生态环境学报 ›› 2024, Vol. 33 ›› Issue (7): 1153-1162.DOI: 10.16258/j.cnki.1674-5906.2024.07.016
• 研究论文【环境科学】 •
上一篇
收稿日期:
2024-04-22
出版日期:
2024-07-18
发布日期:
2024-09-04
通讯作者:
*杨涛。E-mail: tyang@snnu.edu.cn作者简介:
李海燕(2000年生),女,硕士研究生,主要研究流域水生态。E-mail: 1125906768@qq.com
基金资助:
LI Haiyan(), YANG Tao*(
), LIAO Yilin, QU Yajie
Received:
2024-04-22
Online:
2024-07-18
Published:
2024-09-04
摘要:
探究河流生境质量分布规律及其驱动力是管理河流生态环境,促进河流生态系统高质量发展的重要基础。以渭河流域(陕西段)的河流为研究对象,收集了2023年10月研究区42个调查断面的生境质量数据,构建了渭河流域河流生境质量评价体系,运用组合赋权法计算了渭河流域河流生境质量指数,探讨了渭河流域(陕西段)河流生境质量的分布特征。利用相关性分析、逐步回归模型和通径分析,揭示了渭河流域河流生境质量的驱动因素,并在此基础上提出了渭河流域河流生境质量的提升对策。结果表明,1)渭河流域河流生境质量总体良好,生境质量指数在1.93-3.81之间,其中,2.38%的调查断面生境优秀,35.7%的调查断面生境良好,50%的调查断面生境一般,11.9%的调查断面生境较差。河流水环境状况最好,河流形态与结构指标分异较大;河流生物得分最低,是制约渭河生境质量的主要因素。支流生境质量普遍好于干流,并均呈现出由上游到下游生境质量逐渐下降的空间变化特征。2)底质组成、河道蜿蜒度、岸坡稳定性、栖境复杂性及周边土地利用方式都是影响渭河流域(陕西段)河流生境质量的主要因素。3)河道蜿蜒度是对陕西段渭河流域河流生境质量直接影响最显著的因子,底质组成是间接影响作用最大的因子,两者都具有正向影响。研究结果可为河流生境质量驱动因子研究提供思路,同时为恢复渭河流域河流生境质量、完善河流生态环境保护政策、维护河流生态系统可持续发展等方面提供理论和现实依据。
中图分类号:
李海燕, 杨涛, 廖依琳, 屈亚婕. 渭河流域(陕西段)河流生境质量分布格局及驱动力分析[J]. 生态环境学报, 2024, 33(7): 1153-1162.
LI Haiyan, YANG Tao, LIAO Yilin, QU Yajie. Analysis of Distribution Pattern and Driving Habitat Quality of Rivers in the Wei River Basin (Shaanxi section)[J]. Ecology and Environment, 2024, 33(7): 1153-1162.
目标层 | 准则层 | 权重 | 评价指标 | 权重 | 评分标准 | ||||
---|---|---|---|---|---|---|---|---|---|
5分 | 4分 | 3分 | 2分 | 1分 | |||||
河流生境质量 | 水环境状况 | 0.224 | 水量状况 (A1) | 0.037 | 河水淹没河岸两侧 | 水覆盖大于75% | 水覆盖在50%‒75% | 水覆盖在25%‒50% | 河道几乎完全暴露 |
速度与深度结合 (A2) | 0.099 | 慢深/慢浅/快深/ 快浅均出现 | 有3种情况出现 | 只有两种情况出现 | 水体基本不流动 | 出现断流 | |||
表观水质 (A3) | 0.021 | 清澈透明, 水面 干净, 无异味 | 轻微浑浊, 水面基本干净, 少量异味 | 比较浑浊, 水面 有较少垃圾, 较大异味 | 很浑浊, 水面有垃圾、泡沫, 很大异味 | 极端浑浊, 水面 有较多垃圾、 泡沫, 恶臭 | |||
水质 (A4) | 0.067 | ≤0.4 | 0.4-0.7 | 0.7-1 | 1-2 | ≥2 | |||
河流 形态与结构 | 0.448 | 岸坡稳定性 (B1) | 0.043 | 基本无侵蚀 | 仅在弯曲或狭窄的地方有侵蚀 | 坡脚侵蚀频繁 | 岸坡侵蚀严重 | 河岸坍塌 | |
蜿蜒度 (B2) | 0.149 | >1.10 | 1.06‒1.10 | 1.04‒1.06 | 1.02‒1.04 | <1.02 | |||
底质材料 (B3) | 0.148 | 底质种类>4, 泥沙覆盖面积小于20% | 底质种类为4, 泥沙覆盖面积20%‒40% | 底质类型3种, 泥沙覆盖面积40%‒60% | 底质类型两种, 泥沙覆盖面积60%‒80% | 底质类型单一, 主要为细沙、淤泥 | |||
栖境复杂性 (B4) | 0.052 | 小生境类型多样, 断面上分布均匀 | 小生境类型多样, 以1、2种为主 | 小生境部分缺失, 断面上分布不均匀 | 小生境类型1‒2种, 一种为主 | 小生境类型单一 | |||
河道连通性 (B5) | 0.018 | 未见有任何堰坝 | 小型堰坝 | 中小型堰坝 | 大量堰坝或大型 水坝和水库 | 大型水坝和水库, 生物迁徙受到阻隔 | |||
河岸类型 (B6) | 0.022 | 自然岸坡 | 生态护岸 | 石砌/亲水平台护岸/混凝土栅格植被 | 浆砌石块/干砌石块/台阶式人工护岸 | 直立式混凝土护岸 | |||
河岸坡度 (B7) | 0.016 | 0‒15 | 15‒30 | 30‒45 | 45‒60 | >60 | |||
生物 指标 | 0.190 | 水生植被覆盖度 (C1) | 0.109 | 覆盖面积>30% | 覆盖面积 20%‒30% | 覆盖面积 10%‒20% | 覆盖面积<10% | 无覆盖 | |
河岸植被结构 (C2) | 0.039 | 乔-灌-草结合 | 两种植被且较繁茂 | 两种植被但较稀疏 | 植被结构单一 | 基本无植被 | |||
河岸植被覆盖度 (C3) | 0.043 | 覆盖面积 >80% | 覆盖面积 60%‒80% | 覆盖面积 40%‒60% | 覆盖面积 20%‒40% | 覆盖面积 <20% | |||
人类 因素 | 0.137 | 河岸卫生状况 (D1) | 0.018 | 无垃圾 | 少量垃圾出现 | 部分垃圾散布 | 部分垃圾堆放 | 垃圾堆放 | |
周边土地利用 (D2) | 0.033 | 自然状态 | 林地、草地、自然湿地、少量农作物 | 耕地与林地、灌丛、草地、 自然湿地交错 | 耕地、果园 | 裸地、公园、城镇 | |||
人类活动强度 (D3) | 0.058 | 无人类活动或 少有人类经过 | 少量步行者和非机动车经过 | 少量机动车经过 | 多种人类活动, 但对河流污染不严重 | 人类活动密集, 交通要道 | |||
水利工程干扰 (D4) | 0.028 | 自然河道, 未受影响 | 每出现水库、堤坝、扬水站、港口或渠道化影响减1分 |
表1 河流生境质量评价体系
Table 1 River habitat quality evaluation system
目标层 | 准则层 | 权重 | 评价指标 | 权重 | 评分标准 | ||||
---|---|---|---|---|---|---|---|---|---|
5分 | 4分 | 3分 | 2分 | 1分 | |||||
河流生境质量 | 水环境状况 | 0.224 | 水量状况 (A1) | 0.037 | 河水淹没河岸两侧 | 水覆盖大于75% | 水覆盖在50%‒75% | 水覆盖在25%‒50% | 河道几乎完全暴露 |
速度与深度结合 (A2) | 0.099 | 慢深/慢浅/快深/ 快浅均出现 | 有3种情况出现 | 只有两种情况出现 | 水体基本不流动 | 出现断流 | |||
表观水质 (A3) | 0.021 | 清澈透明, 水面 干净, 无异味 | 轻微浑浊, 水面基本干净, 少量异味 | 比较浑浊, 水面 有较少垃圾, 较大异味 | 很浑浊, 水面有垃圾、泡沫, 很大异味 | 极端浑浊, 水面 有较多垃圾、 泡沫, 恶臭 | |||
水质 (A4) | 0.067 | ≤0.4 | 0.4-0.7 | 0.7-1 | 1-2 | ≥2 | |||
河流 形态与结构 | 0.448 | 岸坡稳定性 (B1) | 0.043 | 基本无侵蚀 | 仅在弯曲或狭窄的地方有侵蚀 | 坡脚侵蚀频繁 | 岸坡侵蚀严重 | 河岸坍塌 | |
蜿蜒度 (B2) | 0.149 | >1.10 | 1.06‒1.10 | 1.04‒1.06 | 1.02‒1.04 | <1.02 | |||
底质材料 (B3) | 0.148 | 底质种类>4, 泥沙覆盖面积小于20% | 底质种类为4, 泥沙覆盖面积20%‒40% | 底质类型3种, 泥沙覆盖面积40%‒60% | 底质类型两种, 泥沙覆盖面积60%‒80% | 底质类型单一, 主要为细沙、淤泥 | |||
栖境复杂性 (B4) | 0.052 | 小生境类型多样, 断面上分布均匀 | 小生境类型多样, 以1、2种为主 | 小生境部分缺失, 断面上分布不均匀 | 小生境类型1‒2种, 一种为主 | 小生境类型单一 | |||
河道连通性 (B5) | 0.018 | 未见有任何堰坝 | 小型堰坝 | 中小型堰坝 | 大量堰坝或大型 水坝和水库 | 大型水坝和水库, 生物迁徙受到阻隔 | |||
河岸类型 (B6) | 0.022 | 自然岸坡 | 生态护岸 | 石砌/亲水平台护岸/混凝土栅格植被 | 浆砌石块/干砌石块/台阶式人工护岸 | 直立式混凝土护岸 | |||
河岸坡度 (B7) | 0.016 | 0‒15 | 15‒30 | 30‒45 | 45‒60 | >60 | |||
生物 指标 | 0.190 | 水生植被覆盖度 (C1) | 0.109 | 覆盖面积>30% | 覆盖面积 20%‒30% | 覆盖面积 10%‒20% | 覆盖面积<10% | 无覆盖 | |
河岸植被结构 (C2) | 0.039 | 乔-灌-草结合 | 两种植被且较繁茂 | 两种植被但较稀疏 | 植被结构单一 | 基本无植被 | |||
河岸植被覆盖度 (C3) | 0.043 | 覆盖面积 >80% | 覆盖面积 60%‒80% | 覆盖面积 40%‒60% | 覆盖面积 20%‒40% | 覆盖面积 <20% | |||
人类 因素 | 0.137 | 河岸卫生状况 (D1) | 0.018 | 无垃圾 | 少量垃圾出现 | 部分垃圾散布 | 部分垃圾堆放 | 垃圾堆放 | |
周边土地利用 (D2) | 0.033 | 自然状态 | 林地、草地、自然湿地、少量农作物 | 耕地与林地、灌丛、草地、 自然湿地交错 | 耕地、果园 | 裸地、公园、城镇 | |||
人类活动强度 (D3) | 0.058 | 无人类活动或 少有人类经过 | 少量步行者和非机动车经过 | 少量机动车经过 | 多种人类活动, 但对河流污染不严重 | 人类活动密集, 交通要道 | |||
水利工程干扰 (D4) | 0.028 | 自然河道, 未受影响 | 每出现水库、堤坝、扬水站、港口或渠道化影响减1分 |
准则层 | 优秀 | 良好 | 一般 | 较差 |
---|---|---|---|---|
水环境状况 | 28.57% | 52.38% | 19.05% | 0.00% |
河流形态与结构 | 4.76% | 35.71% | 33.33% | 26.19% |
生物指标 | 14.29% | 19.05% | 47.62% | 19.05% |
人类因素 | 33.33% | 45.24% | 16.67% | 4.76% |
表2 渭河流域河流二级指标生境质量等级比例
Table 2 The proportion of habitat quality grades for secondary indicators of rivers in the Wei River Basin
准则层 | 优秀 | 良好 | 一般 | 较差 |
---|---|---|---|---|
水环境状况 | 28.57% | 52.38% | 19.05% | 0.00% |
河流形态与结构 | 4.76% | 35.71% | 33.33% | 26.19% |
生物指标 | 14.29% | 19.05% | 47.62% | 19.05% |
人类因素 | 33.33% | 45.24% | 16.67% | 4.76% |
区域 | 逐步回归方程 | r2 | F | p |
---|---|---|---|---|
全流域 | y=0.919+2.789×B1+1.132×B2+0.836×B3+2.66×B4+4.507×D2 | 0.87 | 56.53 | 0.000 |
上游 | y=1.636+1.905×B2+1.769×B3 | 0.58 | 7.87 | 0.013 |
中游 | y=−0.008+6.581×B1+1.561×B2+1.023×B3+ 4.872×B4+4.124×D2 | 0.84 | 14.28 | 0.001 |
下游 | y=0.815+3.747×B1+1.249×B2+0.475×B3+ 3.212×B4+3.943×D2 | 0.93 | 42.97 | 0.000 |
干流 | y=1.28+5.424×D2+0.993×B3+3.071×B1+0.453×B2 | 0.89 | 45.95 | 0.000 |
支流 | y=1.19+3.849×B4+1.36×B2+0.85×B3+3.992×D2 | 0.87 | 31.03 | 0.000 |
表3 渭河流域不同区域生境质量与影响因子的逐步回归方程
Table 3 Stepwise regression equation for habitat quality and influencing factors in different regions of the Wei River Basin
区域 | 逐步回归方程 | r2 | F | p |
---|---|---|---|---|
全流域 | y=0.919+2.789×B1+1.132×B2+0.836×B3+2.66×B4+4.507×D2 | 0.87 | 56.53 | 0.000 |
上游 | y=1.636+1.905×B2+1.769×B3 | 0.58 | 7.87 | 0.013 |
中游 | y=−0.008+6.581×B1+1.561×B2+1.023×B3+ 4.872×B4+4.124×D2 | 0.84 | 14.28 | 0.001 |
下游 | y=0.815+3.747×B1+1.249×B2+0.475×B3+ 3.212×B4+3.943×D2 | 0.93 | 42.97 | 0.000 |
干流 | y=1.28+5.424×D2+0.993×B3+3.071×B1+0.453×B2 | 0.89 | 45.95 | 0.000 |
支流 | y=1.19+3.849×B4+1.36×B2+0.85×B3+3.992×D2 | 0.87 | 31.03 | 0.000 |
图6 渭河流域(陕西段)不同断面生境质量与环境因子的通径分析图
Figure 6 Path analysis of habitat quality and environmental factors in different sections of Wei River Basin (Shaanxi section)
[1] | ABRAHAM J, DOWLING K, FLORENTINE S, 2017. Risk of post-fire metal mobilization into surface water resources: A review[J]. Science of the Total Environment, 599-600: 1740-1755. |
[2] | AN K, PARK S S, SHIN J, 2002. An evaluation of a river health using the index of biological integrity along with relations to chemical and habitat conditions[J]. Environment International, 28(5): 411-420. |
[3] | BARBOUR M T, PLAFKIN J L, BRADLEY B P, et al., 1992. Assessment of EPA’s rapid bioassessment benthic metrics: Metric redundancy and variability among reference stream sites[J]. Environmental Toxicology, 11: 437-449. |
[4] | BLANCA T R, CHRISTIAN V, GABRIELA J, et al., 2022. Aquatic biodiversity loss in Andean urban streams[J]. Urban Ecosystems, 25(6): 1619-1629. |
[5] | CANTONATI M, ANGELI N, BERTUZZI E, et al., 2012. Diatoms in springs of the alps: Spring types, environmental determinants, and substratum[J]. Freshwater Science, 31(2): 499-524. |
[6] | DALU T, WASSERMAN J R, TONKIN D J, et al., 2017. Water or sediment? Partitioning the role of water column and sediment chemistry as drivers of macroinvertebrate communities in an austral South African stream[J]. Science of the Total Environment, 607-608: 317-325. |
[7] | DENG X J, XU Y P, HAN L F, et al., 2015. Assessment of river health based on an improved entropy-based fuzzy matter-element model in the Taihu Plain, China[J]. Ecological Indicators, 57: 85-95. |
[8] |
DING Y K, SHAN B, ZHAO Y, 2015. Assessment of river habitat quality in the Hai River Basin, Northern China[J]. International Journal of Environmental Research and Public Health, 12(9): 11699-11717.
DOI PMID |
[9] | FLORSHEIM L J, MOUNT F J, CHIN A, 2008. Bank erosion as a desirable attribute of rivers[J]. BioScience, 58(6): 519-529. |
[10] | GARCIA X, SCHNAUDER I, PUSCH T M, 2012. Complex hydromorphology of meanders can support benthic invertebrate diversity in rivers[J]. Hydrobiologia, 685(1): 49-68. |
[11] | HUANG J, HUANG L, WU Z, et al., 2019. Correlation of fish assemblages with habitat and environmental variables in a headwater stream section of Lijiang River, China[J]. Sustainability, 11(4): 1135. |
[12] | HUI X M, YUAN J, LI C, et al., 2023. Impact of watershed habitat quality based on land use: A case study of taking Ciyao River Basin[J]. Quality Assurance and Safety of Crops & Foods, 15(1): 18-31. |
[13] | LADSON A R, WHITE L J, DOOLAN J A, et al., 1999. Development and testing of an index of stream condition for waterway management in Australia[J]. Freshwater Biology, 41(2): 453-468. |
[14] | LI Y Y, CHANG J X, WANG Y M, et al., 2016. Spatiotemporal impacts of climate, land cover change and direct human activities on runoff cariations in the Wei River Basin, China[J]. Water, 8(6): 220. |
[15] | LUO Z L, ZUO Q T, SHAO Q X, 2018. A new framework for assessing river ecosystem health with consideration of human service demand[J]. Science of the Total Environment, 640-641: 442-453. |
[16] | MA L B, BO J, LI X Y, et al., 2019. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example[J]. Science of the Total Environment, 674: 424-438. |
[17] | NAKANO D, NAKAMURA F, 2008. The significance of meandering channel morphology on the diversity and abundance of macroinvertebrates in a lowland river in Japan[J]. Aquatic conservation: Marine and freshwater ecosystems, 18(5): 780-798. |
[18] | RAVEN J P, HOLMES H T N, NAURA M, et al., 2000. Using river habitat survey for environmental assessment and catchment planning in the UK[J]. Hydrobiologia, 422: 359-367. |
[19] | SHAN C J, DONG Z C, LU D B, et al., 2021. Study on river health assessment based on a fuzzy matter-element extension model[J]. Ecological Indicators, 127: 107742. |
[20] | SONG J X, CHENG D D, LI Q, et al., 2015. An evaluation of river health for the Weihe River in Shaanxi Province, China[J]. Advances in Meteorology, 2015(Part 1): 1-13. |
[21] | SORANNO A P, CHERUVELIL S K, WEBSTER E K, et al., 2010. Using landscape limnology to classify freshwater ecosystems for multi-ecosystem management and conservation[J]. BioScience, 60(6): 440-454. |
[22] | WAN X H, YANG T, ZHANG Q, et al., 2021. Joint effects of habitat indexes and physic-chemical factors for freshwater basin of semi-arid area on plankton integrity: A case study of the Wei River Basin, China[J]. Ecological Indicators, 120: 106909. |
[23] |
YANG T, WANG S, LI X P, et al., 2018. River habitat assessment for ecological restoration of Wei River Basin, China[J]. Environmental Science and Pollution Research International, 25(17): 17077-17090.
DOI PMID |
[24] | YANG W, JIN Y W, SUN T, et al., 2018. Trade-offs among ecosystem services in coastal wetlands under the effects of reclamation activities[J]. Ecological Indicators, 92: 354-366. |
[25] | ZENG P, SUN F Y, LIU Y Y, et al., 2020. Future river basin health assessment through reliability-resilience-vulnerability: Thresholds of multiple dryness conditions[J]. Science of the Total Environment, 741: 140395. |
[26] | 陈淼, 苏晓磊, 党成强, 等, 2017. 三峡水库河流生境评价指标体系构建及应用[J]. 生态学报, 37(24): 8433-8444. |
CHEN M, SU X L, DANG C Q, et al., 2017. Establishment and application of a habitat assessment index system of rivers in the Three Gorges Reservoir Region[J]. Acta Ecologica Sinica, 37(24): 8433-8444. | |
[27] | 陈淼, 苏晓磊, 黄慧敏, 等, 2019. 三峡库区河流生境质量评价[J]. 生态学报, 39(1): 192-201. |
CHEN M, SU X L, HUANG H M, et al., 2019. Assessment of river habitat quality in the Three Gorges Reservoir Region[J]. Acta Ecologica Sinica, 39(1): 192-201. | |
[28] | 程静, 王鹏, 陈红翔, 等, 2023. 渭河流域生境质量时空演变及其地形梯度效应与影响因素[J]. 干旱区地理, 46(3): 481-491. |
CHENG J, WANG P, CHEN H X, et al., 2023. Spatiotemporal evolution of habitat quality in the Weihe River Basin and its topographic gradient effects and influencing factors[J]. Arid Land Geography, 46(3): 481-491. | |
[29] |
戴海伦, 代加兵, 舒安平, 等, 2013. 河岸侵蚀研究进展综述[J]. 地球科学进展, 28(9): 988-996.
DOI |
DAI H L, DAI J B, SHU A P, et al., 2013. Review of river bank erosion research[J]. Advances in Earth Science, 28(9): 988-996.
DOI |
|
[30] | 段学花, 王兆印, 程东升, 2007. 典型河床底质组成中底栖动物群落及多样性[J]. 生态学报, 27(4): 1664-1672. |
DUAN X H, WANG Z Y, CHENG D S, 2007. Benthic macroinvertebrates communities and biodiversity in various stream substrata[J]. Acta Ecologica Sinica, 27(4): 1664-1672. | |
[31] | 冯普林, 2018. 渭河安澜[M]. 西安: 太白文艺出版社: 3-12. |
FENG P L, 2018. Weihe Anlan[M]. Xi’an: Taibai Literature and Art Publishing House: 3-12. | |
[32] | 侯俊, 王超, 王沛芳, 等, 2012. 卵砾石生态河床对河流水质净化和生态修复的效果[J]. 水利水电科技进展, 32(6): 46-49. |
HOU J, WANG C, WANG P F, et al., 2012. Effects of ecological gavel bed on water quality purification and ecological restoration in streams[J]. Advances in Science and Technology of Water Resources, 32(6): 46-49. | |
[33] | 黄宝强, 李荣昉, 曹文洪, 2011. 河流生态系统健康评价及其对我国河流健康保护的启示[J]. 安徽农业科学, 39(8): 4600-4602, 4641. |
HUANG B Q, LI R F, CAO W H, 2011. River eco-system health assessment and implications for river protection in China[J]. Journal of Anhui Agricultural Sciences, 39(8): 4600-4602, 4641. | |
[34] | 雷呈, 黄琪, 倪才英, 等, 2019. 袁河流域河流生境质量评价及其影响因素分析[J]. 江西师范大学学报(自然科学版), 43(4): 425-432. |
LEI C, HUANG Q, NI C Y, et al., 2019. The analysis on habitat quality assessment and related factors in Yuanhe River Basin[J]. Journal of Jiangxi Normal University (Natural Science), 43(4): 425-432. | |
[35] | 山成菊, 董增川, 樊孔明, 等, 2012. 组合赋权法在河流健康评价权重计算中的应用[J]. 河海大学学报(自然科学版), 40(6): 622-628. |
SHAN C J, DONG Z C, FAN K M, et al., 2012. Application of combination weighting method to weight calculation in river health evaluation[J]. Journal of Hohai University (Natural Sciences), 40(6): 622-628. | |
[36] | 孙然好, 程先, 陈利顶, 2018. 海河流域河流生境功能识别及区域差异[J]. 生态学报, 38(12): 4473-4481. |
SUN R H, CHENG X, CHEN L D, 2018. Identification of aquatic ecosystems and regional characteristics in the Haihe River Basin China[J]. Acta Ecologica Sinica, 38(12): 4473-4481. | |
[37] | 王强, 袁兴中, 刘红, 等, 2014. 基于河流生境调查的东河河流生境评价[J]. 生态学报, 34(6): 1548-1558. |
WANG Q, YUAN X Z, LIU H, et al., 2014. Stream habitat assessment of Dong River, China, using river habitat survey method[J]. Acta Ecologica Sinica, 34(6): 1548-1558. | |
[38] | 王琼, 范志平, 李法云, 等, 2015. 蒲河流域河流生境质量综合评价及其与水质响应关系[J]. 生态学杂志, 34(2): 516-523. |
WANG Q, FAN Z P, LI F Y, et al., 2015. River habitat quality assessment, water quality analysis and their response relation of Puhe River Basin[J]. Chinese Journal of Ecology, 34(2): 516-523. | |
[39] | 王琼, 卢聪, 李法云, 等, 2017. 基于主成分分析和熵权法的河流生境质量评价方法——以清河为例[J]. 生态科学, 36(4): 185-193. |
WANG Q LU, LI F Y, et al., 2017. River habitat quality assessment based on principal component analysis and entropy weight in Qinghe River as a case[J]. Ecological Science, 36(4): 185-193. | |
[40] | 徐宗学, 武玮, 殷旭旺, 2016. 渭河流域水生态系统群落结构特征及其健康评价[J]. 水利水电科技进展, 36(1): 23-30. |
XU Z X, WU W, YIN X W, 2016. Community structure characteristics and health assessment of aquatic ecosystem in Weihe Basin, China[J]. Advances in Science and Technology of Water Resources, 36(1): 23-30. | |
[41] | 杨宇, 2006. 多指标综合评价中赋权方法评析[J]. 统计与决策 (13): 17-19. |
YANG Y, 2006. Analysis of weighting methods in multi indicator comprehensive evaluation[J]. Statistics & Decision (13): 17-19. | |
[42] | 张冰烨, 谢培, 孙明东, 等, 2024. 衡水湖湿地水生植物生长过程对水质的影响研究[J/OL]. 中国环境科学, 1-13. https://doi.org/10.19674/j.cnki.issn1000-6923.20231218.004. |
ZHANG B Y, XIE P, SUN M D, et al., 2024. Study on the impact of aquatic plant growth process on water quality in Hengshui Lake wetland[J/OL]. China Environmental Science, 1-13. https://doi.org/10.19674/j.cnki.issn1000-6923.20231218.004. | |
[43] | 张海宁, 任源鑫, 张新弟, 等, 2020. 1981-2016年渭河流域上中下游极端气温差异研究[J]. 江西农业学报, 32(9): 113-118, 126. |
ZHANG H N, REN Y X, ZHANG X D, et al., 2020. Study on difference of extreme temperature in upper, middle and lower reaches of Weihe River Basin from 1981 to 2016[J]. Acta Agriculturae Jiangxi, 32(9): 113-118, 126. | |
[44] | 赵彦颜, 李冲, 梁媛, 等, 2024. 金沙江中游支流河流栖息地评价体系构建[J/OL]. 水生态学杂志, 1-12. https://doi.org/10.15928/j.1674-3075.202212200504. |
ZHAO Y Y, LI C, LIAN Y, et al., 2024. Construction and application of river habitat evaluation system in the middle reaches tributaries of the Jinsha River[J/OL]. Journal of Hydroecology, 1-12. https://doi.org/10.15928/j.1674-3075.202212200504. | |
[45] | 郑丙辉, 张远, 李英博, 2007. 辽河流域河流栖息地评价指标与评价方法研究[J]. 环境科学学报, 27(6): 928-936. |
ZHENG B H, ZHANG Y, LI Y B, 2007. Study of indicators and methods for river habitat assessment of Liao River Basin[J]. Acta Scientiae Circumstantiae, 27(6): 928-936. | |
[46] | 朱卫红, 曹光兰, 李莹, 等, 2014. 图们江流域河流生态系统健康评价[J]. 生态学报, 34(14): 3969-3977. |
ZHU W H, CAO G L, LI Y, et al., 2014. Research on the health assessment of river ecosystem in the area of Tumen River Basin[J]. Acta Ecologica Sinica, 34(14): 3969-3977. | |
[47] | 邹曦, 杨志, 郑志伟, 等, 2020. 长江干流典型区域河流生境健康评价[J]. 长江流域资源与环境, 29(10): 2219-2228. |
ZOU X, YANG Z, ZHENG Z W, et al., 2020. Health assessment of river habitat in typical regions of the Yangtze River Mainstream[J]. Resources and Environment in the Yangtze Basin, 29(10): 2219-2228. |
[1] | 孙明, 陈燕丽, 谢敏, 莫伟华, 潘良浩. 广西典型沙生红树林总初级生产力变化特征及其对气象因子的响应[J]. 生态环境学报, 2024, 33(5): 665-678. |
[2] | 杨非凡, 何浩. 基于“EVI-ESV”伊犁河谷生态环境评估及生态分区构建[J]. 生态环境学报, 2024, 33(4): 655-664. |
[3] | 曹晓霭, 张睿, 温云浩, 王建, 徐智超, 田雅婷, 王立新, 刘华民. 春季冻融过程对河滨带湿地土壤酶活性的影响[J]. 生态环境学报, 2024, 33(2): 212-221. |
[4] | 王成武, 罗俊杰, 唐鸿湖. 基于InVEST模型的太行山沿线地区生态系统碳储量时空分异驱动力分析[J]. 生态环境学报, 2023, 32(2): 215-225. |
[5] | 肖成志, 计扬, 李建忠, 张志, 巴仁基, 曹亚廷. 岷江上游生态脆弱性时空分异及驱动因子交互效应分析——以杂谷脑河流域为例[J]. 生态环境学报, 2023, 32(10): 1760-1770. |
[6] | 付蓉, 武新梅, 陈斌. 城市地表温度空间分异及驱动因子差异性分析——以合肥市为例[J]. 生态环境学报, 2023, 32(1): 110-122. |
[7] | 蒋恬田, 杨纯, 廖炜, 胡力, 刘欢瑶, 任勃, 李小马. 城市绿地景观格局影响地表温度的通径分析——以长沙市为例[J]. 生态环境学报, 2023, 32(1): 18-25. |
[8] | 张林, 周飘, 齐实, 张岱, 伍冰晨, 崔冉冉. 侧柏人工林林分空间结构对林下草本多样性的差异性影响及其关联度[J]. 生态环境学报, 2022, 31(9): 1794-1801. |
[9] | 张桂莲. 基于遥感估算的上海城市森林碳储量空间分布特征[J]. 生态环境学报, 2021, 30(9): 1777-1786. |
[10] | 王雪梅, 玉米提∙买明, 毛东雷, 梁婷. 干旱区绿洲耕层土壤重金属铬含量的高光谱估测[J]. 生态环境学报, 2021, 30(10): 2076-2084. |
[11] | 王丽霞, 史园莉, 张宏伟, 毕晓玲, 申文明, 马万栋. 2000—2020年北方农牧交错区植被生态功能变化及驱动因子分析[J]. 生态环境学报, 2021, 30(10): 1990-1998. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||