Ecology and Environment ›› 2021, Vol. 30 ›› Issue (5): 968-975.DOI: 10.16258/j.cnki.1674-5906.2021.05.009
• Research Articles • Previous Articles Next Articles
DAI Jinxia(), TIAN Pingya, SHEN Cong, LIU Shuang
Received:
2020-11-11
Online:
2021-05-18
Published:
2021-08-06
作者简介:
代金霞,教授,博士,硕士研究生导师,研究方向为微生物资源开发与利用。E-mail:daijx05@163.com
基金资助:
CLC Number:
DAI Jinxia, TIAN Pingya, SHEN Cong, LIU Shuang. Screening of Rhizosphere Bacteria from Salt Tolerant Plants and Their Growth Promoting Effects[J]. Ecology and Environment, 2021, 30(5): 968-975.
代金霞, 田平雅, 沈聪, 刘爽. 耐盐植物根际促生菌筛选及促生效应研究[J]. 生态环境学报, 2021, 30(5): 968-975.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.05.009
菌株 Strain | A/Ar | 产铁能力Siderophores | 菌株 Strain | A/Ar | 产铁能力 Siderophores | 菌株 Strain | A/Ar | 产铁能力 Siderophores |
---|---|---|---|---|---|---|---|---|
GQ4 | 0.333±0.011 | ++++ | JJC11 | 0.234±0.002 | ++++ | MX18 | 0.152±0.002 | +++++ |
GQ7 | 0.255±0.016 | ++++ | KDZ6 | 0.271±0.008 | ++++ | MX22 | 0.180±0.005 | +++++ |
GQ9 | 0.242±0.023 | ++++ | KDZ10 | 0.277±0.005 | ++++ | MX23 | 0.480±0.066 | +++ |
GQ12 | 0.440±0.031 | +++ | KDZ12 | 0.156±0.011 | +++++ | MX26 | 0.328±0.009 | ++++ |
GQ13 | 0.338±0.019 | ++++ | CL11 | 0.309±0.055 | ++++ | MX30 | 0.280±0.056 | ++++ |
LZJ13 | 0.190±0.011 | +++++ | MX2 | 0.735±0.027 | ++ | MX31 | 0.228±0.009 | ++++ |
LZJ20 | 0.818±0.025 | + | MX4 | 0.573±0.063 | +++ | MX32 | 0.283±0.026 | ++++ |
JJC9 | 0.256±0.010 | ++++ | MX14 | 0.469±0.005 | +++ | MX16 | 0.346±0.002 | ++++ |
Table 1 Ability of siderophores secretion of tested strains
菌株 Strain | A/Ar | 产铁能力Siderophores | 菌株 Strain | A/Ar | 产铁能力 Siderophores | 菌株 Strain | A/Ar | 产铁能力 Siderophores |
---|---|---|---|---|---|---|---|---|
GQ4 | 0.333±0.011 | ++++ | JJC11 | 0.234±0.002 | ++++ | MX18 | 0.152±0.002 | +++++ |
GQ7 | 0.255±0.016 | ++++ | KDZ6 | 0.271±0.008 | ++++ | MX22 | 0.180±0.005 | +++++ |
GQ9 | 0.242±0.023 | ++++ | KDZ10 | 0.277±0.005 | ++++ | MX23 | 0.480±0.066 | +++ |
GQ12 | 0.440±0.031 | +++ | KDZ12 | 0.156±0.011 | +++++ | MX26 | 0.328±0.009 | ++++ |
GQ13 | 0.338±0.019 | ++++ | CL11 | 0.309±0.055 | ++++ | MX30 | 0.280±0.056 | ++++ |
LZJ13 | 0.190±0.011 | +++++ | MX2 | 0.735±0.027 | ++ | MX31 | 0.228±0.009 | ++++ |
LZJ20 | 0.818±0.025 | + | MX4 | 0.573±0.063 | +++ | MX32 | 0.283±0.026 | ++++ |
JJC9 | 0.256±0.010 | ++++ | MX14 | 0.469±0.005 | +++ | MX16 | 0.346±0.002 | ++++ |
菌株(序列号) Strain (accession No.) | 参比菌株(相似性/%) Reference strain (Similarity/%) | 革兰氏染色 Gram staining | 硝酸盐还原 Nitrate reduction | 淀粉水解 Starch hydrolysis | V.P反应 V.P reaction | H2O2酶 H2O2 enzyme |
---|---|---|---|---|---|---|
MX26 (MG735408) | B. subtilis (99%) | + | + | + | + | + |
MX31 (MG735410) | P. brassicacearum (98%) | - | - | - | - | + |
MX32 (MG735411) | S. kitahiroshimense (98%) | - | + | - | - | + |
GQ2 (MG735393) | P. brassicacearum (99%) | - | - | - | - | + |
GQ4 (MG735367) | B. atrophaeus (99%) | + | + | + | + | + |
GQ11 (MG735392) | P. brassicacearum (99%) | - | - | - | - | + |
GQ13 (MG735363) | B. atrophaeus (99%) | + | + | + | + | + |
KDZ12 (MG735374) | B. cereus (99%) | + | + | - | + | + |
JJC11 (MG735369) | B. subtilis (99%) | + | + | + | + | + |
LZJ3 (MG735396) | P. brassicacearum (99%) | - | - | - | - | + |
LZJ12 (MG735380) | B. subtilis (100%) | + | + | + | + | + |
Table 2 16S rDNA sequence similarity and partial physiological and biochemical characteristics of strains
菌株(序列号) Strain (accession No.) | 参比菌株(相似性/%) Reference strain (Similarity/%) | 革兰氏染色 Gram staining | 硝酸盐还原 Nitrate reduction | 淀粉水解 Starch hydrolysis | V.P反应 V.P reaction | H2O2酶 H2O2 enzyme |
---|---|---|---|---|---|---|
MX26 (MG735408) | B. subtilis (99%) | + | + | + | + | + |
MX31 (MG735410) | P. brassicacearum (98%) | - | - | - | - | + |
MX32 (MG735411) | S. kitahiroshimense (98%) | - | + | - | - | + |
GQ2 (MG735393) | P. brassicacearum (99%) | - | - | - | - | + |
GQ4 (MG735367) | B. atrophaeus (99%) | + | + | + | + | + |
GQ11 (MG735392) | P. brassicacearum (99%) | - | - | - | - | + |
GQ13 (MG735363) | B. atrophaeus (99%) | + | + | + | + | + |
KDZ12 (MG735374) | B. cereus (99%) | + | + | - | + | + |
JJC11 (MG735369) | B. subtilis (99%) | + | + | + | + | + |
LZJ3 (MG735396) | P. brassicacearum (99%) | - | - | - | - | + |
LZJ12 (MG735380) | B. subtilis (100%) | + | + | + | + | + |
组合编号 Combination number | ACC脱氨酶活性 ACC deaminase/(μmol∙mg-1∙h-1) | IAA量 IAA production/(mg∙L-1) | 有效磷含量 Vailable phosphorus/(mg∙L-1) | 产铁载体 Siderophores |
---|---|---|---|---|
C1: MX26, MX31, MX32, GQ11 | 1.43±0.182c | 12.26±0.205b | 41.97±4.882b | +++++ |
C2: MX26, MX31, GQ4, GQ11 | 0.84±0.025d | 12.03±0.194b | 47.54±5.208b | +++++ |
C3: MX26, MX31, MX32, LZJ3 | 2.77±0.001b | 13.30±0.472a | 56.96±3.255a | +++++ |
C4: MX26, MX31, GQ4, LZJ3 | 0.25±0.058e | 12.62±0.302b | 3.52±0.295e | +++++ |
C5: MX26, KDZ12, LZJ3, JJC11 | 0.13±0.025e | 4.62±0.370e | 24.77±1.174c | ++++ |
C6: GQ2, LZJ3, KDZ12, GQ13 | 0.36±0.034e | 5.93±0.103d | 13.51±1.979d | +++ |
C7: GQ2, LZJ3, KDZ12, JJC11 | 0.12±0.007e | 5.25±0.326d | 14.34±0.143d | ++++ |
C8: MX26, KDZ12, LZJ3, LZJ12 | 3.67±0.303a | 8.07±0.063c | 54.12±2.529a | ++++ |
C9: GQ2, LZJ3, KDZ12, LZJ12 | 0.24±0.011e | 8.61±0.213c | 13.58±0.449d | ++++ |
Table 3 Ability of the growth-promoting of compound bacteria
组合编号 Combination number | ACC脱氨酶活性 ACC deaminase/(μmol∙mg-1∙h-1) | IAA量 IAA production/(mg∙L-1) | 有效磷含量 Vailable phosphorus/(mg∙L-1) | 产铁载体 Siderophores |
---|---|---|---|---|
C1: MX26, MX31, MX32, GQ11 | 1.43±0.182c | 12.26±0.205b | 41.97±4.882b | +++++ |
C2: MX26, MX31, GQ4, GQ11 | 0.84±0.025d | 12.03±0.194b | 47.54±5.208b | +++++ |
C3: MX26, MX31, MX32, LZJ3 | 2.77±0.001b | 13.30±0.472a | 56.96±3.255a | +++++ |
C4: MX26, MX31, GQ4, LZJ3 | 0.25±0.058e | 12.62±0.302b | 3.52±0.295e | +++++ |
C5: MX26, KDZ12, LZJ3, JJC11 | 0.13±0.025e | 4.62±0.370e | 24.77±1.174c | ++++ |
C6: GQ2, LZJ3, KDZ12, GQ13 | 0.36±0.034e | 5.93±0.103d | 13.51±1.979d | +++ |
C7: GQ2, LZJ3, KDZ12, JJC11 | 0.12±0.007e | 5.25±0.326d | 14.34±0.143d | ++++ |
C8: MX26, KDZ12, LZJ3, LZJ12 | 3.67±0.303a | 8.07±0.063c | 54.12±2.529a | ++++ |
C9: GQ2, LZJ3, KDZ12, LZJ12 | 0.24±0.011e | 8.61±0.213c | 13.58±0.449d | ++++ |
指标 Item | CK | C3 | C8 | |||
---|---|---|---|---|---|---|
测定值 Measured value | 增长率 Growth rate/% | 测定值 Measured value | 增长率 Growth rate/% | |||
株高 Plant height/cm | 8.68±0.548c | 13.45±2.262a | 54.93 | 10.73±0.519b | 23.61 | |
根长 Root length/cm | 12.96±0.896a | 13.38±1.898a | 3.27 | 14.93±1.461a | 15.20 | |
地上鲜质量Fresh mass on the ground/g | 0.150±0.025c | 0.320±0.071a | 113.80 | 0.245±0.052b | 63.69 | |
地下鲜质量 Fresh mass underground/g | 0.044±0.007c | 0.073±0.019a | 66.09 | 0.055±0.013b | 24.79 | |
地上鲜质量 Dry mass on the ground/g | 0.037±0.007c | 0.081±0.019a | 119.60 | 0.062±0.012b | 67.57 | |
地下鲜质量 Dry mass underground/g | 0.022±0.005c | 0.033±0.008a | 49.92 | 0.027±0.006ab | 24.13 |
Table 4 The effect of compound bacteria on the biomass of Medicago sativa seedlings
指标 Item | CK | C3 | C8 | |||
---|---|---|---|---|---|---|
测定值 Measured value | 增长率 Growth rate/% | 测定值 Measured value | 增长率 Growth rate/% | |||
株高 Plant height/cm | 8.68±0.548c | 13.45±2.262a | 54.93 | 10.73±0.519b | 23.61 | |
根长 Root length/cm | 12.96±0.896a | 13.38±1.898a | 3.27 | 14.93±1.461a | 15.20 | |
地上鲜质量Fresh mass on the ground/g | 0.150±0.025c | 0.320±0.071a | 113.80 | 0.245±0.052b | 63.69 | |
地下鲜质量 Fresh mass underground/g | 0.044±0.007c | 0.073±0.019a | 66.09 | 0.055±0.013b | 24.79 | |
地上鲜质量 Dry mass on the ground/g | 0.037±0.007c | 0.081±0.019a | 119.60 | 0.062±0.012b | 67.57 | |
地下鲜质量 Dry mass underground/g | 0.022±0.005c | 0.033±0.008a | 49.92 | 0.027±0.006ab | 24.13 |
指标 Item | CK | C3 | C8 | |||
---|---|---|---|---|---|---|
测定值 Measured value | 增长率 Growth rate/% | 测定值 Measured value | 增长率 Growth rate/% | |||
株高 Plant height/cm | 11.99±0.116c | 18.10±0.632a | 50.96 | 15.71±0.239b | 31.03 | |
根长 Root length/cm | 16.55±0.719b | 17.96±0.328a | 8.52 | 17.49±0.208a | 5.68 | |
地上鲜质量 Fresh mass on the ground/g | 0.044±0.006b | 0.099±0.011a | 124.60 | 0.092±0.016a | 109.10 | |
地下鲜质量 Fresh mass underground/g | 0.048±0.010c | 0.074±0.009b | 54.86 | 0.083±0.012a | 73.89 | |
地上鲜质量 Dry mass on the ground/g | 0.018±0.001b | 0.032±0.002a | 82.08 | 0.031±0.003a | 76.67 | |
地下鲜质量 Dry mass underground/g | 0.021±0.004b | 0.027±0.004a | 31.59 | 0.032±0.003a | 58.30 |
Table 5 The effect of compound bacteria on the biomass of Panicum virgatum seedlings
指标 Item | CK | C3 | C8 | |||
---|---|---|---|---|---|---|
测定值 Measured value | 增长率 Growth rate/% | 测定值 Measured value | 增长率 Growth rate/% | |||
株高 Plant height/cm | 11.99±0.116c | 18.10±0.632a | 50.96 | 15.71±0.239b | 31.03 | |
根长 Root length/cm | 16.55±0.719b | 17.96±0.328a | 8.52 | 17.49±0.208a | 5.68 | |
地上鲜质量 Fresh mass on the ground/g | 0.044±0.006b | 0.099±0.011a | 124.60 | 0.092±0.016a | 109.10 | |
地下鲜质量 Fresh mass underground/g | 0.048±0.010c | 0.074±0.009b | 54.86 | 0.083±0.012a | 73.89 | |
地上鲜质量 Dry mass on the ground/g | 0.018±0.001b | 0.032±0.002a | 82.08 | 0.031±0.003a | 76.67 | |
地下鲜质量 Dry mass underground/g | 0.021±0.004b | 0.027±0.004a | 31.59 | 0.032±0.003a | 58.30 |
[1] |
AGBODJATO N A, NOUMAVO P A, ADJANOHOUN A, et al., 2016. Synergistic effects of plant growth promoting rhizobacteria and chitosan on in vitro seeds germination, greenhouse growth, and nutrient uptake of Maize (Zea mays)[J]. Biotechnology Resesrch International, DOI:10.1155/2016/7830182.
DOI |
[2] |
BULGARELLI D, GARRIDO-OTER R, MÜNCH P C, et al., 2015. Structure and function of the bacterial root microbiota in wild and domesticated barley[J]. Cell Host Microbe, 17(3): 392-403.
DOI URL |
[3] |
GLICK B R, 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world[J]. Microbiological Research, 169(1): 30-39.
DOI URL |
[4] | GLICKMANN E, DESSAUX Y A, 1995. critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied microbiology, 61(2): 793-796. |
[5] |
KIM J S, KIM D S, LEE K C, et al., 2018. Microbial community structureand functional potential of lava-formed Gotjawal soils in Jeju, Korea[J]. PLoS ONE, 13(10): e0204761.
DOI URL |
[6] |
MA Y, RAJKUMAR M, OLIVEIRAA R S, et al., 2019. Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils[J]. Journal of Hazardous Materials, DOI:10.1016/j.jhazmat.2019.120813.
DOI |
[7] |
MAHMOOD S, DAUR I, AL-SOLAIMANI S G, 2016,Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean[J]. Frontiers in Plant Science, DOI:10.3389/fpls.2016.00876.
DOI |
[8] |
MAHONEY A K, YIN C, HULBERT S H, 2017. Community structure, species variation, and potential functions of rhizosphere-associated bacteria of different winter wheat (Triticum aestivum) cultivars[J]. Frontiers in Plant Science, DOI:10.3389/fpls.2017.00132.
DOI |
[9] |
MAJEED A, ABBASI M K, HAMEED S, et al., 2015. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion[J]. Frontiers in Microbiology, DOI:10.3389/fmicb.2015.00198.
DOI |
[10] |
MUHAMMAD I, MUHAMMAD T, MUHAMMAD S, et al., 2019. Combined application of biochar and PGPR consortia for sustainable production of wheat under semiarid conditions with a reduced dose of synthetic fertilizer[J]. Brazilian Journal of Microbiology, 50: 449-458.
DOI URL |
[11] | PENROSE D, GLICK B, 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Plant Physiology, 118(1): 10-15. |
[12] |
SHEIKH H H, HOSSAIN K, HALIMI M S, 2016. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes[J]. BioMed Research International, DOI:10.1155/2016/6284547.
DOI |
[13] |
VESSEY J K, 2003. Plant growth promoting rhizobacteria as biofertilizers[J]. Plant and Soil, 255(2): 571-586.
DOI URL |
[14] |
VURUKONDA S S, VARDHARAJULA S, SHRIVASTAVA M, et al., 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria[J]. Microbiological Research, 184: 13-24.
DOI URL |
[15] |
ZHOU C, ZHU L, XIE Y, et al., 2017. Bacillus licheniformis SA03 Confers Increased Saline-Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation[J]. Frontiers in Plant Science, DOI:10.3389/fpls.2017.01143.
DOI |
[16] | 代金霞, 周波, 田平雅, 2017. 荒漠植物柠条产ACC脱氨酶根际促生菌的筛选及其促生特性研究[J]. 生态环境学报, 26(3): 386-391. |
DAI J X, ZHOU B, TIAN P Y, 2017. Screening and Growth-promoting Effects of Rhizobacteria with ACC Deaminase Activity from Rhizosphere Soil ofCaragana korshinskii Grown in Desert Grassland[J]. Ecology and Environmental Sciences, 26(3): 386-391. | |
[17] | 丁绍武, 张鹏, 2019. 盐碱地改良研究现状及微生物菌肥应用分析[J]. 现代农业科技 (7): 175-176. |
DING S W, ZHANG P, 2019. Research Status of Saline-alkali Land Improvement and Application Analysis of Microbial Fertilizer[J]. Modern Agricultural Science and Technology (7): 175-176. | |
[18] | 东秀珠, 蔡妙英, 2001. 常见细菌系统鉴定手册[M]. 北京: 科学出版社. |
DONG X Z, CAI M Y, 2001. Handbook of systematic identification of common bacteria[M]. Beijing: Science Press. | |
[19] | 冯维维, 武美贤, 司雨婷, 等, 2016. 中华补血草内生与根际具ACC脱氨酶活性细菌的筛选及其生物多样性[J]. 微生物学报, 56(4): 719-728. |
FENG W W, WU M X, SI Y T, et al., 2016. Screening and biodiversity of endophytic and rhizosphere bacteria containing ACC deaminase from halophyteLimonium sinense (Girard) Kuntze[J]. Acta Microbiologica Sinica, 56(4): 719-728. | |
[20] | 郭军康, 董明芳, 丁永祯, 等, 2015. 根际促生菌影响植物吸收和转运重金属的研究进展[J]. 生态环境学报, 24(7): 1228-1234. |
GUO J K, DONG M F, DING Y Z, et al., 2015. Effects of Plant Growth Promoting Rhizobacteria on Plants Heavy Metal Uptake and Transport: A Review[J]. Ecology and Environmental Sciences, 24(7): 1228-1234. | |
[21] | 韩坤, 田曾元, 刘珂, 等, 2015. 具有ACC脱氨酶活性的海滨锦葵 (Kosteletzkya pentacarpos) 内生细菌对小麦耐盐性的影响[J]. 植物生理学报, 51 (2): 212-220. |
HAN K, TIAN Z Y, LIU K, et al., 2015. Effect of Endophytic Bacteria with ACC Deaminase Activity in Kostel etzkya pentacarpos on Wheat Salt Tolerance[J]. Plant Physiology Journal, 51(2): 212-220. | |
[22] | 何欣燕, 乔雪涛, 赵海艳, 等, 2018. 不同隔离垫层对宁夏盐碱地盐碱动态和土壤养分及垂柳生长的影响[J]. 应用与环境生物学报, 24(5): 1152-1157. |
HE X Y, QIAO X T, ZHAO H Y, et al., 2018. Effects of isolation cushion type on the soil nutrient dynamics and growth of Salix babylonica on saline-alkali land in Ningxia, China[J]. Chinese Journal of Applied and Environmental Biology, 24(5): 1152-1157. | |
[23] | 何志刚, 王秀娟, 董环, 等, 2013. PGPR菌肥对马铃薯产量与肥料利用率影响的初步研究[J]. 中国土壤与肥料 (2): 100-103. |
HE Z G, WANG X J, DONG H, et al., 2013. A preliminary study of the application of PGPR fertilizer on the potato[J]. Soil and Fertilizer Sciences in China (2): 100-103. | |
[24] | 李海云, 蒋永梅, 姚拓, 等, 2018. 蔬菜作物根际促生菌分离筛选、鉴定及促生特性测定[J]. 植物保护学报, 45(4): 836-845. |
LI H Y, JIANG Y M, YAO T, et al., 2018. Isolation, screening, identification and growth promoting characteristics of plant growth promoting rhizobacteria of vegetable crops[J]. Journal of Plant Protection, 45(4): 836-845. | |
[25] | 李玉奇, 辛世杰, 奥岩松, 2012. 微生物菌肥对温室黄瓜生长、产量及品质的影响[J]. 中国农学通报, 28(1): 259-263. |
LI Y Q, XIN S J, AO Y S, 2012. Effects of Microbial Fertilizers on the Growth, Yield and Quality of Cucumber in Greenhouse Cultivation[J]. Chinese Agricultural Science Bulletin, 28(1): 259-263. | |
[26] | 刘奕媺, 于洋, 方军, 2018. 盐碱胁迫及植物耐盐碱分子机制研究[J]. 土壤与作物, 7(2) :201-211. |
LIU Y M, YU Y, FANG J, 2018. Saline-alkali stress and molecular mechanism of saline-alkali tolerance in plants[J]. Soils and Crops, 7(2): 201-211. | |
[27] | 孙广正, 2015. 微生物接种剂对油菜和西葫芦病害防治及其促生作用研究[D]. 兰州: 甘肃农业大学:1-107. |
SUN G Z, 2015. Control effect of bio-inoculant to diseases on rapeseed and Zucchini and its growth promoting capacity[D]. Lanzhou: Gansu Agricultural University:1-107. | |
[28] | 王佺珍, 刘倩, 高娅妮, 等, 2017. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 37(16): 5565-5577. |
WANG Q Z, LIU Q, GAO Y N, et al., 2017. Review on the mechanisms of the response to salinity-alkalinity stress in plants[J]. Acta Ecologica Sinica, 37(16): 5565-5577. | |
[29] | 赵翔, 陈绍兴, 谢志雄, 等, 2006. 高产铁载体荧光假单胞菌Pseudomonas fluorescens sp-f的筛选鉴定及其铁载体特性研究[J]. 微生物学报, 46(5): 691-69. |
ZHAO X, CHEN S X, XIE Z X, et al., 2006. Isolation, identification and over-siderophores production ofPseudomonas fluorescens sp-f[J]. Acta Microbiologica Sinica, 46(5): 691-69. |
[1] | LI Haipeng, HUANG Yuehua, SUN Xiaodong, CAO Qimin, FU Fangxing, SUN Chuhan. Correlation Analysis of the Occurrence of the Tomato Bacterial Wilt and Different Types of Texture of Latosols and Its Bacterial Community in Cropland in Hainan [J]. Ecology and Environment, 2023, 32(6): 1062-1069. |
[2] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[3] | HOU Hui, YAN Peixuan, XIE Qinmi, ZHAO Hongliang, PANG Danbo, CHEN Lin, LI Xuebin, HU Yang, LIANG Yongliang, NI Xilu. Characterization of Arbuscular Mycorrhizal Fungal Community Diversity in the Rhizosphere Soils of Prunus mongolica Scrub of Helan Mountain [J]. Ecology and Environment, 2023, 32(5): 857-865. |
[4] | QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain [J]. Ecology and Environment, 2023, 32(3): 459-468. |
[5] | ZHANG Yaping, CHEN Huimin, WU Zhiyu, TANG Jia, Xie Zhangzhang, LIU Fanghua. Low Concentration of Ferrihydrite Promoted the Hydrogen Production Efficiency of Clostridium sp. BY-1 Isolated from Rice Paddy Soil [J]. Ecology and Environment, 2022, 31(12): 2341-2349. |
[6] | HAN Fang, BAO Yuanyuan, LIU Xiangyu, ZHANG Xinyong, WEI Denghui, ZHANG Haoran, TIAN Qinglong. Effects of Different Potato Rotation Patterns on Fungal Community Structure in Rhizosphere Soil [J]. Ecology and Environment, 2021, 30(7): 1412-1419. |
[7] | WANG Yushu, SHENG Haiyan, LUO Shasha, HU Yueming, YU Lingling. Characteristics of Prokaryotic Microbial Community Structure and Molecular Ecological Network in Four Habitat Soils around Lake Qinghai [J]. Ecology and Environment, 2021, 30(7): 1393-1403. |
[8] | YAO Shiting, LU Guangxin, DENG Ye, DANG Ning, WANG Yingcheng, ZHANG Haijuan, YAN Huilin. Effects of Simulated Warming on Soil Fungal Community Composition and Diversity [J]. Ecology and Environment, 2021, 30(7): 1404-1411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn