
[1] | HAN Cui, KANG Yangmei, YU Hailong, Li Bing, HUANG Juying. Effects of Precipitation on Soil Enzyme Activities during Litter Decomposition in A Desert Steppe of Northwestern China [J]. Ecology and Environment, 2022, 31(9): 1802-1812. |
[2] | LI Xun, CUI Ningjie, ZHANG Yan, QIN Yu, ZHANG Jian. Mixed Effects on Cellulose, Total phenols and Condensed Tannins Degradation in the Litter Leaves of Pinus massoniana and Native Broad-leaved Tree Species [J]. Ecology and Environment, 2022, 31(9): 1813-1822. |
[3] | ZHANG Han, TANG Changyuan, XUAN Yingxue, JIANG Tao, HUANG Pinyi, YANG Qiu, CAO Yingjie. The Regular Pattern and Influencing Factors of CO2 and CH4 Fluxes from Mangrove Soil [J]. Ecology and Environment, 2022, 31(5): 939-948. |
[4] | XIAO Jun, LEI Lei, ZENG Lixiong, LI Zhaochen, MA Chenggong, XIAO Wenfa. Effects of Different Management Regimes on Carbon Stock of Pinus tabulaeformis Plantations in Northern China [J]. Ecology and Environment, 2022, 31(11): 2134-2142. |
[5] | ZHANG Shulan, HAN Yong, YANG Pan, YAN Yuying, LIU Zhaoxue, LI Zhuoyao. Evaluation of Hydrological Function of Litter of Quercus Acuvarius at Different Ages in the Upper Reaches of Han River [J]. Ecology and Environment, 2022, 31(1): 44-51. |
[6] | WANG Xuan, XIONG Xin, ZHANG Huiling, ZHAO Mengdi, HU Minghui, CHU Guowei, MENG Ze, ZHANG Deqiang. Effects of Simulated Acid Rain on Litter Decomposition and Soil Respiration in A Low Subtropical Forest [J]. Ecology and Environment, 2021, 30(9): 1805-1813. |
[7] | YAO Shiting, LU Guangxin, DENG Ye, DANG Ning, WANG Yingcheng, ZHANG Haijuan, YAN Huilin. Effects of Simulated Warming on Soil Fungal Community Composition and Diversity [J]. Ecology and Environment, 2021, 30(7): 1404-1411. |
[8] | ZHAO Na, WANG Junbo, LI Shaoning, LU Shaowei, XU Xiaotian. Study on Water Holding Characteristics of Four Typical Forest Litter in Songshan, Beijing [J]. Ecology and Environment, 2021, 30(6): 1139-1147. |
[9] | ZHANG Naimu, SONG Yali, WANG Keqin, ZHANG Yujian, PAN Yu, ZHENG Xingrui. Nutrient Release Characteristics of Forest Litter under Simulated Nitrogen Deposition in the Subalpine of Central Yunnan, China [J]. Ecology and Environment, 2021, 30(5): 920-928. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn