Ecology and Environment ›› 2021, Vol. 30 ›› Issue (5): 1051-1059.DOI: 10.16258/j.cnki.1674-5906.2021.05.018
• Research Articles • Previous Articles Next Articles
ZHANG Bingbing(), YANG Zhao, XUE Bin, DING Xiaoyan, LOU Jinfen, WANG Sheng, CHEN Weijie, XU Guomin*(
)
Received:
2020-12-10
Online:
2021-05-18
Published:
2021-08-06
Contact:
XU Guomin
张兵兵(), 杨照, 薛斌, 丁小艳, 娄金分, 王盛, 陈蔚洁, 徐国敏*(
)
通讯作者:
徐国敏
作者简介:
张兵兵(1992年生),男(苗族),助理研究员,硕士,主要从事水体污染治理方向。E-mail:1591505377@qq.com
基金资助:
CLC Number:
ZHANG Bingbing, YANG Zhao, XUE Bin, DING Xiaoyan, LOU Jinfen, WANG Sheng, CHEN Weijie, XU Guomin. Adsorption of Aquatic Hg2+ by Biochar Obtained from Coix Straw[J]. Ecology and Environment, 2021, 30(5): 1051-1059.
张兵兵, 杨照, 薛斌, 丁小艳, 娄金分, 王盛, 陈蔚洁, 徐国敏. 薏仁米秸秆生物炭对水中Hg2+的吸附特性及机制[J]. 生态环境学报, 2021, 30(5): 1051-1059.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.05.018
生物炭 Biochar | 元素含量 Element content | 元素比 Element ratio | |||||
---|---|---|---|---|---|---|---|
C | O | K | Si | Ca | O/C | ||
BC500 | 73.59 | 20.05 | 4.88 | 0.18 | 1.31 | 0.272 | |
BC600 | 84.22 | 9.07 | 3.40 | 1.08 | ‒ | 0.108 | |
BC700 | 88.79 | 8.87 | 0.80 | 0.12 | 0.10 | 0.100 | |
BC800 | 88.04 | 7.23 | 2.10 | 0.70 | ‒ | 0.082 |
Table 1 Chemical contents of BCs surface
生物炭 Biochar | 元素含量 Element content | 元素比 Element ratio | |||||
---|---|---|---|---|---|---|---|
C | O | K | Si | Ca | O/C | ||
BC500 | 73.59 | 20.05 | 4.88 | 0.18 | 1.31 | 0.272 | |
BC600 | 84.22 | 9.07 | 3.40 | 1.08 | ‒ | 0.108 | |
BC700 | 88.79 | 8.87 | 0.80 | 0.12 | 0.10 | 0.100 | |
BC800 | 88.04 | 7.23 | 2.10 | 0.70 | ‒ | 0.082 |
吸附剂 Adsorbent | 比表面积 Specific surface area/ (m2∙g-1) | 孔容积 Pore volume/ (cm3∙g-1) | 平均孔径 Average pore size/ nm |
---|---|---|---|
BC500 | 78.127 | 0.073 | 15.352 |
BC600 | 119.126 | 0.085 | 15.405 |
BC700 | 293.632 | 0.119 | 15.454 |
BC800 | 25.262 | 0.014 | 15.328 |
Table 2 Structure parameters of BCs
吸附剂 Adsorbent | 比表面积 Specific surface area/ (m2∙g-1) | 孔容积 Pore volume/ (cm3∙g-1) | 平均孔径 Average pore size/ nm |
---|---|---|---|
BC500 | 78.127 | 0.073 | 15.352 |
BC600 | 119.126 | 0.085 | 15.405 |
BC700 | 293.632 | 0.119 | 15.454 |
BC800 | 25.262 | 0.014 | 15.328 |
吸附剂 Adsorbent | Freundlich模型 Freundlich model | Langmuir模型 Langmuir model | 实际吸附量 Actual adsorption capacity qamax/(mg∙g-1) | |||
---|---|---|---|---|---|---|
Kf /(mg1-n∙Ln∙g-1) | R2 | q0/(mg∙g-1) | R2 | |||
BC500 | 8.05 | 0.9359 | 138.13 | 0.9827 | 113.1 | |
BC600 | 8.23 | 0.9002 | 167.09 | 0.9787 | 171.9 | |
BC700 | 14.29 | 0.8323 | 243.29 | 0.9570 | 222.9 | |
BC800 | 10.18 | 0.8559 | 209.27 | 0.9642 | 183.7 |
Table 3 Parameters of Langmuir and Freundlich isotherms models for BCs at 303K
吸附剂 Adsorbent | Freundlich模型 Freundlich model | Langmuir模型 Langmuir model | 实际吸附量 Actual adsorption capacity qamax/(mg∙g-1) | |||
---|---|---|---|---|---|---|
Kf /(mg1-n∙Ln∙g-1) | R2 | q0/(mg∙g-1) | R2 | |||
BC500 | 8.05 | 0.9359 | 138.13 | 0.9827 | 113.1 | |
BC600 | 8.23 | 0.9002 | 167.09 | 0.9787 | 171.9 | |
BC700 | 14.29 | 0.8323 | 243.29 | 0.9570 | 222.9 | |
BC800 | 10.18 | 0.8559 | 209.27 | 0.9642 | 183.7 |
吸附剂 Adsorbent | 准一级吸附模型 Quasi-first kinetic adsorption model | 准二级吸附模型 Quasi- secondary kinetic adsorption model | 实际吸附 Actual adsorption qbmax | |||||
---|---|---|---|---|---|---|---|---|
qt /(mg∙g-1) | r2 | k1∙10-3/(min)-1) | qt /(mg∙g-1) | r2 | k2∙10-3/[g∙(mg·min)-1] | |||
BC500 | 103.46 | 0.7250 | 1.39 | 121.8 | 0.9883 | 1.11 | 121.6 | |
BC600 | 150.60 | 0.8484 | 2.02 | 170.7 | 0.9884 | 1.37 | 164.7 | |
BC700 | 189.05 | 0.7731 | 2.97 | 231.54 | 0.9922 | 1.81 | 235.3 | |
BC800 | 180.53 | 0.8837 | 1.19 | 203.10 | 0.9834 | 1.65 | 196.1 |
Table 4 Quasi-first and Quasi-secondary kinetic adsorption model parameters
吸附剂 Adsorbent | 准一级吸附模型 Quasi-first kinetic adsorption model | 准二级吸附模型 Quasi- secondary kinetic adsorption model | 实际吸附 Actual adsorption qbmax | |||||
---|---|---|---|---|---|---|---|---|
qt /(mg∙g-1) | r2 | k1∙10-3/(min)-1) | qt /(mg∙g-1) | r2 | k2∙10-3/[g∙(mg·min)-1] | |||
BC500 | 103.46 | 0.7250 | 1.39 | 121.8 | 0.9883 | 1.11 | 121.6 | |
BC600 | 150.60 | 0.8484 | 2.02 | 170.7 | 0.9884 | 1.37 | 164.7 | |
BC700 | 189.05 | 0.7731 | 2.97 | 231.54 | 0.9922 | 1.81 | 235.3 | |
BC800 | 180.53 | 0.8837 | 1.19 | 203.10 | 0.9834 | 1.65 | 196.1 |
[1] | AHMAD M, LEE S S, OH S E, et al., 2013. Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes[J]. Environmental Science and Pollution Research, 12: 8364-8373. |
[2] |
BRAADBAART F, BOON J J, VELD H, et al., 2004. Laboratory simulations of the transformation of peas as a result of heat treatment: changes of the physical and chemical properties[J]. Journal of Archaeological Science, 31(6): 821-833.
DOI URL |
[3] |
LIU P, CAROL P L, DAVID B W, et al., 2016. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy[J]. Journal of Hazardous Materials, 308: 233-242.
DOI URL |
[4] |
DING Z H, HU X, WAN Y S, et al., 2016. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests[J]. Journal of Industrial and Engineering Chemistry, 33: 239-245.
DOI URL |
[5] |
DONG L J, WU S Y, LI S B, et al., 2020. Sorption Behaviors and Mechanisms of Eu(III) on Rice Straw-derived Biochar[J]. Journal of Inorganic Materials, DOI:10.15541/jim20190314.
DOI |
[6] |
FU F L, WANG Q, 2011. Removal of heavy metal ions from wastewaters[J]. Journal of Environmental Management, 92(3): 407-418.
DOI URL |
[7] | HASSAN S S, AWWAD N S, ABOTERIKA A H, ,2016. Removal of mercury(II) from wastewater using camel bone charcoal [J]. Journal of Hazardous Materials, 154(1-3): 992-997. |
[8] |
KEILUWEIT M, KLEBER M, 2009. Molecular-Level Interactions in Soils and Sediments: The Role of Aromatic π-Systems[J]. Environmental Science & Technology, 43(10): 3421-3429.
DOI URL |
[9] | LI M L, ZHANG Z Q, LI R H, et al., 2016. Removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan [J]. International Journal of Biological Macromolecules, 86: 876-884. |
[10] |
DINESH M, KUMAR H, SARSWAT A, et al., 2014. Cadmium and Lead Remediation using Magnetic Oak Wood and Oak Bark Fast Pyrolysis Bio-chars[J]. Chemical Engineering Journal, 236: 513-528.
DOI URL |
[11] |
TENG D Y, ZHANG B B, XU G M, et al., 2020. Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms [J]. Environmental Pollution, DOI:10.1016/j.envpol.2020.115001.
DOI |
[12] |
VU T M, TRINH V T, DOAN D P, et al., 2017. Removing ammonium from water using modified corncob-biochar[J]. Science of the Total Environment, 579: 612-619.
DOI URL |
[13] |
WU Q H, ZHOU H, TAM N F Y, et al., 2016. Contamination, toxicity and speciation of heavy metals in an industrialized urban river: Implications for the dispersal of heavy metals[J]. Marine Pollution Bulletin, 104(1-2): 153-161.
DOI URL |
[14] | WU J Z, HUANG D, LIU X M, et al., 2018. Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar [J]. Journal of Hazardous Materials, 348: 10-19. |
[15] | XU X Y, ARIETTE S, XU N, et al., 2018. Comparison of the characteristics and mechanisms of Hg(II) sorption by biochars and activated carbon [J]. Journal of Colloid and Interface Science, 463: 55-60. |
[16] | ZHU Q F, WANG L T, AN Z H, et al., 2016. Hydrothermal synthesis of silico-manganese nanohybrid for Cu(II) adsorption from aqueous solution [J]. Applied Surface Science, 371: 102-111. |
[17] | ZHU Q F, ZHANG B B, WANG T T, et al., 2019. Synthesis and properties of porous δ-MnO2/polymer millimeter-sized beads for Ni(II) removal [J]. Microporous and Mesoporous Materials, 273: 90-98. |
[18] | 毕景望, 单锐, 韩静, 等, 2020. 改性西瓜皮生物炭的制备及其对Pb(Ⅱ) 的吸附特性[J]. 环境科学, 41(4): 1770-1778. |
BI J W, SHAN R, HAN J, et al., 2020. Preparation of Modified Watermelon Biochar and Its Adsorption Properties for Pb(Ⅱ)[J]. Environmental Science, 41(4): 1770-1779. | |
[19] | 段浩楠, 吕宏虹, 王夫美, 等, 2020. 生物炭/铁复合材料的制备及其在环境修复中的应用研究进展[J]. 环境化学, 39(3): 774-790. |
DUAN H N, LU H H, WANG F M, et al., 2020. Preparation of biochar/iron composite and its application in environmental remediation[J]. Environmental Chemistry, 39(3): 774-790. | |
[20] | 牛淑娟, 王朝旭, 贺国华, 等, 2020. 玉米秸秆生物炭和碳骨架的制备及对农田土壤CO2排放的影响[J]. 生态与农村环境学报, 36(1): 95-105. |
NIU S J, WANG C X, HE G H, et al., 2020. Preparation of maize straw-derived biochars and corresponding carbon skeletons and their effects on CO2 emissions from farmland soil[J]. Journal of Ecology and Rural Environment, 36(1): 95-105. | |
[21] | 闫奇, 郑乾送, 周江敏, 等, 2020. 生物炭负载羧甲基纤维素钠稳定化纳米铁对水中六价铬的去除[J]. 环境工程学报, 14(3): 579-587. |
YAN Q, ZHENG Q S, ZHOU J M, et al., 2020. Removal of hexavalent chromium from water by biochar supported with sodium carboxymethyl cellulose-stabilized nano-iron[J]. Chinese Journal of Environmental Engineering, 14(3): 579-587. | |
[22] | 王桂仙, 张启伟, 2008. 竹炭对水体中重金属离子的吸附规律研究[J]. 化学与生物工程, 25(3): 66-68. |
WANG G X, ZHANG Q W, 2008. Adsorption law of bamboo-charcoalfor heavy metal ions in aqueous solution[J]. Chemistry & Bioengineering, 25(3): 66-68. | |
[23] | 张兵兵, 朱秋锋, 王婷婷, 等, 2019. MnO2基复合吸附剂制备及去除水中重金属性能[J]. 水处理技术, 45(4): 53-58. |
ZHANG B B, ZHU Q F, WANG T T, et al., 2019. Preparation of silico-manganese based composite adsorbents and its performance for heavy metal ions removal from water[J]. Technology of Water Treatment, 45(4): 53-58. | |
[24] | 张杏锋, 聂小奇, 姚航, 等, 2020. 羊粪生物炭对Pb、Zn、Cd和Cu吸附特性及机制[J]. 水处理技术, 46(5): 24-29. |
ZHANG X F, NIE X Q, YAO H, et al., 2020. Adsorption characteristic and mechanism of Pb, Zn, Cd and Cu by sheep manure biochar[J]. Technology of Water Treatment, 46(5): 24-29. | |
[25] | 朱秋锋, 王丽婷, 安泽欢, 等, 2016. 不同形态氧化锰的水热制备及吸附重金属离子性能[J]. 化工新型材料, 44(6): 184-186. |
ZHU Q F, WANG L T, AN Z H, et al., 2016. Hydrothermal preparation of different forms of manganese oxide and the adsorption performance of heavy metal ions[J]. New Chemical Materials, 44(6): 184-186. | |
[26] | 赵益华, 贾凯悦, 季民, 等, 2020. 壳聚糖改性硅藻土除藻性能及生态安全性评价[J]. 生态环境学报, 29(12): 2441-2448. |
ZHAO Y H, JIA K Y, JI M, et al., 2020. Algae removal performance and ecological safety evaluation of diatomite modified by chitosan[J]. Ecology and Environmental Sciences, 29(12): 2441-2448. |
[1] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[2] | YUAN Linjiang, LI Mengbo, LENG Gang, ZHONG Bingbing, XIA Dapeng, WANG Jinghua. Synergistic Effect of Sulfate Reduction and Ammonia Oxidation in Anaerobic Environment [J]. Ecology and Environment, 2023, 32(1): 207-214. |
[3] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[4] | YOU Hongjian, ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune. Effects of Earthworm in-situ Composting and Biochar on Cucumber Root-knot Nematodes and Rhizosphere Microorganisms [J]. Ecology and Environment, 2023, 32(1): 99-109. |
[5] | HAO Beibei, WANG Nan, WU Haoping, ZHOU Zhixin, ZHANG Siyi, HE Bin. Research on the Reduction Function of Ecological Ditches on Runoff Pollution from Rice Field in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(9): 1856-1864. |
[6] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[7] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[8] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[9] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[10] | ZHANG Huiqi, LI Zizhong, QI Yan. Effects of Corn Straw-based Biochar Amount on Pores and Water Holding Capacity of Sandy Soil [J]. Ecology and Environment, 2022, 31(6): 1272-1277. |
[11] | SONG Xue, LIU Minghui, WANG Hui, LI Yu, ZAN Qijie. Study on the Control Technology of Native Outbreak Liana Byttneria grandifolia Candolle [J]. Ecology and Environment, 2022, 31(5): 931-938. |
[12] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
[13] | WEI Lan, HUANG Lianxi, LI Xiang, WANG Zehuang, CHEN Weisheng, HUANG Qing, HUANG Yufen, LIU Zhongzhen. Biochar Medium Could Significantly Improve Banana Seedling Growth [J]. Ecology and Environment, 2022, 31(4): 732-739. |
[14] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[15] | CHENG Wenyuan, LI Fayun, LÜ Jianhua, LIN Meixia, WANG Wei. Sorption Characteristics of Polycyclic Aromatic Hydrocarbons Phenanthrene on Sunflower Straw Biochar Modified with Alkali [J]. Ecology and Environment, 2022, 31(4): 824-834. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn