生态环境学报 ›› 2025, Vol. 34 ›› Issue (3): 391-400.DOI: 10.16258/j.cnki.1674-5906.2025.03.006
贺宥文1(), 韩亚峰1,2,*(
), 王旭刚1,3, 孙丽蓉1,*(
), 邢江冰1, 曹晟源1
收稿日期:
2024-09-04
出版日期:
2025-03-18
发布日期:
2025-03-24
通讯作者:
韩亚峰。E-mail: yfhan@haust.edu.cn作者简介:
贺宥文(1999年生),男,硕士研究生,研究方向为土壤化学。E-mail: 2993792084@qq.com
基金资助:
HE Youwen1(), HAN Yafeng1,2,*(
), WANG Xugang1,3, SUN Lirong1,*(
), XING Jiangbing1, CAO Shengyuan1
Received:
2024-09-04
Online:
2025-03-18
Published:
2025-03-24
摘要:
湿地碳库增汇减排是加快实现“双碳”目标的重要着力点之一。光照与湿地矿物氧化还原、微生物群落特征转变等生物或非生物过程密切相关,然而目前关于湿地土壤碳排放对光照的响应特征及作用机理尚存争议。以黄河中下游农田湿地土壤为研究对象,进行室内恒温淹水厌氧培养试验,设置光照和避光处理,通过定量土壤碳累积排放量、Fe(Ⅱ)和可溶性有机碳(DOC)质量分数,结合紫外-可见吸收光谱和三维荧光光谱定性DOC化学结构特征,探索光照对黄河中下游农田湿地土壤碳排放的影响。结果表明,避光条件下土壤累积碳排放量(以碳计)介于99.11-713.39 mg·kg−1,显著高于光照条件下的17.52-27.20 mg·kg−1。相关分析显示,土壤累积碳排放量在避光下与DOC质量分数、E2/E3和0.5 mol·L−1盐酸可浸提态Fe(Ⅱ)质量分数呈显著正相关,均呈先增加后稳定的趋势,表明避光下活性碳组分的微生物可利用性和微生物异化铁还原作用主导了黄河中下游农田湿地碳排放;在光照下,则与0.5 mol·L−1盐酸可浸提态Fe(Ⅱ)质量分数呈先增加后减少的再氧化趋势,且与土壤碳排放量显著正相关,表明光照可通过促进亚铁再氧化过程抑制土壤碳排放。研究结果可为深入解析黄河中下游农田湿地碳循环机制和固碳潜力提供理论依据和数据支撑。
中图分类号:
贺宥文, 韩亚峰, 王旭刚, 孙丽蓉, 邢江冰, 曹晟源. 不同光照条件下农田湿地土壤碳排放的驱动因子差异[J]. 生态环境学报, 2025, 34(3): 391-400.
HE Youwen, HAN Yafeng, WANG Xugang, SUN Lirong, XING Jiangbing, CAO Shengyuan. Differences in Drivers of Agricultural Wetland Soils Carbon Emissions under Contrasting Light Conditions[J]. Ecology and Environment, 2025, 34(3): 391-400.
采样点 | 土壤代号 | 气候 | 年均气温/ ℃ | 年降水量/ mm | 可溶性有机碳质量分数/(mg·kg−1) | 有机碳质量分数/ (g·kg−1) | 游离铁质量分数/ (g·kg−1) | 无定形铁质量分数/ (g·kg−1) |
---|---|---|---|---|---|---|---|---|
宁夏回族自治区灵武市 | NX | 大陆性气候 | 8.9 | 193 | 382.50±13.38b | 7.14±0.13d | 11.90±0.17c | 1.91±0.04b |
山西省沂州市 | SX | 大陆性季风气候 | 8.5 | 495 | 485.27±72.64a | 17.28±0.59a | 8.14±0.06e | 2.00±0.03a |
河南省洛阳市 | HL | 大陆性季风气候 | 13.8 | 657 | 481.40±20.17a | 12.73±0.38b | 9.21±0.15d | 0.88±0.02e |
河南省开封市 | HK | 大陆性季风气候 | 16.0 | 458 | 362.57±33.44b | 7.72±0.14d | 12.78±0.13b | 1.19±0.06d |
山东省东营市 | SD | 大陆性季风气候 | 12.1 | 556 | 546.97±35.25a | 11.56±0.38c | 13.12±0.14a | 1.43±0.01c |
表1 采样点概况及土壤基本理化性质
Table 1 Basic facts of sampling points and physicochemical properties of soil
采样点 | 土壤代号 | 气候 | 年均气温/ ℃ | 年降水量/ mm | 可溶性有机碳质量分数/(mg·kg−1) | 有机碳质量分数/ (g·kg−1) | 游离铁质量分数/ (g·kg−1) | 无定形铁质量分数/ (g·kg−1) |
---|---|---|---|---|---|---|---|---|
宁夏回族自治区灵武市 | NX | 大陆性气候 | 8.9 | 193 | 382.50±13.38b | 7.14±0.13d | 11.90±0.17c | 1.91±0.04b |
山西省沂州市 | SX | 大陆性季风气候 | 8.5 | 495 | 485.27±72.64a | 17.28±0.59a | 8.14±0.06e | 2.00±0.03a |
河南省洛阳市 | HL | 大陆性季风气候 | 13.8 | 657 | 481.40±20.17a | 12.73±0.38b | 9.21±0.15d | 0.88±0.02e |
河南省开封市 | HK | 大陆性季风气候 | 16.0 | 458 | 362.57±33.44b | 7.72±0.14d | 12.78±0.13b | 1.19±0.06d |
山东省东营市 | SD | 大陆性季风气候 | 12.1 | 556 | 546.97±35.25a | 11.56±0.38c | 13.12±0.14a | 1.43±0.01c |
光谱参数 | 定义 | 相关描述 | 参考文献 | |
---|---|---|---|---|
紫外参数 | 吸收系数αλ | αλ | 表征有色溶解有机质浓度 | 万丹等, |
E2/E3 | 紫外-可见光谱在250和365 nm处吸收系数的比值 | 表征DOC的分子量大小 | Li et al., | |
SUVA254 | 单位DOC浓度在波长254 nm处的吸收系数(L·mg−1·m−1) | 表征DOC的芳香性 | Li et al., | |
SUVA260 | 单位DOC浓度在波长260 nm处的吸收系数(L·mg−1·m−1) | 表征DOC疏水性组分含量 | 万丹等, | |
荧光参数 | 荧光指数(FI) | 激发波长为370 nm 时,发射波长在470 nm和 520 nm处荧光强度比值 | 表征DOC中腐殖质来源 | Hansen et al., |
腐殖化指数(HIX) | 激发波长为254 nm时,发射波长在435‒480 nm间区域 积分值除以300‒345 nm间区域积分值 | 表征DOC腐殖化程度 | Nkansah et al., | |
自生源指数(BIX) | 激发波长为310 nm时,发射波长在380 nm和 430 nm处荧光强度比值 | 表征DOC自生源相对贡献 | Huguet et al., |
表2 光谱参数描述
Table 2 Description of spectral parameters
光谱参数 | 定义 | 相关描述 | 参考文献 | |
---|---|---|---|---|
紫外参数 | 吸收系数αλ | αλ | 表征有色溶解有机质浓度 | 万丹等, |
E2/E3 | 紫外-可见光谱在250和365 nm处吸收系数的比值 | 表征DOC的分子量大小 | Li et al., | |
SUVA254 | 单位DOC浓度在波长254 nm处的吸收系数(L·mg−1·m−1) | 表征DOC的芳香性 | Li et al., | |
SUVA260 | 单位DOC浓度在波长260 nm处的吸收系数(L·mg−1·m−1) | 表征DOC疏水性组分含量 | 万丹等, | |
荧光参数 | 荧光指数(FI) | 激发波长为370 nm 时,发射波长在470 nm和 520 nm处荧光强度比值 | 表征DOC中腐殖质来源 | Hansen et al., |
腐殖化指数(HIX) | 激发波长为254 nm时,发射波长在435‒480 nm间区域 积分值除以300‒345 nm间区域积分值 | 表征DOC腐殖化程度 | Nkansah et al., | |
自生源指数(BIX) | 激发波长为310 nm时,发射波长在380 nm和 430 nm处荧光强度比值 | 表征DOC自生源相对贡献 | Huguet et al., |
图1 避光和光照厌氧培养过程中0.5 mol·L?1盐酸可浸提态Fe(Ⅱ)质量分数变化 NX、SX、HL、HK和SD分别表示采自宁夏回族自治区灵武市、山西省沂州市、河南省洛阳市、河南省开封市和山东省东营市5个地区的土样;误差线表示标准差(n=3)。下同
Figure 1 Mass fraction of 0.5 mol·L?1 HCl extractable Fe(Ⅱ) under anaerobic incubation in darkness or in light treatments
图2 避光和光照厌氧培养前后可溶性有机碳、游离铁和无定形铁质量分数 不同小写字母表示同一土样培养前后差异显著(p<0.05)(n=3)。下同
Figure 2 Mass fraction of DOC, free iron and amorphous iron under anaerobic incubation in darkness or in light treatments
图5 避光和光照条件下碳排放特征与各参数指标的相关关系矩阵
Figure 5 Correlation matrix between content of cumulative carbon emissions and each parameter index in darkness or in light treatments
[1] | AMSTAETTER K, BORCH T, KAPPLER A, 2012. Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction[J]. Geochimica et Cosmochimica Acta, 85: 326-341. |
[2] | BULLOCK A, ACREMAN M, 2003. The role of wetlands in the hydrological cycle[J]. Hydrology and Earth System Sciences, 7(3): 358-389. |
[3] |
CAO Q, WANG H, ZHANG Y, et al., 2017. Factors affecting distribution patterns of organic carbon in sediments at regional and national scales in China[J]. Scientific Reports, 7(1): 5497.
DOI PMID |
[4] | CHEN C M, KUKKADAPU R K, LAZAREVA O, et al., 2017. Solid-Phase Fe speciation along the vertical redox gradients in floodplains using XAS and Mossbauer spectroscopies[J]. Environmental Science and Technology, 51(14): 7903-7912. |
[5] |
DIFFENBAUGH N S, FIELD C B, 2013. Changes in ecologically critical terrestrial climate conditions[J]. Science, 341(6145): 486-492.
DOI PMID |
[6] | HAN Y F, QU C C, HU X P, et al., 2022. Warming and humidification mediated changes of DOM composition in an Alfisol[J]. Science of the Total Environment, 805: 150198. |
[7] | HAN Y F, QU C C, HU X P, et al., 2024. Responses of various organic carbon pools to elevated temperatures in soils[J]. Science of the Total Environment, 955: 176836. |
[8] | HANSEN A M, KRAUS T E C, PELLERIN B A, et al., 2016. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation[J]. Limnology and Oceanography, 61(3): 1015-1032. |
[9] | HU S J, NIU Z G, CHEN Y F, et al., 2017. Global wetlands: Potential distribution, wetland loss, and status[J]. Science of the Total Environment, 586: 319-327. |
[10] |
HUANG W J, HALL S J, 2017. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter[J]. Nat Commun, 8(1): 1774.
DOI PMID |
[11] | HUGUET A, VACHER L, RELEXANS S, et al., 2009. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 40(6): 706-719. |
[12] | KAJAN K, OSTERHOLZ H, STEGEN J, et al., 2023. Mechanisms shaping dissolved organic matter and microbial community in lake ecosystems[J]. Water Research, 245: 120653. |
[13] |
KAPPLER A, BRYCE C, MANSOR M, et al., 2021. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews. Microbiology, 19(6): 360-374.
DOI PMID |
[14] |
KELLER J K, 2011. Wetlands and the global carbon cycle: What might the simulated past tell us about the future?[J]. New Phytologist, 192(4): 789-792.
DOI PMID |
[15] | LAUFER K, NORDHOFF M, RØY H, et al., 2016. Coexistence of microaerophilic, nitrate-reducing, and phototrophic Fe(II) oxidizers and Fe(III) reducers in coastal marine sediment[J]. Applied and Environmental Microbiology, 82(5): 1433-1447. |
[16] | LAVONEN E E, KOTHAWALA D N, TRANVIK L J, et al., 2015. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production[J]. Water Research (Oxford), 85: 286-294. |
[17] | LI D, HE X S, XI B D, et al., 2014. Study on UV-Visible spectra characteristic of dissolved organic matter during municipal solid waste composting[J]. Advanced Materials Research, 878: 840-849. |
[18] | LI X M, GUO H M, ZHENG H, et al., 2019. Roles of different molecular weights of dissolved organic matter in arsenic enrichment in groundwater; Evidences from ultrafiltration and EEM-PARAFAC[J]. Applied Geochemistry, 104: 124-134. |
[19] |
LI X F, HOU L J, LIU M, et al., 2015. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environmental Science and Technology, 49(19): 11560-11568.
DOI PMID |
[20] | LI X M, ZHANG W, LIU T X, et al., 2016. Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(II) oxidation at circumneutral pH in paddy soil[J]. Soil Biology and Biochemistry, 94: 70-79. |
[21] | LIMIN H U, YUHAN J I, BIN Z, et al., 2023. The effect of iron on the preservation of organic carbon in marine sediments and its implications for carbon sequestration[J]. Science China (Earth Sciences), 66(9): 1946-1959. |
[22] | LIN Q W, WANG S S, LI Y C, et al., 2021. Effects and mechanisms of land-types conversion on greenhouse gas emissions in the Yellow River floodplain wetland[J]. Science of the Total Environment, 813: 152406. |
[23] | LIU S R, HU R G, CAI G C, et al., 2014. The role of UV-B radiation and precipitation on straw decomposition and topsoil C turnover[J]. Soil Biology and Biochemistry, 77: 197-202. |
[24] | LUO M, LIU Y X, HUANG J F, et al., 2018. Rhizosphere processes induce changes in dissimilatory iron reduction in a tidal marsh soil: A rhizobox study[J]. Plant and Soil, 433(1-2): 83-100. |
[25] | MARTÍNEZ-ESPINOSA C, SAUVAGE S, AL BITAR A, et al., 2021. Denitrification in wetlands: A review towards a quantification at global scale[J]. Science of the Total Environment, 754: 142398. |
[26] | MITRA S, WASSMANN R, VLEK P L G, 2005. An appraisal of global wetland area and its organic carbon stock[J]. Current Science (Bangalore), 88(1): 25-35. |
[27] | MITSCH W J, BERNAL B, NAHLIK A M, et al., 2013. Wetlands, carbon, and climate change[J]. Landscape Ecology, 28(4): 583-597. |
[28] | NKANSAH K, ADEDIPE O, DAWSON-ANDOH B, et al., 2015. Determination of concentration of ACQ wood preservative components by UV-Visible spectroscopy coupled with multivariate data analysis[J]. Chemometrics and Intelligent Laboratory Systems, 147: 157-166. |
[29] | POGGENBURG C, MIKUTTA R, SANDER M, et al., 2016. Microbial reduction of ferrihydrite-organic matter coprecipitates by Shewanella putrefaciens and Geobacter metallireducens in comparison to mediated electrochemical reduction[J]. Chemical Geology, 447: 133-147. |
[30] | POSTH N R, KONHAUSER K O, KAPPLER A, 2013. Microbiological processes in banded iron formation deposition[J]. Sedimentology, 60(7): 1733-1754. |
[31] | RITSON J P, GRAHAM N J D, TEMPLETON M R, et al., 2014. The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies: A UK perspective[J]. Science of the Total Environment, 473-474: 714-730. |
[32] | SHEN X J, JIANG M, LU X G, et al., 2021. Aboveground biomass and its spatial distribution pattern of herbaceous marsh vegetation in China[J]. Science China Earth Sciences, 64(7): 1115-1125. |
[33] | SONG X X, WANG P, VAN ZWIETEN L, et al., 2022. Towards a better understanding of the role of Fe cycling in soil for carbon stabilization and degradation[J]. Carbon Research, 1(1): 5. |
[34] | THOMPSON K J, KENWARD P A, BAUER K W, et al., 2019. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans[J]. Science Advances, 5(11): eaav2869. |
[35] | TIAN J, FAN M S, GUO J H, et al., 2012. Effects of land use intensity on dissolved organic carbon properties and microbial community structure[J]. European Journal of Soil Biology, 52: 67-72. |
[36] | 丁昌璞, 2011. 低分子量有机还原性物质与土壤的相互作用Ⅱ. 低分子量有机还原性物质与土壤作用的化学反应[J]. 土壤学报, 48(5): 957-963. |
DING C P, 2011. Interaction between low-molecular weight organic reducing substances and soils Ⅱ. Chemical reactions of low-molecular weight reducing substances with soils[J]. Acta Pedologica Sinica, 48(5): 957-963. | |
[37] |
段勋, 李哲, 刘淼, 等, 2022. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 37(2): 202-211.
DOI |
DUAN X, LI Z, LIU M, et al., 2022. Progress of the iron-mediated soil organic carbon preservation and mineralization[J]. Advances in Earth Science, 37(2): 202-211.
DOI |
|
[38] | 段勋, 罗敏, 黄佳芳, 等, 2017. 闽江河口潮滩沼泽湿地沉积物铁的形态和空间分布[J]. 环境科学学报, 37(10): 3780-3791. |
DUAN X, LUO M, HUANG J F, et al., 2017. Fractions and the spatial distribution of iron in the sediments of tidal marsh in the Min River Estuary, Southeast China[J]. Acta Scientiae Circumstantiae, 37(10): 3780-3791. | |
[39] | 国家市场监督管理总局, 国家标准化管理委员会, 2018. 气体分析校准用混合气体的制备(GB/T 5274.1—2018)[S]// 第1部分: 称量法制备一级混合气体. 北京: 中国标准出版社: 5-9. |
State Administration for Market Regulation, National Standardization Administration, 2018. Gas analysis: Preparation of calibration gas mixtures (GB/T 5274.1—2018)[S]// Part 1: Gravimetric method for Class Ⅰ mixtures. Beijing: Standard Press of China: 5-9. | |
[40] | 郭晓宇, 程曼, 徐茂宏, 等, 2024. 不同坡向亚高山草甸土壤有机碳光降解特征及其对铁添加的响应[J]. 生态学杂志, 43(1): 33-40. |
GUO X Y, CHENG M, XU M H, et al., 2024. Effects of iron addition on photodegradation of soil organic carbon under different slope aspects in a subalpine meadow[J]. Chinese Journal of Ecology, 43(1): 33-40. | |
[41] | 胡世文, 刘同旭, 李芳柏, 等, 2022. 土壤铁矿物的生物-非生物转化过程及其界面重金属反应机制的研究进展[J]. 土壤学报, 59(1): 54-65. |
HU S W, LIU T X, LI F B, et al., 2022. The abiotic and biotic transformation processes of soil iron-bearing minerals and its interfacial reaction mechanisms of heavy metals: A review[J]. Acta Pedologica Sinica, 59(1): 54-65. | |
[42] | 李家东, 娄广艳, 田开迪, 等, 2023. 黄河中下游水生态保护修复实现途径研究[J]. 人民黄河, 45(S2): 83-84. |
LI J D, LOU G Y, TIAN K D, et al., 2023. Research on the approaches to protect and restore the water ecology in the Middle and Lower Reaches of the Yellow River[J]. Yellow River, 45(S2): 83-84. | |
[43] |
梁鑫, 韩亚峰, 郑柯, 等, 2023. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 32(9): 1615-1622.
DOI |
LIANG X, HAN Y F, ZHENG K, et al., 2023. Effects of Fe3O4 on soil carbon mineralization in paddy field[J]. Ecology and Environment Sciences, 32(9): 1615-1622.
DOI |
|
[44] | 柳勇, 于雄胜, 李芳柏, 等, 2014. 紫云英水溶性有机物促进淹水土壤中五氯酚还原与铁还原[J]. 农业环境科学学报, 33(4): 687-694. |
LIU Y, YU X S, LI F B, et al., 2014. Dissolved organic matter from Chinese milk vetch (Astragalus sinicus L.) enhances pentachlorophenol reductive transformation and iron reduction in a flooded paddy soil[J]. Journal of Agro-Environment Science, 33(4): 687-694. | |
[45] | 罗敏, 黄佳芳, 刘育秀, 等, 2017. 根系活动对湿地植物根际铁异化还原的影响及机制研究进展[J]. 生态学报, 37(1): 156-166. |
LUO M, HUANG J F, LIU Y X, et al., 2017. Progress in effects of root bioturbation on dissimilatory iron reduction in the rhizosphere of wetland plants[J]. Acta Ecologica Sinica, 37(1): 156-166. | |
[46] | 曲东, 张一平, SCHNELL S, 等, 2003. 添加氧化铁对水稻土中H2、CO2和CH4形成的影响[J]. 应用生态学报, 14(8): 1313-1316. |
QU D, ZHANG Y P, SCHNELL S, et al., 2003. Effect of iron oxide addition on hydrogen, carbon dioxide and methane geneses in paddy soil[J]. Chinese Journal of Applied Ecology, 14(8): 1313-1316. | |
[47] | 宋旭昕, 刘同旭, 2021. 土壤铁矿物形态转化影响有机碳固定研究进展[J]. 生态学报, 41(20): 7928-7938. |
SONG X X, LIU T X, 2021. Effects of soil iron mineral transformation on organic carbon sequestration: A review[J]. Acta Ecologica Sinica, 41(20): 7928-7938. | |
[48] | 万丹, 王伯仁, 张璐, 等, 2022. 红壤铁氧化物对有机碳的固定及其对长期施肥的响应[J]. 中国生态农业学报(中英文), 30(4): 694-701. |
WANG D, WANG B R, ZHANG L, et al., 2022. Effect of long-term fertilization on the stabilization of soil organic carbon by iron oxides in red soil[J]. Chinese Journal of Eco-Agriculture, 30(4): 694-701. | |
[49] | 王璐莹, 秦雷, 吕宪国, 等, 2018. 铁促进土壤有机碳累积作用研究进展[J]. 土壤学报, 55(5): 1041-1050. |
WANG L Y, QIN L, LÜ X G, et al., 2018. Progress in researches on effect of iron promoting accumulation of soil organic carbon[J]. Acta Pedologica Sinica, 55(5): 1041-1050. | |
[50] | 王旭刚, 郭大勇, 张苹, 等, 2014. 水稻土中铁氧化还原循环的光照水分效应[J]. 土壤学报, 51(4): 853-859. |
WANG X G, GUO D Y, ZHANG P, et al., 2014. Effect of illumination and water condition on iron redox cycle in paddy soil[J]. Acta Pedologica Sinica, 51(4): 853-859. | |
[51] | 王旭刚, 孙丽蓉, 马林娟, 等, 2018a. 黄河中下游湿地土壤铁还原氧化过程的温度敏感性[J]. 土壤学报, 55(2): 380-389. |
WANG X G, SUN L R, MA L J, et al., 2018a. Temperature sensitivity of iron redox processes in wetland soil in the Middle and Lower Reaches of the Yellow River[J]. Acta Pedologica Sinica, 55(2): 380-389. | |
[52] | 王旭刚, 孙丽蓉, 张颖蕾, 等, 2018b. 豫西旱作褐土剖面土壤的氧化铁还原与亚铁氧化特征[J]. 土壤学报, 55(5): 1199-1211. |
WANG X G, SUN L R, ZHANG Y L, et al., 2018b. Characterization of reduction of iron oxide and oxidation of ferrous iron in upland cinnamon soil profiles in west Henan, China[J]. Acta Pedologica Sinica, 55(5): 1199-1211. | |
[53] | 王永慧, 杨殿林, 红雨, 等, 2019. 不同地力玉米田土壤有机碳矿化特征[J]. 农业环境科学学报, 38(3): 590-599. |
WANG Y H, YANG D L, HONG Y, et al., 2019. Characteristics of soil organic carbon mineralization in the soil of maize fields with different soil fertility[J]. Journal of Agro-Environment Science, 38(3): 590-599. | |
[54] | 吴健敏, 郗敏, 孔范龙, 等, 2013. 土壤溶解性有机碳 (DOC) 动态变化影响因素研究进展[J]. 地质论评, 59(5): 953-961. |
WU J M, XI M, KONG F L, et al., 2013. Review of researches on the factors influencing the dynamics of dissolved organic carbon in soils[J]. Geological Review, 59(5): 953-961. | |
[55] |
谢军, 尹学伟, 魏灵, 等, 2023. 垄作直播控制灌溉对水稻产量和温室气体排放的影响[J]. 中国农业科学, 56(4): 697-710.
DOI |
XIE J, YIN X W, WEI L, et al., 2023. Effects of control irrigation on grain yield and greenhouse gas emissions in ridge cultivation direct-seeding paddy field[J]. Scientia Agricultura Sinica, 56(4): 697-710.
DOI |
[1] | 周乐乐, 万霞, 丁黎明, 魏星宇, 王建平, 陈静, 李鑫, 樊敏, 黎猛, 喻萧斌. 四川省碳排放-碳储存与碳供需比空间分布特征研究[J]. 生态环境学报, 2025, 34(3): 368-379. |
[2] | 梁鑫, 韩亚峰, 郑柯, 王旭刚, 陈志怀, 杜鹃. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622. |
[3] | 王兴来, 苗淑杰, 乔云发. 基于江苏省本地化参数评价稻麦周年轮作系统碳足迹[J]. 生态环境学报, 2023, 32(9): 1682-1691. |
[4] | 宋灯辉, 付迪, 黎建强, 付钇珊, 邢学霞, 田原. 云南松林计划烧除地表碳损失量及碳排放量估算[J]. 生态环境学报, 2023, 32(8): 1376-1383. |
[5] | 张露, 何雨霏, 陈坦, 杨婷, 张冰, 金军. 2011—2020年汾渭平原农田生态系统碳足迹的时空格局演变[J]. 生态环境学报, 2023, 32(6): 1149-1162. |
[6] | 李语诗, 夏志业, 张蕾. 基于SSPs多情景目标的2030年成渝经济圈土地利用碳排放预测及其空间优化[J]. 生态环境学报, 2023, 32(3): 535-544. |
[7] | 范清瑶, 夏卫生, 莫成鑫, 周浩. 基于“三生空间”的土地利用转型时空演变及其碳排放效应研究——以福建省为例[J]. 生态环境学报, 2023, 32(12): 2183-2193. |
[8] | 王钊, 张曼胤, 胡宇坤, 刘魏魏, 张苗苗. 盐度对典型滨海湿地沉积物汞甲基化的影响[J]. 生态环境学报, 2022, 31(9): 1876-1884. |
[9] | 胡瑞, 房焕英, 肖胜生, 段剑, 张杰, 刘洪光, 汤崇军. 南方红壤典型花岗岩侵蚀区主要治理模式的土壤碳汇效应[J]. 生态环境学报, 2021, 30(8): 1617-1626. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||