生态环境学报 ›› 2025, Vol. 34 ›› Issue (11): 1715-1727.DOI: 10.16258/j.cnki.1674-5906.2025.11.005
孔小云1,2(
), 张永坤1,*(
), 李润杰1, 李颖1, 林成清1,2, 马占明1,2, 辛继林1,2, 杨晓璇1,2, 党怡乐1,2, 赵家艺1, 冯玲正3, 周燕3
收稿日期:2024-11-14
出版日期:2025-11-18
发布日期:2025-11-05
通讯作者:
E-mail: 作者简介:孔小云(2000年生),女(彝族),硕士研究生,主要从事土壤生态学等研究。E-mail: kongxiaoyun001@163.com
基金资助:
KONG Xiaoyun1,2(
), ZHANG Yongkun1,*(
), LI Runjie1, LI Ying1, LIN Chengqing1,2, MA Zhanming1,2, XIN Jilin1,2, YANG Xiaoxuan1,2, DANG Yile1,2, ZHAO Jiayi1, FENG Lingzheng3, ZHOU Yan3
Received:2024-11-14
Online:2025-11-18
Published:2025-11-05
摘要:
土壤团聚体作为土壤的基本单元,其形成和稳定与土壤有机碳密切相关。以青藏高原东北部的湟水河流域为研究区域,布设84个耕地样点,采集0-20 cm和20-40 cm土层的土样进行耕地土壤有机碳、土壤团聚体组分及其内相关有机碳的测定,综合土壤理化因素及地理环境因子的半方差函数、克里金插值和偏最小二乘结构方程模型分析其空间变化特征,识别影响其空间分布特征的主控因子并进行评价。 结果表明:1)该流域内土壤团聚体表现出中等程度的变异性,土壤有机碳表现出较高的变异性;2)地统计学分析表明,随团聚体粒径变小(由大团聚体、微团聚体变为粉黏粒),土壤团聚体组分及其内有机碳的基台值相应变小,空间自相关性相应变弱;3)克里金插值结果表明,土壤团聚体组分及其内有机碳的空间分布格局大致相似,总体从西北往东南部递减;4)结合Spearman’s相关性分析和偏最小二乘结构方程模型,发现土壤和地形因素是湟水流域耕地土壤团聚体组分及其有机碳空间变异最重要的直接和间接驱动因素。其中,土壤质地是影响土壤团聚体及其有机碳空间变异的最重要控制因素,地形因子通过土壤因子对团聚体有机碳具有最主要的间接效应,这种影响随着土壤深度的增加而减弱。在研究湟水河流域耕地土壤团聚体及其有机碳相互作用机制的基础上,分析它们的空间异质性及其驱动因素,可为高寒农牧区防止土壤退化、维持耕地生产力以及对区域生态环境效应评估与管理提供一定的理论依据。
中图分类号:
孔小云, 张永坤, 李润杰, 李颖, 林成清, 马占明, 辛继林, 杨晓璇, 党怡乐, 赵家艺, 冯玲正, 周燕. 湟水河流域耕地土壤团聚体有机碳空间变异特征及其驱动因素分析[J]. 生态环境学报, 2025, 34(11): 1715-1727.
KONG Xiaoyun, ZHANG Yongkun, LI Runjie, LI Ying, LIN Chengqing, MA Zhanming, XIN Jilin, YANG Xiaoxuan, DANG Yile, ZHAO Jiayi, FENG Lingzheng, ZHOU Yan. Characteristics of Spatial Variation of Organic Carbon in Cultivated Soil Aggregates in Huangshui River Basin and Analysis of Its Driving Factors[J]. Ecology and Environmental Sciences, 2025, 34(11): 1715-1727.
| 土壤深度/cm | 变量 | 最小值 | 最大值 | 平均值 | 标准差 | 变异系数 | 偏度 | 峰度 | DT |
|---|---|---|---|---|---|---|---|---|---|
| 0‒20 | PMA/% | 22.87 | 80.17 | 49.08b | 11.74 | 23.92 | 0.24 | 0.20 | N |
| PMI/% | 9.00 | 65.01 | 36.50a | 9.90 | 27.12 | 0.07 | 0.98 | N | |
| PSC/% | 4.93 | 25.63 | 14.42c | 3.98 | 27.60 | 0.72 | 1.61 | NN | |
| SOCMA/(g∙kg−1) | 3.49 | 67.01 | 22.06a | 12.10 | 54.85 | 2.58 | 7.71 | NN | |
| SOCMI/(g∙kg−1) | 4.42 | 62.46 | 14.21c | 9.44 | 66.43 | 2.90 | 11.73 | NN | |
| SOCSC/(g∙kg−1) | 0.35 | 43.62 | 16.35b | 8.11 | 49.60 | 0.59 | 1.55 | NN | |
| SOCBulk/(g∙kg−1) | 4.97 | 40.14 | 17.80b | 6.41 | 36.01 | 1.19 | 3.31 | NN | |
| 20‒40 | PMA/% | 29.08 | 74.78 | 46.94b | 10.47 | 22.30 | 0.16 | -0.27 | N |
| PMI/% | 11.07 | 54.69 | 37.56a | 9.11 | 24.25 | -0.06 | 0.53 | N | |
| PSC/% | 8.37 | 38.12 | 15.49c | 4.66 | 30.08 | 2.46 | 11.28 | NN | |
| SOCMA/(g∙kg−1) | 4.44 | 50.20 | 17.42a | 8.12 | 46.61 | 1.69 | 5.33 | NN | |
| SOCMI/(g∙kg−1) | 4.78 | 37.01 | 13.55c | 6.28 | 46.35 | 1.70 | 3.57 | NN | |
| SOCSC/(g∙kg−1) | 2.47 | 33.24 | 16.21b | 6.57 | 40.53 | 0.55 | 0.29 | N | |
| SOCBulk/(g∙kg−1) | 3.06 | 67.01 | 16.45b | 9.64 | 58.60 | 3.30 | 16.21 | NN |
表1 湟水河流域土壤团聚体组分和有机碳汇总统计
Table 1 Summary statistics of soil aggregates (SA) fractions and organic carbon (SOC) contents across the Huangshui river watershed
| 土壤深度/cm | 变量 | 最小值 | 最大值 | 平均值 | 标准差 | 变异系数 | 偏度 | 峰度 | DT |
|---|---|---|---|---|---|---|---|---|---|
| 0‒20 | PMA/% | 22.87 | 80.17 | 49.08b | 11.74 | 23.92 | 0.24 | 0.20 | N |
| PMI/% | 9.00 | 65.01 | 36.50a | 9.90 | 27.12 | 0.07 | 0.98 | N | |
| PSC/% | 4.93 | 25.63 | 14.42c | 3.98 | 27.60 | 0.72 | 1.61 | NN | |
| SOCMA/(g∙kg−1) | 3.49 | 67.01 | 22.06a | 12.10 | 54.85 | 2.58 | 7.71 | NN | |
| SOCMI/(g∙kg−1) | 4.42 | 62.46 | 14.21c | 9.44 | 66.43 | 2.90 | 11.73 | NN | |
| SOCSC/(g∙kg−1) | 0.35 | 43.62 | 16.35b | 8.11 | 49.60 | 0.59 | 1.55 | NN | |
| SOCBulk/(g∙kg−1) | 4.97 | 40.14 | 17.80b | 6.41 | 36.01 | 1.19 | 3.31 | NN | |
| 20‒40 | PMA/% | 29.08 | 74.78 | 46.94b | 10.47 | 22.30 | 0.16 | -0.27 | N |
| PMI/% | 11.07 | 54.69 | 37.56a | 9.11 | 24.25 | -0.06 | 0.53 | N | |
| PSC/% | 8.37 | 38.12 | 15.49c | 4.66 | 30.08 | 2.46 | 11.28 | NN | |
| SOCMA/(g∙kg−1) | 4.44 | 50.20 | 17.42a | 8.12 | 46.61 | 1.69 | 5.33 | NN | |
| SOCMI/(g∙kg−1) | 4.78 | 37.01 | 13.55c | 6.28 | 46.35 | 1.70 | 3.57 | NN | |
| SOCSC/(g∙kg−1) | 2.47 | 33.24 | 16.21b | 6.57 | 40.53 | 0.55 | 0.29 | N | |
| SOCBulk/(g∙kg−1) | 3.06 | 67.01 | 16.45b | 9.64 | 58.60 | 3.30 | 16.21 | NN |
| 土壤深度/cm | 变量 | 半方差 | 块金值C0 | 基台值C0+C | 变程/m | 块金系数/% | 决定系数R2 | 残差RSS | Moran’s I | |
|---|---|---|---|---|---|---|---|---|---|---|
| Value | p | |||||||||
| 0‒20 | PMA | Gaussian | 0.0001 | 0.0597 | 2780 | 1.67 | 0.954 | 0.0001 | 0.03 | 0.469 |
| PMI | Gaussian | 0.0010 | 0.5410 | 2610 | 0.18 | 0.844 | 0.0446 | 0.01 | 0.735 | |
| PSC | Gaussian | 0.0001 | 0.0408 | 1960 | 0.24 | 0.915 | 0.00002 | 0.18 | 0.009 | |
| SOCMA | Gaussian | 0.0314 | 0.3238 | 5480 | 9.70 | 0.708 | 0.028 | −0.005 | 0.918 | |
| SOCMI | Spherical | 0.0066 | 0.3052 | 12500 | 2.16 | 0.730 | 0.0009 | 0.10 | 0.125 | |
| SOCSC | Exponential | 0.0021 | 0.0316 | 7700 | 6.64 | 0.772 | 0.00003 | 0.20 | 0.003 | |
| SOCBulk | Spherical | 0.0010 | 0.7200 | 11900 | 0.14 | 0.515 | 0.0135 | 0.16 | 0.021 | |
| 20‒40 | PMA | Gaussian | 0.3500 | 0.7440 | 5940 | 47.04 | 0.600 | 0.0797 | 0.14 | 0.004 |
| PMI | Gaussian | 0.0117 | 0.1020 | 22490 | 11.47 | 0.842 | 0.00003 | 0.02 | 0.646 | |
| PSC | Gaussian | 0.0107 | 0.0266 | 5600 | 40.22 | 0.517 | 0.0001 | 0.24 | 0.001 | |
| SOCMA | Spherical | 0.0310 | 0.9630 | 12500 | 3.22 | 0.453 | 0.0431 | 0.002 | 0.850 | |
| SOCMI | Exponential | 0.0850 | 0.7540 | 7100 | 11.27 | 0.553 | 0.056 | 0.10 | 0.144 | |
| SOCSC | Spherical | 0.0170 | 0.0465 | 30000 | 36.56 | 0.783 | 0.0001 | 0.25 | 0.007 | |
| SOCBulk | Gaussian | 0.0358 | 0.3126 | 7600 | 11.45 | 0.831 | 0.0021 | 0.25 | 0.001 | |
表2 湟水河流域土壤团聚体和有机碳的地统计学参数
Table 2 Geostatistical parameters of soil aggregates (SA) fractions and organic carbon (SOC) contents across the Huangshui river watershed
| 土壤深度/cm | 变量 | 半方差 | 块金值C0 | 基台值C0+C | 变程/m | 块金系数/% | 决定系数R2 | 残差RSS | Moran’s I | |
|---|---|---|---|---|---|---|---|---|---|---|
| Value | p | |||||||||
| 0‒20 | PMA | Gaussian | 0.0001 | 0.0597 | 2780 | 1.67 | 0.954 | 0.0001 | 0.03 | 0.469 |
| PMI | Gaussian | 0.0010 | 0.5410 | 2610 | 0.18 | 0.844 | 0.0446 | 0.01 | 0.735 | |
| PSC | Gaussian | 0.0001 | 0.0408 | 1960 | 0.24 | 0.915 | 0.00002 | 0.18 | 0.009 | |
| SOCMA | Gaussian | 0.0314 | 0.3238 | 5480 | 9.70 | 0.708 | 0.028 | −0.005 | 0.918 | |
| SOCMI | Spherical | 0.0066 | 0.3052 | 12500 | 2.16 | 0.730 | 0.0009 | 0.10 | 0.125 | |
| SOCSC | Exponential | 0.0021 | 0.0316 | 7700 | 6.64 | 0.772 | 0.00003 | 0.20 | 0.003 | |
| SOCBulk | Spherical | 0.0010 | 0.7200 | 11900 | 0.14 | 0.515 | 0.0135 | 0.16 | 0.021 | |
| 20‒40 | PMA | Gaussian | 0.3500 | 0.7440 | 5940 | 47.04 | 0.600 | 0.0797 | 0.14 | 0.004 |
| PMI | Gaussian | 0.0117 | 0.1020 | 22490 | 11.47 | 0.842 | 0.00003 | 0.02 | 0.646 | |
| PSC | Gaussian | 0.0107 | 0.0266 | 5600 | 40.22 | 0.517 | 0.0001 | 0.24 | 0.001 | |
| SOCMA | Spherical | 0.0310 | 0.9630 | 12500 | 3.22 | 0.453 | 0.0431 | 0.002 | 0.850 | |
| SOCMI | Exponential | 0.0850 | 0.7540 | 7100 | 11.27 | 0.553 | 0.056 | 0.10 | 0.144 | |
| SOCSC | Spherical | 0.0170 | 0.0465 | 30000 | 36.56 | 0.783 | 0.0001 | 0.25 | 0.007 | |
| SOCBulk | Gaussian | 0.0358 | 0.3126 | 7600 | 11.45 | 0.831 | 0.0021 | 0.25 | 0.001 | |
图2 湟水河流域土壤团聚体内有机碳质量分数及农田有机碳质量分数的空间分布特征
Figure 2 Spatial distribution characteristics of organic carbon content within soil aggregates and cropland organic carbon content in the Huangshui River Basin
图3 湟水河流域土壤团聚体内有机碳及农田有机碳质量分数的空间分布特征
Figure 3 Spatial distribution characteristics of organic carbon content within soil aggregates and cropland organic carbon content in the Huangshui River Basin
图4 土壤团聚体组分及相关有机碳与各环境驱动因素之间的相关性分析 *表示在0.05水平上显著相关;**表示在0.01水平上显著相关;r图注表示?1-1的相关程度值,绿色代表正相关,红色代表负相关,颜色深浅表示相关性强弱
Figure 4 Analysis of the correlations between soil aggregate fractions and associated organic carbon content with various environmental drivers
图6 环境变量对农田土壤及其土壤团聚体内有机碳影响的偏最小二乘法路径模型
Figure 6 Partial least squares path model (PLS-PM) illustrating the effects of environmental variables on organic carbon content in farmland soil and within soil aggregates
| 土壤深度/cm | 变量 | 地形因素 | 植被因素 | 气候因素 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 直接 | 间接 | 总 | 直接 | 间接 | 总 | 直接 | 间接 | 总 | ||||
| 0−20 | PMA | 0.107 | 0.400 | 0.507 | 0.030 | −0.064 | −0.034 | 0.320 | −0.074 | 0.246 | ||
| PMI | 0.205 | −0.531 | −0.326 | −0.084 | −0.096 | −0.180 | −0.281 | 0.041 | −0.240 | |||
| PSC | −0.280 | −0.307 | −0.587 | −0.151 | 0.052 | −0.099 | −0.294 | 0.080 | −0.214 | |||
| SOCMA | −0.036 | −0.150 | −0.186 | −0.076 | −0.013 | −0.063 | 0.035 | −0.011 | 0.024 | |||
| SOCMI | −0.018 | 0.617 | 0.599 | −0.232 | −0.031 | −0.263 | 0.034 | −0.024 | 0.010 | |||
| SOCSC | 0.049 | 0.521 | 0.570 | 0.321 | 0.037 | 0.358 | −0.090 | 0.037 | −0.053 | |||
| SOCBulk | 0.023 | 0.694 | 0.717 | 0.308 | −0.067 | 0.241 | −0.070 | −0.037 | −0.107 | |||
| 20−40 | PMA | 0.025 | 0.363 | 0.388 | 0.027 | 0.046 | 0.073 | 0.008 | −0.117 | −0.109 | ||
| PMI | 0.202 | −0.475 | −0.273 | −0.050 | −0.060 | −0.110 | −0.009 | 0.155 | 0.146 | |||
| PSC | −0.454 | −0.032 | −0.486 | 0.024 | −0.004 | 0.020 | 0.005 | 0.008 | 0.013 | |||
| SOCMA | 0.156 | 0.081 | 0.237 | 0.207 | −0.011 | 0.196 | −0.210 | −0.008 | −0.218 | |||
| SOCMI | 0.055 | 0.562 | 0.617 | 0.091 | 0.069 | 0.160 | 0.064 | −0.027 | 0.037 | |||
| SOCSC | 0.061 | 0.513 | 0.574 | 0.318 | 0.037 | 0.355 | −0.102 | 0.051 | −0.051 | |||
| SOCBulk | −0.032 | 0.749 | 0.717 | 0.305 | −0.063 | 0.242 | −0.030 | −0.078 | −0.108 | |||
表3 结构方程模型的总、直接和间接影响
Table 3 Total, direct, and indirect effects in the structural equation modelling
| 土壤深度/cm | 变量 | 地形因素 | 植被因素 | 气候因素 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 直接 | 间接 | 总 | 直接 | 间接 | 总 | 直接 | 间接 | 总 | ||||
| 0−20 | PMA | 0.107 | 0.400 | 0.507 | 0.030 | −0.064 | −0.034 | 0.320 | −0.074 | 0.246 | ||
| PMI | 0.205 | −0.531 | −0.326 | −0.084 | −0.096 | −0.180 | −0.281 | 0.041 | −0.240 | |||
| PSC | −0.280 | −0.307 | −0.587 | −0.151 | 0.052 | −0.099 | −0.294 | 0.080 | −0.214 | |||
| SOCMA | −0.036 | −0.150 | −0.186 | −0.076 | −0.013 | −0.063 | 0.035 | −0.011 | 0.024 | |||
| SOCMI | −0.018 | 0.617 | 0.599 | −0.232 | −0.031 | −0.263 | 0.034 | −0.024 | 0.010 | |||
| SOCSC | 0.049 | 0.521 | 0.570 | 0.321 | 0.037 | 0.358 | −0.090 | 0.037 | −0.053 | |||
| SOCBulk | 0.023 | 0.694 | 0.717 | 0.308 | −0.067 | 0.241 | −0.070 | −0.037 | −0.107 | |||
| 20−40 | PMA | 0.025 | 0.363 | 0.388 | 0.027 | 0.046 | 0.073 | 0.008 | −0.117 | −0.109 | ||
| PMI | 0.202 | −0.475 | −0.273 | −0.050 | −0.060 | −0.110 | −0.009 | 0.155 | 0.146 | |||
| PSC | −0.454 | −0.032 | −0.486 | 0.024 | −0.004 | 0.020 | 0.005 | 0.008 | 0.013 | |||
| SOCMA | 0.156 | 0.081 | 0.237 | 0.207 | −0.011 | 0.196 | −0.210 | −0.008 | −0.218 | |||
| SOCMI | 0.055 | 0.562 | 0.617 | 0.091 | 0.069 | 0.160 | 0.064 | −0.027 | 0.037 | |||
| SOCSC | 0.061 | 0.513 | 0.574 | 0.318 | 0.037 | 0.355 | −0.102 | 0.051 | −0.051 | |||
| SOCBulk | −0.032 | 0.749 | 0.717 | 0.305 | −0.063 | 0.242 | −0.030 | −0.078 | −0.108 | |||
| [4] |
DENG L, KIM D G, PENG C H, et al., 2018. Controls of soil and aggregate-associated organic carbon variations following natural vegetation restoration on the Loess Plateau in China[J]. Land Degradation & Development, 29(11): 3974-3984.
DOI URL |
| [5] | HU J, HARTEMINK A E, DESAI A R, et al., 2023. A continental-scale estimate of soil organic carbon change at neon sites and their environmental and edaphic controls[J]. Journal of Geophysical Research: Biogeosciences, 128(5): e2022JG006981. |
| [6] |
JOZEDAEMI E, GOLCHIN A, 2024. Changes in aggregate-associated carbon and microbial respiration affected by aggregate size, soil depth, and altitude in a forest soil[J]. Catena, 234: 107567.
DOI URL |
| [7] | LI J Y, CHEN P, LI Z G, 2023. Soil aggregate-associated organic carbon mineralization and its drivingfactors in rhizosphere soil[J]. Soil Biology and Biochemistry, 186: e109182. |
| [8] |
LINSLER D, GEISSELER D, LOGES R, et al., 2013. Temporal dynamics of soil organic matter composition and aggregate distribution in permanent grassland after a single tillage event in a temperate climate[J]. Soil and Tillage Research, 126(1): 90-99.
DOI URL |
| [9] |
MARTENS D A, REEDY T E, LEWISD T, 2004. Soilorganic carbon content and composition of 130-yearcrop, pasture and forest land-use managements[J]. Global Change Biology, 10(1): 65-78.
DOI URL |
| [10] | NIELSEN D R, Th. VAN G M, BIGGAR J W, 1986. Water flow and solute transport processes in the unsaturated zone[J]. Water Resources Research, 22(9S): 89S-108S. |
| [11] | PENG X Y, HUANG Y, DUAN X W, et al., 2023. Particulate and mineral-associated organic carbon fractions reveal the roles of soil aggregates under different land-use types in a karst faulted basin of China[J]. Catena, 220(PartB): 106721. |
| [12] |
QIAO L L, ZHOU H K, WANG Z H, et al., 2023. Variations in soil aggregate stability and organic carbon stability of alpine meadow and shrubland under long-term warming[J]. Catena, 222: 106848.
DOI URL |
| [13] |
ROWTHER T W, TODD-BROWN K E O, ROWE C W, et al., 2016. Quantifying global soil carbon losses in response to warming[J]. Nature, 540(7631): 104-108.
DOI |
| [14] |
SIX J, CONANT R T, PAUL E A, et al., 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil, 241: 155-176.
DOI |
| [15] |
SIX J, ELLIOT E T, PAUSTAIN K, et al., 2016. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 62(5): 1367-1377.
DOI URL |
| [16] |
SUN S B, SONG Z L, CHEN B Z, et al., 2023. Current and future potential soil organic carbon stocks of vegetated coastal ecosystems and their controls in the Bohai Rim Region, China[J]. Catena, 225: 107023.
DOI URL |
| [17] | WANG B, GONG Z Q, MENG M, et al., 2022. The soil aggregates and associated organic carbon across the Greater Khingan Mountains: Spatial patterns and impacting factors[J]. Forests, 13(8): 1267. |
| [18] |
WRIGHT S F, UPADHYAYA A, 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 198(1): 97-107.
DOI |
| [19] | WEN L, LI D J, XIAO K C, et al., 2023. Dynamics of aggregate-associated organic carbon after long-term cropland conversion in a karst region, southwest China[J]. Scientific Reports, 13(1): 1773. |
| [20] |
XIN Z B, QIN Y B, YU X X, 2016. Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China[J]. Catena, 137: 660-669.
DOI URL |
| [21] |
ZHANG J, TANG X L, HE X H, et al., 2015. Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: Potential consequences for soil carbon accumulation[J]. Soil Biology and Biochemistry, 83: 142-149.
DOI URL |
| [1] |
CAMBARDELLA C A, ELLIOTT E T, 1992. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 56(3): 777-783.
DOI URL |
| [2] |
CAMBARDELLA C A, MOORMAN T B, NOVAK J M, et al., 1994. Field-scale variability of soil properties in Central Iowa soils[J]. Soil Science Society of America Journal, 58(5): 1501-1511.
DOI URL |
| [3] |
CHAOLOT V, BOUAHOM B, VALENTIN C, 2010. Soil organic carbon stocks in Laos: spatial variations and controlling factors[J]. Global Change Biology, 16(4): 1380-1393.
DOI URL |
| [22] |
ZHANG P P, WANG Y Q, XU L, et al., 2021. Factors controlling spatial variation in soil aggregate stability in a semi-humid watershed[J]. Soil and Tillage Research, 214: 105187.
DOI URL |
| [23] | 代子俊, 2018. 近30年湟水流域土壤养分时空变异及影响因素[D]. 西宁: 青海师范大学. |
| DAI Z J, 2018. Spatial and temporal variability of soil nutrients and influencing factors in Huangshui watershed in the last 30 years[D]. Xining: Qinghai Normal University. | |
| [24] | 刘尊方, 雷浩川, 雷蕾, 等, 2022. 湟水流域土壤有机质和速效磷空间布局分析[J]. 科学技术与工程, 22(34): 15095-15102. |
| LIU Z F, LEI H C, LEI L, et al., 2022. Spatial layout analysis of soil organic matter and quick-acting phosphorus in Huangshui Basin[J]. Science and Technology and Engineering, 22(34): 15095-15102. | |
| [25] | 刘亚龙, 王萍, 汪景宽, 等, 2023. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报, 60(3): 627-643. |
| LIU Y L, WANG P, WANG J K, et al., 2023. Formation and stabilization mechanisms of soil aggregates: Research advances and prospects[J]. Acta Pedologica Sinica, 60(3): 627-643. | |
| [26] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 106-107. |
| LU R K, 2000. Methods of agrochemical analysis of soils[M]. Beijing: China Agricultural Science and Technology Press: 106-107. | |
| [27] | 林成清, 李润杰, 盛海彦, 等, 2025. 湟水流域耕地表层土壤有机碳空间分布及其驱动因素分析[J]. 西南农业学报, 38(1): 135-144. |
| LIN C Q, LI R J, SHENG H Y, et al., 2025. Spatial distribution of soil organic carbon in the surface layer of arable land in Huangshui Basin and analysis of its driving factors[J]. Southwest Journal of Agriculture, 38(1): 135-144. | |
| [28] | 马东方, 袁再健, 吴新亮, 等, 2020. 华南花岗岩侵蚀区不同植被类型坡面土壤有机碳分布和团聚体稳定性[J]. 水土保持学报, 34(5): 137-144. |
| MA D F, YUAN Z J, WU X L, et al., 2020. Distribution of soil organic carbon and stability of clusters on slopes with different vegetation types in a granitic erosion zone in south China[J]. Journal of Soil and Water Conservation, 34(5): 137-144. | |
| [29] |
宋文婕, 梁誉正, 陶贞, 等, 2023. 微生物介导的土壤有机碳动态研究进展[J]. 地球科学进展, 38(12): 1213-1223.
DOI |
| SONG W J, LIANG Y C, TAO Z, et al., 2023. Progress in microbially mediated soil organic carbon dynamics[J]. Advances in Earth Sciences, 38(12): 1213-1223. | |
| [30] | 吴林甲, 祁琛, 闫秋艳, 等, 2023. 耕作方式对旱地麦田土壤团聚体及其碳氮组分分布的影响[J]. 干旱地区农业研究, 41(2): 193-200, 220. |
| WU L J, QI C, YAN Q Y, et al., 2023. Effects of tillage practices on soil aggregates and their carbon and nitrogen fractions distribution in dryland wheat fields[J]. Agricultural Research in Arid Regions, 41(2): 193-200, 220. | |
| [31] | 王兴, 钟泽坤, 张欣怡, 等, 2020. 长期撂荒恢复土壤团聚体组成与有机碳分布关系[J]. 环境科学, 41(5): 2416-2424. |
| WANG X, ZHONG Z K, ZHANG X Y, et al., 2020. Relationship between soil aggregate composition and organic carbon distribution in long-term abandonment and restoration[J]. Environmental Science, 41(5): 2416-2424. | |
| [32] | 徐佩, 王玉宽, 邓玉林, 等, 2007. 岷江流域不同土地利用方式下紫色土有机碳储量特征[J]. 应用与环境生物学报, 13(2): 205-208. |
| XU P, WANG Y K, DENG Y L, et al., 2007. Characteristics of organic carbon storage in purple soils under different land use modes in Minjiang River Basin[J]. Journal of Applied and Environmental Biology, 13(2): 205-208. | |
| [33] | 杨璐, 刘小芳, 巨佳敏, 等, 2024. 黄土坡面种植柠条对土壤团聚体稳定性和可蚀性的影响[J]. 水土保持通报, 44(3): 46-55. |
| YANG L, LIU X F, JU J M, et al., 2024. Effects of planting lemons on soil aggregate stability and erodibility on loess slopes[J]. Soil and Water Conservation Bulletin, 44(3): 46-55. | |
| [34] | 叶露萍, 2020. 黄土高原土壤团聚体-水-植被的时空变异分析[D]. 杨凌: 中国科学院教育部水土保持与生态环境研究中心. |
| YE L P, 2020. Analysis of spatial and temporal variability of soil aggregates-water-vegetation in the Loess Plateau[D]. Yangling: Soil and Water Conservation and Ecological Environment Research Centre, Ministry of Education, Chinese Academy of Sciences. | |
| [35] | 于雯霏, 王佩佩, 刘俊娥, 等, 2023. 黄土高原典型植被根系对土壤团聚体及其有机碳组分的影响[J]. 水土保持学报, 37(6): 246-254. |
| YU W F, WANG P P, LIU J E, et al., 2023. Effects of typical vegetation root systems on soil aggregates and their organic carbon fractions in the Loess Plateau[J]. Journal of Soil and Water Conservation, 37(6): 246-254. | |
| [36] | 张旭冉, 张卫青, 等, 2020. 土壤团聚体研究进展[J]. 北方园艺, 44(21): 131-137. |
| ZHANG X R, ZHANG W Q, et al., 2020. Progress of soil agglomerate research[J]. Northern Horticulture, 44(21): 131-137. | |
| [37] |
赵金花, 张丛志, 张佳宝, 等, 2015. 农田生态系统中土壤有机碳与团聚体相互作用机制的研究进展[J]. 中国农学通报, 31(35): 152-157.
DOI |
| ZHAO J H, ZHANG C Z, ZHANG J B, et al., 2015. Research progress on the interaction mechanism between soil organic carbon and clusters in agroecosystems[J]. Chinese Agronomy Bulletin, 31(35): 152-157. | |
| [38] |
朱锟恒, 段良霞, 李元辰, 等, 2021. 土壤团聚体有机碳研究进展[J]. 中国农学通报, 37(21): 86-90.
DOI |
| ZHU K H, DUAN L X, LI Y C, et al., 2021. Progress of organic carbon research in soil aggregates[J]. Chinese Agronomy Bulletin, 37(21): 86-90. | |
| [39] | 邹萌萌, 周卫红, 张静静, 等, 2019. 我国东部地区农田土壤重金属污染概况[J]. 中国农业科技导报, 21(1): 117-124. |
| ZOU M M, ZHOU W H, ZHANG J J, et al., 2019. Overview of heavy metal contamination in farmland soils in the eastern region of China[J]. China Agricultural Science and Technology Guide, 21(1): 117-124. | |
| [40] | 周家昊, 褚军杰, 孙万春, 等, 2023. 有机碳对土壤团聚体形成的影响研究进展[J]. 河南农业科学, 52(11): 10-20. |
| ZHOU J H, CHU J J, SUN W C, et al., 2023. Progress of research on the effect of organic carbon on soil aggregate formation[J]. Henan Agricultural Science, 52(11): 10-20. |
| [1] | 刘卿, 龚雨顺, 王伟, 方贤滔, 吴金水, 沈健林. 湖南典型茶园土壤有机碳及其组分时空特征[J]. 生态环境学报, 2025, 34(9): 1386-1397. |
| [2] | 张义栋, 杨旭楠, 陈艳姣, 汪涛, 许玫英. FT-IR技术在水体沉积物有机碳分析中的应用研究进展[J]. 生态环境学报, 2025, 34(9): 1483-1494. |
| [3] | 郭家文, 刘凯, 刘高源, 高欣欣, 杨昆, 潘波. 外源不同形式蔗叶添加物对云南红壤及甘蔗生长的影响[J]. 生态环境学报, 2025, 34(7): 1100-1110. |
| [4] | 祁珣, 冯鑫鑫, 陈颖军, 冯艳丽, 陈田, 李军, 张干. 轻型汽油卡车尾气颗粒物中氨和有机胺的排放特征及影响因素[J]. 生态环境学报, 2025, 34(7): 997-1006. |
| [5] | 郝晓燕, 董超, 薛阳, 韩丽萍. 能源禀赋优势区能源供给与生态安全共生效应及影响因素[J]. 生态环境学报, 2025, 34(6): 974-985. |
| [6] | 陈洁茹, 叶长盛, 魏嶶, 蔡鑫, 汪礼丽. 环鄱阳湖城市群县域“三生空间”耦合协调性及影响因素分析[J]. 生态环境学报, 2025, 34(5): 807-818. |
| [7] | 郭铭彬, 龚建周, 王丽娟, 王时宽. 2019-2023年粤港澳大湾区NO2浓度变化的自然主控因子解析[J]. 生态环境学报, 2025, 34(4): 534-547. |
| [8] | 贺宥文, 韩亚峰, 王旭刚, 孙丽蓉, 邢江冰, 曹晟源. 不同光照条件下农田湿地土壤碳排放的驱动因子差异[J]. 生态环境学报, 2025, 34(3): 391-400. |
| [9] | 申佳龙, 吴栎宏, 李林霜, 周远芳, 杨孝民. 典型喀斯特山地小流域土地利用类型对土壤有机碳组分及其固碳效应的影响[J]. 生态环境学报, 2025, 34(3): 358-367. |
| [10] | 翁雷霆, 王鹏, 肖荣波, 白晋晶, 钟俊宏. 2000-2022年珠三角城市群PM2.5与O3时空分布特征及其影响因素[J]. 生态环境学报, 2025, 34(2): 268-278. |
| [11] | 夏依宁, 刘鹏翱, 何柯润, 田朝晖, 曾丽婷, 侯珂伦. 基于土地利用的长株潭都市圈碳储量时空格局与情景模拟[J]. 生态环境学报, 2025, 34(11): 1661-1674. |
| [12] | 尤琪, 杨艺, 张寅清, 祝凌燕. 纳米银颗粒在水环境中的化学转化及影响因素[J]. 生态环境学报, 2025, 34(1): 156-166. |
| [13] | 石含之, 熊振乾, 曹怡然, 吴志超, 文典, 李富荣, 李冬琴, 王旭. 外源秸秆添加对红壤及黑土有机碳固定的影响[J]. 生态环境学报, 2024, 33(9): 1372-1383. |
| [14] | 李彦林, 陈杨洋, 杨霜溶, 刘菊梅. 植物根系分泌的有机酸对土壤碳氮矿化的影响[J]. 生态环境学报, 2024, 33(9): 1362-1371. |
| [15] | 李建付, 黄志霖, 和成忠, 姜昕, 宋琳, 刘佳鑫, 陈利顶. 滇东喀斯特断陷盆地土壤有机碳空间分布特征及其关键影响因子[J]. 生态环境学报, 2024, 33(9): 1339-1352. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||