Ecology and Environment ›› 2021, Vol. 30 ›› Issue (5): 1042-1050.DOI: 10.16258/j.cnki.1674-5906.2021.05.017
• Research Articles • Previous Articles Next Articles
ZHANG Jinlong1(), HUANG Ying1, WU Lifang1, GONG Yunhui1, LIU Yungen1,2,*(
), WANG Yan1,2, YANG Silin1
Received:
2020-10-09
Online:
2021-05-18
Published:
2021-08-06
Contact:
LIU Yungen
张晋龙1(), 黄颖1, 吴丽芳1, 龚云辉1, 刘云根1,2,*(
), 王妍1,2, 杨思林1
通讯作者:
刘云根
作者简介:
张晋龙(1994年生),男,硕士研究生,主要从事湿地生态环境研究。E-mail:844014723@qq.com
基金资助:
CLC Number:
ZHANG Jinlong, HUANG Ying, WU Lifang, GONG Yunhui, LIU Yungen, WANG Yan, YANG Silin. As Subcellular Distribution and Physiological Response of Typha angustifolia L. to As Exposure[J]. Ecology and Environment, 2021, 30(5): 1042-1050.
张晋龙, 黄颖, 吴丽芳, 龚云辉, 刘云根, 王妍, 杨思林. 砷胁迫对狭叶香蒲生理生态及砷亚细胞分布的影响[J]. 生态环境学报, 2021, 30(5): 1042-1050.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.05.017
ρ(As)/ (mg∙L-1) | Plant height/ cm | root length/ cm | Leaf fresh weight plant/cm | Root fresh weight plant/cm |
---|---|---|---|---|
0 | 99.33±2.49b | 9.33±0.94c | 21.05±2.93bc | 11.47±1.69b |
0.5 | 102.00±3.00b | 11.17±0.62ab | 20.00±1.40c | 16.79±1.32a |
2 | 113.33±5.73a | 12.17±0.85a | 25.63±2.10ab | 16.34±1.85a |
5 | 100.50±2.50b | 12.50±0.50a | 27.17±2.18a | 18.14±0.99a |
10 | 97.00±1.63b | 10.75±0.25bc | 22.01±2.59bc | 12.56±1.38b |
Table 1 Response of Typha growth characteristics to As stress
ρ(As)/ (mg∙L-1) | Plant height/ cm | root length/ cm | Leaf fresh weight plant/cm | Root fresh weight plant/cm |
---|---|---|---|---|
0 | 99.33±2.49b | 9.33±0.94c | 21.05±2.93bc | 11.47±1.69b |
0.5 | 102.00±3.00b | 11.17±0.62ab | 20.00±1.40c | 16.79±1.32a |
2 | 113.33±5.73a | 12.17±0.85a | 25.63±2.10ab | 16.34±1.85a |
5 | 100.50±2.50b | 12.50±0.50a | 27.17±2.18a | 18.14±0.99a |
10 | 97.00±1.63b | 10.75±0.25bc | 22.01±2.59bc | 12.56±1.38b |
Part | ρ(As)/ (mg∙L-1) | ω(As)/(mg∙kg-1) | Recovery rate/% | |||
---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | |||
Leaf | 0 | 0.13±0.01c | 0.09±0.01b | 0.09±0.02b | 0.22±0.05e | 90.62 |
0.5 | 0.33±0.04bc | 0.16±0.03b | 0.24±0.03a | 0.39±0.06d | 95.65 | |
2 | 0.62±0.09ab | 0.17±0.08ab | 0.23±0.01a | 0.82±0.01c | 102.86 | |
5 | 0.88±0.09a | 0.26±0.02a | 0.27±0.04a | 1.14±0.01b | 95.99 | |
10 | 0.95±0.02a | 0.27±0.01a | 0.28±0.03a | 1.39±0.14a | 93.18 | |
Root | 0 | 0.77±0.10c | 0.15±0.05c | 0.13±0.02c | 0.55±0.05c | 109.86 |
0.5 | 5.33±0.36b | 1.62±0.13b | 0.56±0.08b | 4.73±0.35c | 103.86 | |
2 | 5.58±0.81b | 1.82±0.38b | 0.47±0.10b | 13.41±5.49b | 96.68 | |
5 | 7.35±1.28b | 1.95±0.48b | 0.74±0.20b | 19.59±2.99b | 89.81 | |
10 | 15.31±1.74a | 2.78±0.06a | 2.32±0.21a | 52.07±0.49a | 93.01 |
Table 2 Subcellular distribution of As in roots and leaves of Typha
Part | ρ(As)/ (mg∙L-1) | ω(As)/(mg∙kg-1) | Recovery rate/% | |||
---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | |||
Leaf | 0 | 0.13±0.01c | 0.09±0.01b | 0.09±0.02b | 0.22±0.05e | 90.62 |
0.5 | 0.33±0.04bc | 0.16±0.03b | 0.24±0.03a | 0.39±0.06d | 95.65 | |
2 | 0.62±0.09ab | 0.17±0.08ab | 0.23±0.01a | 0.82±0.01c | 102.86 | |
5 | 0.88±0.09a | 0.26±0.02a | 0.27±0.04a | 1.14±0.01b | 95.99 | |
10 | 0.95±0.02a | 0.27±0.01a | 0.28±0.03a | 1.39±0.14a | 93.18 | |
Root | 0 | 0.77±0.10c | 0.15±0.05c | 0.13±0.02c | 0.55±0.05c | 109.86 |
0.5 | 5.33±0.36b | 1.62±0.13b | 0.56±0.08b | 4.73±0.35c | 103.86 | |
2 | 5.58±0.81b | 1.82±0.38b | 0.47±0.10b | 13.41±5.49b | 96.68 | |
5 | 7.35±1.28b | 1.95±0.48b | 0.74±0.20b | 19.59±2.99b | 89.81 | |
10 | 15.31±1.74a | 2.78±0.06a | 2.32±0.21a | 52.07±0.49a | 93.01 |
[1] |
ALI H M M, PERVEEN S, 2020. Effect of foliar applied triacontanol on wheat (Triticum aestivum L.) under arsenic stress: A study of changes in growth, yield and photosynthetic characteristics[J]. Physiology and Molecular Biology of Plants, DOI:10.1007/s12298-020-00831-0.
DOI |
[2] | BAI J Y, FENG H Q, GUAN D D, et al., 2016. Extracellular ATP affects the copper-induced cell death and H2O2 production in tobacco (Nicotiana tabacum L.) cell-suspension cultures[J]. Journal of East China Normal University, 03(187): 107-119. |
[3] | CALDELAS C, BORT J, FEBRERO A, 2012. Ultrastructure and subcellular distribution of Cr inIris pseudacorus L. using TEM and X-ray microanalysis[J]. Cell Biology&Toxicology, 28(1): 57-68. |
[4] |
DING Y, DI X, NORTON G J, et al., 2020. Selenite Foliar Application Alleviates Arsenic Uptake, Accumulation, Migration and Increases Photosynthesis of Different Upland Rice Varieties[J]. International Journal of Environmental Research and Public Health, 17(10): 3621-3636.
DOI URL |
[5] |
FENG RW, WANG X L, WEI C Y, et al., 2015. The Accumulation and Subcellular Distribution of Arsenic and Antimony in Four Fern Plants[J]. International Journal of Phytoremediation, 17(4): 348-354.
DOI URL |
[6] |
FU X P, DOU C M, CHEN Y X, et al., 2011. Subcellular distribution and chemical forms of cadmium inPhytolacca americana L.[J]. Journal of Hazardous Materials, 186(1): 103-107.
DOI URL |
[7] | GALBRAITH H, LEJEUNE K, LIPTON J, 2010. Metal and arsenic impacts to soils, vegetation communities and wildlife habitat in southwest Montana uplands contaminated by smelter emissions: I. Field evaluation[J]. Environmental Toxicology & Chemistry, 14(11): 1895-1903. |
[8] |
GEFFARD A, SARTELET H, GARRIC J, et al., 2010. Subcellular compartmentalization of cadmium, nickel, and lead inGammarus fossarum: Comparison of methods[J]. Chemosphere, 78(7): 822-829.
DOI URL |
[9] |
HALL J L, 2002. Cellular mechanisms for heavy metal detoxification and tolerance[J]. Journal of Experimental Botany, 53(366): 1-11.
DOI URL |
[10] |
KOFRONOVA M, HRDINOVA A, MASKOVA P, et al., 2019. Strong antioxidant capacity of horseradish hairy root cultures under arsenic stress indicates the possible use of Armoracia rusticana plants for phytoremediation[J]. Ecotoxicology and Environmental Safety, 174(6): 295-304.
DOI URL |
[11] |
LI S, CHEN J R, ISLAM E, et al., 2016. Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo (Phyllostachys pubescens) seedlings[J]. Chemosphere, 153(6): 107-114.
DOI URL |
[12] |
MARQUES A P G C, RANGEL A O S S, CASTRO P M L, 2011. Remediation of Heavy Metal Contaminated Soils: An Overview of Site Remediation Techniques[J]. Critical Reviews in Environmental Science and Technology, 41(10): 879-914.
DOI URL |
[13] |
MISHRA S, ALFELD M, SOBOTKA R, et al., 2016. Analysis of sublethal arsenic toxicity toCeratophyllum demersum: subcellular distribution of arsenic and inhibition of chlorophyll biosynthesis[J]. Journal of experimental botany, 67(15): 4639-4646.
DOI URL |
[14] |
MOBIN M, KHAN N A, 2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress[J]. Journal of Plant Physiology, 164(5): 601-610.
DOI URL |
[15] |
PATRIZIA B, LETIZIA Z, ANGELO D P, et al., 2015. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance inArabidopsis [J]. Journal of Experimental Botany, 66(13): 3815-3830.
DOI URL |
[16] |
PRAVEEN A, PANDEY C, MEHROTRA S, et al., 2019. Arsenic accumulation in Canna: Effect on antioxidative defense system[J]. Applied Geochemistry, DOI:10.1016/j.apgeochem.2019.06.001.
DOI |
[17] |
RODRIGUEZ-LADO L, SUN G, BERG M, et al., 2013. Groundwater Arsenic Contamination Throughout China[J]. Science, 341(6148): 866-868.
DOI URL |
[18] |
SHARMA S S, DIETZ K J, MIMURA T, 2016. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants[J]. Plant Cell and Environment, 39(5): 1112-1126.
DOI URL |
[19] | TAUQEER H M, ALI S, RIZWAN M, et al., 2016. Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response[J]. Ecotoxicology & Environmental Safety, 126(4): 138-146. |
[20] |
WANG Y, SHEN H, XU L, et al., 2015. Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.)[J]. Frontiers in Plant Science, DOI:10.3389/fpls.2015.00293.
DOI |
[21] | XIN J L, HUANG B F, 2014. Subcellular Distribution and Chemical Forms of Cadmium in Two Hot Pepper Cultivars Differing in Cadmium Accumulation[J]. Journal of Agricultural & Food Chemistry, 62(2): 508-515. |
[22] |
XIN J, ZHAO X H, TAN Q L, et al., 2017. Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.)[J]. Ecotoxicology and Environmental Safety, 145(11): 258-265.
DOI URL |
[23] |
ZHANG F Q, WANG Y S, LOU Z P, et al., 2007. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel andBruguiera gymnorrhiza)[J]. Chemosphere, 67(1): 44-50.
DOI URL |
[24] |
ZHANG H Z, GUO Q J, YANG J X, et al., 2015. Subcellular cadmium distribution and antioxidant enzymatic activities in the leaves of two castor (Ricinus communis L.) cultivars exhibit differences in Cd accumulation[J]. Ecotoxicology and environmental safety, 120: 184-192.
DOI URL |
[25] | 陈璐, 米艳华, 万小铭, 等, 2015. 砷在药用植物三七根部组织及其亚细胞分布特征[J]. 植物学报, 50(5): 591-597. |
CHE L, MI Y H, WAN X M, et al., 2015. Distribution Characteristics of Arsenic in Medicinal PlantsPanax notoginseng's Taproots Tissue and Subcellular Components[J]. Chinese Bulletin of Botany, 50(5): 591-597. | |
[26] | 陈天, 包宁颖, 杜崇宣, 等, 2020. 重金属污染河流生态修复区挺水植物对重金属的吸收特性[J]. 环境科学研究, 33(9): 2110-2117. |
CHE T, BAO N Y, DU C X, et al., 2020. Absorption Characteristics of Heavy Metals by Emergent Plants from Polluted River in Ecological Restoration Areas[J]. Research of Environmental Sciences, 33(9): 2110-2117. | |
[27] | 陈天, 刘云根, 王妍, 等, 2019. 外源磷对砷胁迫下挺水植物抗氧化酶系统的影响[J]. 江苏农业学报, 35(5): 1040-1046. |
CHEN T, LIU Y G, WANG Y, et al., 2019. Effects of exogenous phosphorus on antioxidant enzyme system of emergent plants under arsenic stress[J]. Jiangsu Journal of Agricultural Sciences, 35(5): 1040-1046. | |
[28] | 陈同斌, 阎秀兰, 廖晓勇, 等, 2005. 蜈蚣草中砷的亚细胞分布与区隔化作用[J]. 科学通报, 50(24): 2739-2744. |
CHENG T B, YAN X L, LIAO X Y, et al., 2005. Subcellular distribution and isolation of Arsenic inPteris vittata L.[J]. Chinese Science Bulletin, 50(24): 2739-2744. | |
[29] | GERALD Z, 2015. 烟草砷吸收、亚细胞分布及形态的基因型差异与磷酸盐缓解砷毒害的机理研究[D]. 杭州: 浙江大学: 31. |
GERALD Z, 2015. Genotypic difference in arsenic uptake, subcellul distribution and speciation in Tobacco and the possible role of phosphate alleviating arsenic toxicity[D]. Hangzhou: Zhejiang Uniwersity: 31. | |
[30] | 郝玉波, 刘华琳, 慈晓科, 等, 2010. 砷对玉米生长、抗氧化系统及离子分布的影响[J]. 应用生态学报, 21(12): 3183-3 190. |
HAO Y B, LIU H L, CI X K, et al., 2010. Effects of arsenic on maize growth,antioxidant system, and ion distribution[J]. Chinese Journal of Applied Ecology, 21(12): 3183-3190. | |
[31] | 胡拥军, 王海娟, 王宏镔, 等, 2015. 砷胁迫下不同砷富集能力植物内源生长素与抗氧化酶的关系[J]. 生态学报, 35(10): 3214-3224. |
HU Y J, WANG H J, WANG H B, et al., 2015. The relationship between endogenous auxin and antioxidative enzymes in two plants with different arsenic-accumulative ability under arsenic stress[J]. Acta Ecologica Sinica, 35(10): 3214-3224. | |
[32] | 廖晓勇, 谢华, 陈同斌, 等, 2007. 蜈蚣草的超微结构和砷、钙的亚细胞分布[J]. 植物营养与肥料学报, 13(2): 305-312. |
LIAO X Y, XIE H, CHENG T B, et al., 2007. Ultrastructure and subcellular distributions of arsenic and calcium inPteris vittata L.[J]. Journal of Plant Nutrition and Fertilizers, 13(2): 305-312. | |
[33] | 刘全吉, 孙学成, 胡承孝, 等, 2009. 砷对小麦生长和光合作用特性的影响[J]. 生态学报, 29(2): 854-859. |
LIU J Q, SUN X C, HU C X, et al., 2009. Growth and photosynthesis characteristics of wheat (Triticum aestivum L.) under arsenic stress condition[J]. Acta Ecologica Sinica, 29(2): 854-859. | |
[34] | 罗洁文, 李莹, 苏烁烁, 等, 2016. 类芦根系抗氧化酶和植物螯合肽对Cd、Pb胁迫的应答[J]. 生态环境学报, 25(6): 1047-1053. |
LUO J W, LI Y, SU S S, et al., 2016. Response of Antioxidant Enzymes and PCs in Root ofNeyraudia reynaudiana to Cd, Pb Stress[J]. Ecology and Environmental Sciences, 25(6): 1047-1053. | |
[35] | 任伟, 倪大伟, 刘云根, 等, 2019. 砷污染生境下挺水植物香蒲对砷的积累与迁移特性[J]. 环境科学研究, 32(5): 848-856. |
REN W, NI D W, LIU Y G, et al., 2019. Accumulation and Transportation of Arsenic to wetland PlantTypha angustifolia L. in the Herbaceous Plants Grown in Arsenic-Contaminated Habitat[J]. Research of Environmental Sciences, 32(5): 848-856. | |
[36] | 赛闹汪青, 冉瑞兰, 张牡丹, 等, 2019. 铜胁迫对黄芪幼苗的生理学毒性与凹凸棒黏土的缓解作用[J]. 中国环境科学, 39(12): 5273-5284. |
SAI N W Q, RAN R L, ZHANG M D, et al., 2019. Physiological toxicity of copper stress onAstragalus membranaceus seedlings and mitigation of attapulgite clay[J]. China Environmental Science, 39(12): 5273-5284. | |
[37] | 尚德荣, 张继红, 赵艳芳, 等, 2013. 条斑紫菜中砷的亚细胞分布及其解毒机制的研究[J]. 分析化学, 41(11): 1647-1652. |
SHANG D R, ZHANG J H, ZHAO Y F, et al., 2013. The Subcellular Fate of Phosphorus and Calcium in the SeaweedPorphyra yezoensis and Its Relationship with the Arsenic Accumulation[J]. Chinese Journal of Analytical Chemistry, 41(11): 1647-1652. | |
[38] | 汪良驹, 刘友良, 1998. 植物细胞中的液泡及其生理功能[J]. 植物生理学通讯, 34(5): 394-400. |
WANG L J, LIU Y L, 1998. Vacuoles of Plant Cells and Their Physiological Functions[J]. Plant Physiology Journal, 34(5): 394-400. | |
[39] | 吴敏兰, 李荭荭, 贾洋洋, 等, 2015. 砷胁迫对不同烟草品种光合色素和叶绿素荧光特性的影响[J]. 生态毒理学报, 10(3): 216-223. |
WU M L, LI H H, JIA Y Y, et al., 2015. Influence of Arsenic Stress on the Photosynthetic Pigments and Chlorophyll Fluorescence Characteristics of Different Tobacco Cultivars[J]. Asian Journal of Ecotoxicology, 10(3): 216-223. | |
[40] | 易心钰, 2018. 蓖麻对铅锌胁迫的响应及其机制研究[D]. 长沙: 中南林业科技大学: 65. |
YI X Y, 2018. Study on the responses of Ricinus communis L. \nto Lead and Zinc stress and their mechanisms[D]. Changsha: Central South University of Forestry & Technology: 65. | |
[41] | 张永志, 赵首萍, 徐明飞, 等, 2015. 不同蒸腾作用对番茄幼苗吸收Pb、Cd的影响[J]. 生态环境学报, 18(2): 515-518. |
ZHANG Y Z, ZHAO S P, XU M F, et al., 2015. Effect of transpiration rates on the absorption of Pb and Cd in seedling of tomato[J]. Ecology and Environmental Sciences, 18(2): 515-518. | |
[42] | 郑国锠, 2000. 细胞生物学[M].第2版. 北京: 高等教育出版社: 127. |
ZHENG G C, 2000. Cell Biology[M].SecondEdition.Beijing: Higher Education Press: 127. |
[1] | YANG Yu, DENG Renjian, LONG Pei, HUANG Zhongjie, Ren Bozhi, WANG Zhenghua. Isolation and Identification of Arsenic-oxidizing Bacterium Pseudomonas sp. AO-1 and Its Oxidation Properties for As(Ⅲ) [J]. Ecology and Environment, 2023, 32(3): 619-626. |
[2] | YIN Haojun, LONG Mingliang, LIU Wei, NI Chunlin, LI Fangbai, WU Yundang. Dissolved Oxygen Concentration Regulates Arsenic Reduction in Aeromonas hydrophila: Effects and Mechanisms [J]. Ecology and Environment, 2023, 32(2): 381-387. |
[3] | GAO Peng, GAO Pin, SUN Weimin, KONG Tianle, HUANG Duanyi, LIU Huaqing, SUN Xiaoxun. Response of the Endosphere and Rhizosphere Microbial Community in Petris vittata L. to Arsenic Stress [J]. Ecology and Environment, 2022, 31(6): 1225-1234. |
[4] | XU Meihua, GU Minghua, WANG Chengzhen, LEI Jing, WEI Yanyan, SHEN Fangke. Effect of Manganese on Arsenic Speciation in Soil and Arsenic Migration to Rice [J]. Ecology and Environment, 2022, 31(4): 802-813. |
[5] | ZENG Min, CHEN Jia, LI Exian, YIN Fuyou, WANG Linxian, ZENG Liqiong, GUO Rong. Distribution Characteristics and Dynamic Changes of Cadmium Content in the Introgression Lines of Yuanjiang Common Wild Rice [J]. Ecology and Environment, 2022, 31(3): 565-571. |
[6] | LIU Chang, LUO Yanli, LIU Chentong, ZHENG Yuhong, CHAO Bo, DONG Lele. Spatial Distribution Characteristics of Arsenic in Groundwater and Cropland Soil in the Lower Reaches of Kuitun River [J]. Ecology and Environment, 2022, 31(10): 2070-2078. |
[7] | XU Dongxue, LI Xing, WANG Yong, GOU Mangmang. Spatial Distribution Characteristics and the Response of Different Forms of Nitrogen, Phosphorus and Chlorophyll-a in Lake Ulansuhai during the Frozen Period [J]. Ecology and Environment, 2021, 30(9): 1855-1864. |
[8] | YUAN Weihao, WANG Hua, XIA Yubao, ZENG Yichuan, DENG Yanqing, LI Yuanyuan, ZHANG Xinyue. Relationship of Chlorophyll A and Water Quality Factors in Poyang Lake Based on GAM Model [J]. Ecology and Environment, 2021, 30(8): 1716-1723. |
[9] | CONG Chao, YANG Ningke, WANG Haijuan, WANG Hongbin. Enhancing Arsenic and Cadmium Accumulation in Pteris vittata and Solanum nigrum by Combined Application of Indoleacetic Acid and Kinetin: A Field Experiment [J]. Ecology and Environment, 2021, 30(6): 1299-1309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn