Ecology and Environment ›› 2021, Vol. 30 ›› Issue (7): 1412-1419.DOI: 10.16258/j.cnki.1674-5906.2021.07.010
• Research Articles • Previous Articles Next Articles
HAN Fang1,2(), BAO Yuanyuan3, LIU Xiangyu1, ZHANG Xinyong1,*(
), WEI Denghui1, ZHANG Haoran1, TIAN Qinglong1
Received:
2020-08-05
Online:
2021-07-18
Published:
2021-10-09
Contact:
ZHANG Xinyong
韩芳1,2(), 包媛媛3, 刘项宇1, 张新永1,*(
), 韦灯会1, 张浩然1, 田清龙1
通讯作者:
张新永
作者简介:
韩芳(1994年生),女,硕士研究生,研究方向为作物栽培理论与技术。E- mail: 2551996403@qq.com
基金资助:
CLC Number:
HAN Fang, BAO Yuanyuan, LIU Xiangyu, ZHANG Xinyong, WEI Denghui, ZHANG Haoran, TIAN Qinglong. Effects of Different Potato Rotation Patterns on Fungal Community Structure in Rhizosphere Soil[J]. Ecology and Environment, 2021, 30(7): 1412-1419.
韩芳, 包媛媛, 刘项宇, 张新永, 韦灯会, 张浩然, 田清龙. 不同轮作方式对马铃薯根际土壤真菌群落结构的影响[J]. 生态环境学报, 2021, 30(7): 1412-1419.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.07.010
土壤指标 Soil index | pH pH value | w(Organic matter)/ (g∙kg-1) | w(Available nitrogen)/ (mg∙kg-1) | w(Available phosphorus)/ (mg∙kg-1) | w(Available potassium)/ (mg∙kg-1) | w(Exchangeable calcium)/ (mg∙kg-1) | w(Exchangeable magnesium)/ (mg∙kg-1) | w(Available sulfur)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
测定值 Value | 5.1 | 30.01 | 159.23 | 6.30 | 103.35 | 446.16 | 229.67 | 73.10 |
Table 1 Basic physical and chemical indexes of soil in the experimental site
土壤指标 Soil index | pH pH value | w(Organic matter)/ (g∙kg-1) | w(Available nitrogen)/ (mg∙kg-1) | w(Available phosphorus)/ (mg∙kg-1) | w(Available potassium)/ (mg∙kg-1) | w(Exchangeable calcium)/ (mg∙kg-1) | w(Exchangeable magnesium)/ (mg∙kg-1) | w(Available sulfur)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
测定值 Value | 5.1 | 30.01 | 159.23 | 6.30 | 103.35 | 446.16 | 229.67 | 73.10 |
处理 Treatment | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
2017年 Year 2017 | 赤小豆 Vigna umbellata | 马铃薯Solanum tuberosum L. | 荞麦Fagopyrum esculentum | 赤小豆 Vigna umbellata | 马铃薯Solanum tuberosum L. | 荞麦Fagopyrum esculentum | 赤小豆 Vigna umbellata | 马铃薯Solanum tuberosum L. | 荞麦Fagopyrum esculentum |
2018年 Year 2018 | 赤小豆 Vigna umbellata | 马铃薯Solanum tuberosum L. | 荞麦Fagopyrum esculentum | 马铃薯Solanum tuberosum L. | 荞麦Fagopyrum esculentum | 赤小豆 Vigna umbellata | 荞麦Fagopyrum esculentum | 赤小豆 Vigna umbellata | 马铃薯Solanum tuberosum L. |
Table 2 The planting situation of crop rotation
处理 Treatment | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
2017年 Year 2017 | 赤小豆 Vigna umbellata | 马铃薯Solanum tuberosum L. | 荞麦Fagopyrum esculentum | 赤小豆 Vigna umbellata | 马铃薯Solanum tuberosum L. | 荞麦Fagopyrum esculentum | 赤小豆 Vigna umbellata | 马铃薯Solanum tuberosum L. | 荞麦Fagopyrum esculentum |
2018年 Year 2018 | 赤小豆 Vigna umbellata | 马铃薯Solanum tuberosum L. | 荞麦Fagopyrum esculentum | 马铃薯Solanum tuberosum L. | 荞麦Fagopyrum esculentum | 赤小豆 Vigna umbellata | 荞麦Fagopyrum esculentum | 赤小豆 Vigna umbellata | 马铃薯Solanum tuberosum L. |
处理 Treatment | OTU | Chao1 | ACE | Shannon | Simpson | Coverage |
---|---|---|---|---|---|---|
A | 3781 | 4434.61 | 4480.58 | 5.85 | 0.0092 | 0.99626 |
B | 3788 | 4436.38 | 4404.13 | 6.11 | 0.0070 | 0.99624 |
C | 3865 | 4490.78 | 4482.47 | 6.24 | 0.0068 | 0.99510 |
D | 3661 | 4368.95 | 4345.95 | 6.33 | 0.0052 | 0.99341 |
E | 4391 | 5044.94 | 5007.11 | 6.04 | 0.0073 | 0.99758 |
F | 3267 | 4066.09 | 3991.05 | 6.24 | 0.0059 | 0.99213 |
G | 5448 | 6046.49 | 6014.49 | 6.50 | 0.0051 | 0.99813 |
H | 4315 | 5003.01 | 5030.28 | 6.17 | 0.0066 | 0.99596 |
I | 4172 | 4842.94 | 4849.97 | 6.04 | 0.0076 | 0.99588 |
Table 3 Diversity of fungal communities in rhizosphere soil under different rotation patterns
处理 Treatment | OTU | Chao1 | ACE | Shannon | Simpson | Coverage |
---|---|---|---|---|---|---|
A | 3781 | 4434.61 | 4480.58 | 5.85 | 0.0092 | 0.99626 |
B | 3788 | 4436.38 | 4404.13 | 6.11 | 0.0070 | 0.99624 |
C | 3865 | 4490.78 | 4482.47 | 6.24 | 0.0068 | 0.99510 |
D | 3661 | 4368.95 | 4345.95 | 6.33 | 0.0052 | 0.99341 |
E | 4391 | 5044.94 | 5007.11 | 6.04 | 0.0073 | 0.99758 |
F | 3267 | 4066.09 | 3991.05 | 6.24 | 0.0059 | 0.99213 |
G | 5448 | 6046.49 | 6014.49 | 6.50 | 0.0051 | 0.99813 |
H | 4315 | 5003.01 | 5030.28 | 6.17 | 0.0066 | 0.99596 |
I | 4172 | 4842.94 | 4849.97 | 6.04 | 0.0076 | 0.99588 |
Fig. 1 Composition and relative abundance of soil fungal phylum under different rotation patterns The number of repeats in each sample n=3. The same below
[1] |
ALMARIO J, MOËNNE-LOCCOZ Y, MULLER D, 2013. Monitoring of the relation between 2,4-diacetylphloroglucinol-producing pseudomonas and Thielaviopsis basicola populations by real-time PCR in tobacco black root-rot suppressive and conducive soils[J]. Soil Biology & Biochemistry, 57(3): 144-155.
DOI URL |
[2] |
BOSSIO D A, FLECK J A, SCOW K M, et al., 2006. Alteration of soil microbial communities and water quality in restored wetlands[J]. Soil Biology & Biochemistry, 38(6): 1223-1233.
DOI URL |
[3] |
BUCHER A E, LANYON L E, 2005. Evaluating soil management with microbial community-level physiological profiles[J]. Applied Soil Ecology, 29(1): 59-71.
DOI URL |
[4] |
BUNEMANN E K, BOSSIO D A, SMITHSON P C, et al., 2004. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization[J]. Soil Biology & Biochemistry, 36(6): 889-901.
DOI URL |
[5] |
HUANG L F, SONG L X, XIA X J, et al., 2013. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture[J]. Journal of Chemical Ecology, 39(2): 232-242.
DOI URL |
[6] |
KNELMAN J E, NEMERGUT D R, 2014. Changes in community assembly may shift the relationship between biodiversity and ecosystem function[J]. Frontiers in Microbiology, DOI: 10.3389/fmicb.2014.00424.
DOI |
[7] | LI R, LIU Y, CHU G X, 2015. Effects of different cropping patterns on soil enzyme activities and soil microbial community diversity in oasis farmland[J]. The Journal of Applied Ecology, 26(2): 490-496. |
[8] | LYNCH J M, 1990. The Rhizosphere[M]. Chichester: John Wiley and Sons, Ltd.: 458. |
[9] |
ROY S, SINGH J S, 1994. Consequences of habitat heterogeneity for availability of nutrients in a dry tropical forest[J]. Journal of Ecology, 82(3): 503-509.
DOI URL |
[10] |
SHI Q H, LIU Y T, SHI A Q, et al., 2020. Rhizosphere soil fungal communities of aluminum-tolerant and -sensitive soybean genotypes respond differently to aluminum stress in an acid soil[J]. Frontiers in microbiology, 11: 1177.
DOI URL |
[11] |
VANELSAS J D, GARBEVA P, SALLES J, 2002. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens[J]. Biodegradation, 13(1): 29-40.
DOI URL |
[12] | LI W H, LIU Q Z, 2019. Changes in fungal community and diversity in strawberry rhizosphere soil after 12 years in the greenhouse[J]. Journal of Integrative Agriculture, 18(3): 199-209. |
[13] |
YANARDAG I H, ZORNOZA R, BASTIDA F, et al., 2017. Native soil organic matter conditions the response of microbial communities to organic inputs with different stability[J]. Geoderma, DOI: 10.1016/j.geoderma.2017.02.008.
DOI |
[14] | ZHANG B, LI Y J, REN T S, et al., 2014. Short-term effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil[J]. Biology & Fertility of Soils, 50(7): 1077-1085. |
[15] | 柴莹, 徐永清, 付瑶, 等, 2018. 马铃薯干腐病病原镰孢菌体内产细胞壁降解酶特性研究[J]. 作物杂志, 185(4): 160-166. |
CHAI Y, XU Y Q, FU Y, et al., 2018. Characteristics of cell wall degradation enzyme produced by main pathogenic fusarium spp. in potato dry rot[J]. Crops, 185(4): 160-166. | |
[16] | 陈桂香, 高灯州, 陈刚, 等, 2017. 互花米草入侵对我国红树林湿地土壤碳组分的影响[J]. 水土保持学报, 31(6): 252-259. |
CHEN G X, GAO D Z, CHEN G, et al., 2017. Effects of spartina alterniflora invasion on soil carbon fractions in mangrove wetlands of China[J]. Journal of Soil and Water Conservation, 31(6): 252-259. | |
[17] | 丁丽, 冀玉良, 李懿, 2020. 不同林龄油松根际土壤微生物群落多样性及其影响因子[J]. 水土保持研究, 27(4): 184-191, 200. |
DING L, JI Y L, LI Y, 2020. Soil microbial diversity and its influencing factors in rhizosphere and non-rhizosphere in the stands of Pinus tabuliformis with different ages in Minjiang river valley[J]. Journal of Soil and Water Conservation, 27(4): 184-191, 200. | |
[18] | 顾美英, 徐万里, 茆军, 等, 2012. 新疆绿洲农田不同连作年限棉花根际土壤微生物群落多样性[J]. 生态学报, 32(10): 3031-3040. |
GU M Y, XU W L, MAO J, et al., 2012. Microbial community diversity of rhizosphere soil in continuous cotton cropping system in Xinjiang[J]. Acta Ecologica Sinica, 32(10): 3031-3040.
DOI URL |
|
[19] | 何志刚, 汪仁, 王秀娟, 等, 2013. 不同玉米/花生间作模式对土壤微生物量及产量的影响[J]. 中国农学通报, 29(33): 233-236. |
HE Z G, WANG R, WANG X J, et al., 2013. The impact of intercropping on the yield and soil microorganism of different peanut and corn[J]. Chinese Agricultural Science Bulletin, 29(33): 233-236. | |
[20] | 李发虎, 李明, 刘金泉, 等, 2017. 生物炭对温室黄瓜根际土壤真菌丰度和根系生长的影响[J]. 农业机械学报, 48(4): 265-270, 341. |
LI F H, LI M, LIU J Q, et al., 2017. Effect of biochar on fungal abundance of rhizosphere soil and cucumber root growth in greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery, 48(4): 265-270, 341. | |
[21] | 刘军, 唐志敏, 刘建国, 等, 2012. 长期连作及秸秆还田对棉田土壤微生物量及种群结构的影响[J]. 生态环境学报, 21(8): 1418-1422. |
LIU J, TANG Z M, LIU J G, et al., 2012. Effects of cotton continuous cropping and returning stalks to soil on the quantities and community structure of soil microbes[J]. Ecology and Environmental Sciences, 21(8): 1418-1422. | |
[22] | 刘星, 邱慧珍, 王蒂, 等, 2015. 甘肃省中部沿黄灌区轮作和连作马铃薯根际土壤真菌群落的结构性差异评估[J]. 生态学报, 35(12): 3938-3948. |
LIU X, QIU H Z, WANG D, et al., 2015. Evaluation on fungal community structure of rhizosphere soils of potato under rotation and continuous cropping systems in Yellow River irrigation areas of middle Gansu province[J]. Acta Ecologica Sinica, 35(12): 3938-3948. | |
[23] | 刘洋, 高明杰, 何威明, 等, 2014. 世界马铃薯生产发展基本态势及特点[J]. 中国农学通报, 30(20): 78-86. |
LIU Y, GAO M J, HE W M, et al., 2014. Analysis on the basic trend and characteristics of world potatoes production[J]. Chinese Agricultural Science Bulletin, 30(20): 78-86. | |
[24] | 罗善军, 何英彬, 罗其友, 等, 2018. 中国马铃薯生产区域比较优势及其影响因素分析[J]. 中国农业资源与区划, 39(5): 137-144. |
LUO S J, HE Y B, LUO Q Y, et al., 2018. The regional comparative advantages of potato production in China and its influencing factors[J]. Chinese Journal of Agricultural Resources and Regional Planning, 39(5): 137-144. | |
[25] | 马春梅, 唐远征, 季尚宁, 2014. 作物定位轮作体系长期试验研究(Ⅱ)——不同轮作方式对大豆田土壤微生物数量的影响[J]. 东北农业大学学报, 1(6): 1-6. |
MA C M, TANG Y Z, JI S N, 2014. Long-term crop rotation research (Ⅱ): The impact on soil microorganism’s quantity of the soybean field of different crop rotation ways[J]. Journal of Northeast Agricultural University, 1(6): 1-6. | |
[26] | 孟丽娜, 2008. 大豆连作障碍的微生物作用机理[D]. 长春: 吉林农业大学. |
MENG L N, 2008. Mechanism of microbial action of soybean continuous cropping barrier[D]. Changchun: Jilin Agricultural University. | |
[27] | 孙小花, 胡新元, 陆立银, 等, 2019. 黄土高原马铃薯不同连作年限土壤理化性质及微生物特性[J]. 干旱地区农业研究, 37(4): 184-192. |
SUN X H, HU X Y, LU L Y, et al., 2019. Soil physical and chemical properties and microbial characteristics of potato in different continuous cropping years on the Loess Plateau[J]. Agricultural Research in the Arid Areas, 37(4): 184-192. | |
[28] | 王娜, 高婕, 魏静, 等, 2019. 三江平原湿地开垦对土壤微生物群落结构的影响[J]. 环境科学, 40(5): 379-385. |
WANG N, GAO J, WEI J, et al., 2019. Effects of wetland reclamation on soil microbial community structure in the Sanjiang Plain[J]. Environmental Science, 40(5): 379-385. | |
[29] | 王晓彤, 许旭萍, 王维奇, 2019. 模拟酸雨对福州平原稻田土壤真菌群落结构及多样性影响[J]. 环境科学学报, 39(7): 2249-2259. |
WANG X T, XU X P, WANG W Q, 2019. Effects of simulated acid rain on paddy soils fungi community structure and diversity in Fuzhou Plain[J]. Acta Scientiae Circumstantiae, 39(7): 2249-2259. | |
[30] | 袁月, 李德志, 王开运, 2014. 芦苇和互花米草入侵性研究进展[J]. 湿地科学, 12(4): 533-538. |
YUAN Y, LI D Z, WANG K Y, 2014. Research progress in mutual invasion of Phragmites australis and Spartina alterniflora Communities[J]. Wetland Science, 12(4): 533-538. |
[1] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[2] | YANG Rui, SUN Weimin, LI Yongbin, GUO Lifang, JIAO Nianyuan. Isolation, Identification and Plant Growth Promotion of Rhizosphere Phosphorus-dissolving Bacteria from Tailings Pioneer Plants [J]. Ecology and Environment, 2023, 32(1): 166-174. |
[3] | JIANG Chaoqiang, LI Chen, ZHU Qifa, XU Haiqing, LIU Yanhong, SHEN Jia, YAN Yifeng, YU Fei, ZU Chaolong. Evaluation of Carbon Sink and Economic Benefit in Different Planting Patterns in Southern Anhui [J]. Ecology and Environment, 2022, 31(7): 1285-1292. |
[4] | LI Chengwei, LIU Zhangyong, GONG Songling, YANG Wei, LI Shaoqiu, ZHU Bo. Effects of Changing Rice Cropping Patterns on CH4 and N2O Emissions from Paddy Fields [J]. Ecology and Environment, 2022, 31(5): 961-968. |
[5] | YANG Hu, WANG Peiyao, LI Xiaowei, WANG Jifei, YANG Junlong. Distribution of Soil Fungal Diversity and Community Structure in Different Vegetation Types on the Eastern Slopes of Helan Mountains [J]. Ecology and Environment, 2022, 31(2): 239-247. |
[6] | SONG Xianchong, CAI Xuemei, CHEN Tao, PAN Wen, SHI Yuanyuan, TANG Jian, CAO Jizhao. Variation Characteristics of Rhizosphere and Non-rhizosphere Soil Nutrient in Successive Eucalyptus Plantation [J]. Ecology and Environment, 2021, 30(9): 1814-1820. |
[7] | XIA Zitai, CHENG Weiwei, ZHAO Jixia, LI Yongmei, FAN Maopan. Effects of Different Planting Patterns on Maize Root System and Soil Aggregate Stability [J]. Ecology and Environment, 2021, 30(12): 2331-2338. |
[8] | ZHAO Qiguo, SHEN Renfang, TENG Ying, LI Xiuhua. Pilot Progress, Problems and Countermeasures on Farmland Rotation and Fallow System in the Heavy Metal Polluted Region of China [J]. Ecology and Environment, 2017, 26(12): 2003-2007. |
[9] | ZHAO Qiguo, TENG Ying, HUANG Guoqin. Consideration about Exploring Pilot Program of Farmland Rotation and Fallow System in China [J]. Ecology and Environment, 2017, 26(1): 1-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn