生态环境学报 ›› 2025, Vol. 34 ›› Issue (10): 1519-1531.DOI: 10.16258/j.cnki.1674-5906.2025.10.003
汪彩琴1(), 杨潜英2, 周名玉2, 张道勇1, 潘响亮2,*(
)
收稿日期:
2025-01-09
出版日期:
2025-10-18
发布日期:
2025-09-26
通讯作者:
E-mail: 作者简介:
汪彩琴(1992年生),女,讲师,博士,主要从事环境地球化学过程和土壤污染修复等研究。E-mail: cqwang92@zjut.edu.cn
基金资助:
WANG Caiqin1(), YANG Qianying2, ZHOU Mingyu2, ZHANG Daoyong1, PAN Xiangliang2,*(
)
Received:
2025-01-09
Online:
2025-10-18
Published:
2025-09-26
摘要:
滨海湿地是重要的蓝碳生态系统。近年来,微塑料的侵入通过改变滨海湿地元素比例、土壤孔隙度、氧气含量和微生物群落结构等性质,深刻影响着滨海湿地中污染物行为和碳氮硫磷营养元素的地球化学循环。该文全面梳理了滨海湿地中微塑料的分布及其对滨海湿地土壤理化性质、微生物群落结构、污染物行为和碳氮硫磷元素循环等的影响。结果显示,微塑料在滨海湿地中普遍有较高的丰度,特别是在经济发达的东南亚沿海和部分欧洲国家的海岸带。分析发现,微塑料进入滨海湿地土壤,会显著改变土壤物理结构、化学性质、微生物群落结构以及酶活性等,并通过吸附等弱相互作用,直接影响滨海湿地中其他污染物的毒性和迁移转化等环境行为。此外,微塑料对滨海湿地有机质转化和碳氮硫磷元素循环有显著的影响,且受微塑料种类、丰度、老化程度、暴露时间以及湿地类型等因素影响。其中,微塑料降解或浸出产生的有机质会直接影响滨海湿地有机碳含量和元素比例。该综述不仅可加深人们对微塑料影响滨海湿地中污染物环境行为的理解,而且对于全面认识滨海湿地中微塑料污染引起的蓝碳转变和元素循环具有参考意义。
中图分类号:
汪彩琴, 杨潜英, 周名玉, 张道勇, 潘响亮. 微塑料对滨海湿地中污染物行为和元素循环的影响研究进展[J]. 生态环境学报, 2025, 34(10): 1519-1531.
WANG Caiqin, YANG Qianying, ZHOU Mingyu, ZHANG Daoyong, PAN Xiangliang. Research Progress on the Effects of Microplastics on Pollutant Behavior and Element Cycling in Coastal Wetlands[J]. Ecology and Environmental Sciences, 2025, 34(10): 1519-1531.
图1 全球滨海湿地微塑料丰度分布情况(微塑料丰度取中值。周倩,2016;Dalvand et al.,2023) (a)中柱体的高度代表微塑料丰度,地图颜色代表人口密度。(b)不同地区滨海湿地沉积物中微塑料丰度(n?kg?1):①威尼斯泻湖/意大利;②Setiu湿地/马来西亚;③红树林湿地/中国;④MarMenor泻湖/西班牙;⑤晋江湿地/中国;⑥黄河三角洲湿地/中国;⑦Anzali湿地/印度;⑧KallarKahar湿地/巴基斯坦;⑨红树林湿地/印度;⑩Spiekroog岛/德国;?Kachelotplate岛/德国;?比利时海岸;?哈利法克斯港/加拿大;?红树林湿地/新加坡;?阳江市沙扒湾/广东;?海口市海滩/海南;?万宁市海滩/海南;?三亚海滩/海南;?北海海滩/广西。(c)不同地区滨海湿地水体微塑料丰度(n?L?1):①3个湿地/葡萄牙、几内亚比绍;②Vembanad湖/印度;③神龙湾/英国;④葡萄牙沿海;⑤法鲁岛海滩/葡萄牙;⑥蓬塔德尔加达港/葡萄牙;⑦比利时海岸;⑧弗吉尼亚海滩/美国;⑨加利福尼亚海滩/美国;⑩比尼亚德尔马海滩/智利;?蓬塔阿雷纳斯海滩/智利;?洛东江河口/韩国;?迪拜海滩/阿联酋;?马拉帕斯卡岛海滩/菲律宾;?海滩潮上带/香港;?海滩高潮线/香港;?南海旅游海滩中国;?道格拉斯港海滩/澳大利亚;?巴瑟尔顿海滩/澳大利亚;?阿曼海滩/非洲;?西开普省海滩/南非;?莫桑比克奔巴海滩/非洲
Figure 1 Distribution of microplastic abundance in global coastal wetlands (Median value used for microplastic abundance) (Zhou, 2016; Dalvand et al., 2023)
湿地类型 | 地区 | 丰度/(n∙kg−1) | 主要形状及占比 | 主要种类 | 主要粒径/mm | 参考文献 |
---|---|---|---|---|---|---|
海滩 | 旅游海滩 | 344 | 泡沫,95.2% | - | 1-2 | Zhou et al., |
未开发的海滩 | 1301.6 | 薄片,88.4% | - | <1 | Zhou et al., | |
坎恩吉欧海滩 | 31990-92560 | 纤维 | PE | - | Khuyen et al., | |
河口 | 德文特河河口 | 2430 | 纤维薄片 | - | - | Willis et al., |
晋江河口 | 245-575 | 纤维 | PE,PET | - | Deng et al., | |
红树林 | 红树林自然保护区 | 35.95 | 纤维,泡沫 | PP,PE | - | Yu et al., |
福田红树林(内部) | 1920±509 | 纤维,78.79%±4.59% | PET,43.83%±6.12% | - | Duan et al., | |
海桑(内部) | 4754±416 | 纤维,88.90%±3.17% | PET,54.19%±2.14% | - | Duan et al., | |
深圳红树林 | 851 | 纤维,碎片 | PP−PE共聚体 | - | Zuo et al., | |
晋江红树林 | 12393.4 | 纤维状,45% | PET,52% | 0.038-0.5 | Hu et al., | |
海草 | 利马河口 | 250-2500 | 纤维 | PE | <3 | Almeida et al., |
盐沼 | 中国东南部河口盐沼 | 9.6-130.725 | 碎片,泡沫 | PE、PP | <5 | Yao et al., |
盐城 | 100-500 | 纤维,79%-80% | PE,50%-52% | - | Feng et al., | |
连云港 | 0-1500 | 纤维,79%-80% | PS,24%-26% | - | Feng et al., |
表1 不同湿地类型下的微塑料丰度、主要形状、微塑料类型和尺寸
Table 1 Microplastic abundance, main shapes, microplastic types and sizes under different wetland types
湿地类型 | 地区 | 丰度/(n∙kg−1) | 主要形状及占比 | 主要种类 | 主要粒径/mm | 参考文献 |
---|---|---|---|---|---|---|
海滩 | 旅游海滩 | 344 | 泡沫,95.2% | - | 1-2 | Zhou et al., |
未开发的海滩 | 1301.6 | 薄片,88.4% | - | <1 | Zhou et al., | |
坎恩吉欧海滩 | 31990-92560 | 纤维 | PE | - | Khuyen et al., | |
河口 | 德文特河河口 | 2430 | 纤维薄片 | - | - | Willis et al., |
晋江河口 | 245-575 | 纤维 | PE,PET | - | Deng et al., | |
红树林 | 红树林自然保护区 | 35.95 | 纤维,泡沫 | PP,PE | - | Yu et al., |
福田红树林(内部) | 1920±509 | 纤维,78.79%±4.59% | PET,43.83%±6.12% | - | Duan et al., | |
海桑(内部) | 4754±416 | 纤维,88.90%±3.17% | PET,54.19%±2.14% | - | Duan et al., | |
深圳红树林 | 851 | 纤维,碎片 | PP−PE共聚体 | - | Zuo et al., | |
晋江红树林 | 12393.4 | 纤维状,45% | PET,52% | 0.038-0.5 | Hu et al., | |
海草 | 利马河口 | 250-2500 | 纤维 | PE | <3 | Almeida et al., |
盐沼 | 中国东南部河口盐沼 | 9.6-130.725 | 碎片,泡沫 | PE、PP | <5 | Yao et al., |
盐城 | 100-500 | 纤维,79%-80% | PE,50%-52% | - | Feng et al., | |
连云港 | 0-1500 | 纤维,79%-80% | PS,24%-26% | - | Feng et al., |
微塑料类型 | 粒径 | 有机污染物类型 | 影响 | 参考文献 |
---|---|---|---|---|
PS | 1、10、100 μm | 菲(PHE) | 共暴露提高了联合毒性 | Xu et al., |
MP/NPs | MP:0.5、5.0、50 μm;NPs:0.05 μm | 环丙沙星(CIP) | 拮抗毒性 | You et al., |
MPs | - | HOCs(PAHs和PCBs) | PAH通过MP生物放大; POPs通过MP生物放大和易位 | Diepens et al., |
MPs | 100-500 μm | PCBs | PCBs的生物利用度受MP的影响 | Grigorakis et al., |
PE | 0.5-1.0 μm | 磷酸三(2−氯乙基)酯(TCEP) | PE和TCEP的共暴露导致联合毒性提高 | Deng et al., |
PS | 44 nm | 多环芳烃(PAH) | PS降低PAHs的生物累积和生物利用度 | Trevisan et al., |
LDPE | <60 μm | 菲(PHE) | PE改变了PHE的生物利用度 | Karami et al., |
表2 微塑料对滨海湿地有机污染物环境行为的影响
Table 2 Effects of microplastics on environmental behavior of organic pollutants in coastal wetlands
微塑料类型 | 粒径 | 有机污染物类型 | 影响 | 参考文献 |
---|---|---|---|---|
PS | 1、10、100 μm | 菲(PHE) | 共暴露提高了联合毒性 | Xu et al., |
MP/NPs | MP:0.5、5.0、50 μm;NPs:0.05 μm | 环丙沙星(CIP) | 拮抗毒性 | You et al., |
MPs | - | HOCs(PAHs和PCBs) | PAH通过MP生物放大; POPs通过MP生物放大和易位 | Diepens et al., |
MPs | 100-500 μm | PCBs | PCBs的生物利用度受MP的影响 | Grigorakis et al., |
PE | 0.5-1.0 μm | 磷酸三(2−氯乙基)酯(TCEP) | PE和TCEP的共暴露导致联合毒性提高 | Deng et al., |
PS | 44 nm | 多环芳烃(PAH) | PS降低PAHs的生物累积和生物利用度 | Trevisan et al., |
LDPE | <60 μm | 菲(PHE) | PE改变了PHE的生物利用度 | Karami et al., |
微塑料类型 | 粒径 | 重金属类型 | 影响 | 参考文献 |
---|---|---|---|---|
PAN | 0.05-0.8 µm | Cu | PAN可能会减轻Cu2+对生物的毒性 | Lin et al., |
PE | 100-154 µm | Cd | 和PE共存不会改变植物组织中的Cd浓度 | Wang et al., |
PE | 1.32-0.71 mm | Zn | MPs提高了Zn的生物利用度 | Hodson et al., |
PE | 10-106 μm | Ag | MP改变了鱼类生物体中金属的生物利用度和吸收途径 | Khan et al., |
PE、PE、PS | 50-500 μm | Cr、Ni、Cu、Pb | 重金属吸附在MPs的表面 | Ta et al., |
PE、PET | 63-5000 μm | As、Cr、Cd、Cu、Pb、Ni、Zn | 重金属与微塑料形成共同污染 | Sarkar et al., |
PE、PP、PET | 2-20 μm | Cr、Cu、Ni、Zn、As、Pb、Hg、Cd | 微塑料可能会成为重金属的载体 | Deng et al., |
表3 微塑料对滨海湿地重金属环境行为的影响
Table 3 Effects of microplastics on environmental behavior of heavy metals in coastal wetlands
微塑料类型 | 粒径 | 重金属类型 | 影响 | 参考文献 |
---|---|---|---|---|
PAN | 0.05-0.8 µm | Cu | PAN可能会减轻Cu2+对生物的毒性 | Lin et al., |
PE | 100-154 µm | Cd | 和PE共存不会改变植物组织中的Cd浓度 | Wang et al., |
PE | 1.32-0.71 mm | Zn | MPs提高了Zn的生物利用度 | Hodson et al., |
PE | 10-106 μm | Ag | MP改变了鱼类生物体中金属的生物利用度和吸收途径 | Khan et al., |
PE、PE、PS | 50-500 μm | Cr、Ni、Cu、Pb | 重金属吸附在MPs的表面 | Ta et al., |
PE、PET | 63-5000 μm | As、Cr、Cd、Cu、Pb、Ni、Zn | 重金属与微塑料形成共同污染 | Sarkar et al., |
PE、PP、PET | 2-20 μm | Cr、Cu、Ni、Zn、As、Pb、Hg、Cd | 微塑料可能会成为重金属的载体 | Deng et al., |
MPs | w/% | w(SOC)/ % | w(DOC)/ (mg∙kg−1) | w(TC)/ (mg∙g−1) | t/d | 参考文献 |
---|---|---|---|---|---|---|
PE | 2 | 10 | - | - | 5 | 陈锟等, |
2 | 10.7 | −11.7 | - | 100 | 陈锟等, | |
0.0005 | −0.17 | - | - | 180 | 王警锋, | |
1 | - | 8.3 | −0.48 | 40 | Dai et al., | |
PLA | 2 | 14.9 | - | - | 5 | 陈锟等, |
2 | 15.5 | −7.81 | - | 100 | 陈锟等, | |
1 | - | 21.59 | 0.31 | 40 | Dai et al., | |
PS | 0.0005 | −0.04 | - | - | 180 | 王警锋, |
PVC | 1 | - | 18.83 | 0.07 | 40 | Dai et al., |
表4 滨海湿地暴露于不同微塑料之后各种形态碳含量的变化
Table 4 Changes in various forms of carbon content after exposure to different microplastics in coastal wetlands
MPs | w/% | w(SOC)/ % | w(DOC)/ (mg∙kg−1) | w(TC)/ (mg∙g−1) | t/d | 参考文献 |
---|---|---|---|---|---|---|
PE | 2 | 10 | - | - | 5 | 陈锟等, |
2 | 10.7 | −11.7 | - | 100 | 陈锟等, | |
0.0005 | −0.17 | - | - | 180 | 王警锋, | |
1 | - | 8.3 | −0.48 | 40 | Dai et al., | |
PLA | 2 | 14.9 | - | - | 5 | 陈锟等, |
2 | 15.5 | −7.81 | - | 100 | 陈锟等, | |
1 | - | 21.59 | 0.31 | 40 | Dai et al., | |
PS | 0.0005 | −0.04 | - | - | 180 | 王警锋, |
PVC | 1 | - | 18.83 | 0.07 | 40 | Dai et al., |
MPs | w/% | w(NH4+-N)/(mg∙kg−1) | w(NO3−-N)/(μg∙g−1) | w(NO2−-N)/(μg∙g−1) | ρ(DON)/(mg∙L−1) | w(TN)/(mg∙g−1) | 参考文献 |
---|---|---|---|---|---|---|---|
CK | 0 | 3.78×103±0.25×103 | 2.61±1.6 | 0.75±0.38 | 11.8±0.64 | 1.48±0.03 | Dai et al., |
0 | 6.72±0.56 | 0.20±0.01 | - | - | 2.3±0.1 | 王警锋, | |
0 | 22.98 | 9.79 | - | - | 0.27 | Hu et al., | |
PE | 1 | 3.9×103±0.21×103 | 17.18±2.07 | 3.08±0.49 | 9.54±0.46 | 1.51±0.01 | Dai et al., |
0.0005 | 5.78±0.69 | 0.19±0.00 | - | - | 2.1±0.1 | 王警锋, | |
PLA | 1 | 2.85×103±0.37×103 | 13.82±6.44 | 2.77±0.68 | 8.56±1.03 | 1.46±0.02 | Dai et al., |
PVC | 1 | 1.61×103±0.14×103 | 14.97±4.82 | 2.46±0.47 | 7.57±1.58 | 1.41±0.02 | Dai et al., |
PS | 0.0005 | 2.17±0.33 | 0.23±0.02 | - | - | 1.9±0.1 | 王警锋, |
PET | 28 | 19.23 | 26.53 | - | - | 0.21 | Hu et al., |
表5 滨海湿地暴露于不同微塑料之后有机氮和无机氮的变化
Table 5 Changes in organic and inorganic nitrogen after exposure to various microplastics in coastal wetlands
MPs | w/% | w(NH4+-N)/(mg∙kg−1) | w(NO3−-N)/(μg∙g−1) | w(NO2−-N)/(μg∙g−1) | ρ(DON)/(mg∙L−1) | w(TN)/(mg∙g−1) | 参考文献 |
---|---|---|---|---|---|---|---|
CK | 0 | 3.78×103±0.25×103 | 2.61±1.6 | 0.75±0.38 | 11.8±0.64 | 1.48±0.03 | Dai et al., |
0 | 6.72±0.56 | 0.20±0.01 | - | - | 2.3±0.1 | 王警锋, | |
0 | 22.98 | 9.79 | - | - | 0.27 | Hu et al., | |
PE | 1 | 3.9×103±0.21×103 | 17.18±2.07 | 3.08±0.49 | 9.54±0.46 | 1.51±0.01 | Dai et al., |
0.0005 | 5.78±0.69 | 0.19±0.00 | - | - | 2.1±0.1 | 王警锋, | |
PLA | 1 | 2.85×103±0.37×103 | 13.82±6.44 | 2.77±0.68 | 8.56±1.03 | 1.46±0.02 | Dai et al., |
PVC | 1 | 1.61×103±0.14×103 | 14.97±4.82 | 2.46±0.47 | 7.57±1.58 | 1.41±0.02 | Dai et al., |
PS | 0.0005 | 2.17±0.33 | 0.23±0.02 | - | - | 1.9±0.1 | 王警锋, |
PET | 28 | 19.23 | 26.53 | - | - | 0.21 | Hu et al., |
MPs | ρ/(g∙L−1) | w(TP)/% | w(TS)/% | w(SO42−-S)/% | 参考文献 |
---|---|---|---|---|---|
PS | 0.5 | −0.03 | - | - | 王警锋, |
7 | −17 | - | - | Yu et al., | |
0.01 | - | - | 48.24 | Huang et al., | |
PE | 0.5 | −0.01 | - | - | 王警锋, |
PET | 28 | −7.38×10−6 | - | - | Hu et al., |
1.25 | - | 3.303×10−5 | −7.291×10−5 | Wang et al., | |
PVC | 7 | −14 | - | - | Yu et al., |
PMMA | 0.01 | - | - | 10.89 | Huang et al., |
PLA | 1.25 | - | 4.49×10−5 | −1.345×10−4 | Wang et al., |
表6 暴露于不同微塑料下硫、磷元素的变化
Table 6 Changes in sulfur and phosphorus elements under exposure to different microplastics
MPs | ρ/(g∙L−1) | w(TP)/% | w(TS)/% | w(SO42−-S)/% | 参考文献 |
---|---|---|---|---|---|
PS | 0.5 | −0.03 | - | - | 王警锋, |
7 | −17 | - | - | Yu et al., | |
0.01 | - | - | 48.24 | Huang et al., | |
PE | 0.5 | −0.01 | - | - | 王警锋, |
PET | 28 | −7.38×10−6 | - | - | Hu et al., |
1.25 | - | 3.303×10−5 | −7.291×10−5 | Wang et al., | |
PVC | 7 | −14 | - | - | Yu et al., |
PMMA | 0.01 | - | - | 10.89 | Huang et al., |
PLA | 1.25 | - | 4.49×10−5 | −1.345×10−4 | Wang et al., |
[1] |
ALIABAD M K, NASSIRI M, KOR K, 2019. Microplastics in the surface seawaters of Chabahar Bay, Gulf of Oman (Makran Coasts)[J]. Marine Pollution Bulletin, 143: 125-133.
DOI PMID |
[2] | ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al., 2018. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 52(4): 1704-1724. |
[3] | ALMEIDA C M R, SÁEZ-ZAMACONA I, SILVA D M, et al., 2023. The role of estuarine wetlands (saltmarshes) in sediment microplastics retention[J]. Water, 15(7): 1382. |
[4] | ALONGI D M, MURDIYARSO D, FOURQUREAN J W, et al., 2015. Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon[J]. Wetlands Ecology and Management, 24(1): 3-13. |
[5] |
ANDRADY A L, 2011. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 62(8): 1596-1605.
DOI PMID |
[6] | BANDH S A, MALLA F A, QAYOOM I, et al., 2023. Importance of blue carbon in mitigating climate change and plastic/microplastic pollution and promoting circular economy[J]. Sustainability, 15(3): 2682. |
[7] | BANDOW N, WILL V, WACHTENDORF V, et al., 2017. Contaminant release from aged microplastic[J]. Environmental Chemistry, 14(6): 394-405. |
[8] | BI R, LU Q, YU W M, et al., 2013. Electron transfer capacity of soil dissolved organic matter and its potential impact on soil respiration[J]. Journal of Soils and Sediments, 13(9): 1553-1560. |
[9] | Boots B, Russell C W, Green D S, 2019. Effects of microplastics in soil ecosystems: Above and below ground[J]. Environmental Science & Technology, 53(19): 11496-11506. |
[10] | CHEN K, ZHOU S X, LONG Y Z, et al., 2023. Long-term aged fibrous polypropylene microplastics promotes nitrous oxide, carbon dioxide, and methane emissions from a coastal wetland soil[J]. Science of The Total Environment, 896: 166332. |
[11] | CHEN S M, ZHANG X Y, WANG L Y, et al., 2024. Microplastics alter the migration and transformation of vanadium in the riverine sediment environment[J]. Science of The Total Environment, 957: 177610. |
[12] | CHEN Z, LEE S Y, 2021. Contribution of microplastics to carbon storage in coastal wetland sediments[J]. Environmental Science & Technology Letters, 8(12): 1045-1050. |
[13] |
CLAESSENS M, MEESTER S D, LANDUYT L V, et al., 2011. Occurrence and distribution of microplastics in marine sediments along the Belgian coast[J]. Marine Pollution Bulletin, 62(10): 2199-2204.
DOI PMID |
[14] | DAI Z T, ZHANG N, MA X, et al., 2024. Microplastics strengthen nitrogen retention by intensifying nitrogen limitation in mangrove ecosystem sediments[J]. Environment International, 185: 108546. |
[15] | DALVAND M, HAMIDIAN A H, 2023. Occurrence and distribution of microplastics in wetlands[J]. Science Total Environ, 862: 160740. |
[16] | DE SOUZA MACHADO A A, LAU C W, TILL J, et al., 2018. Impacts of microplastics on the soil biophysical environment[J]. Environmental Science & Technology, 52(17): 9656-9665. |
[17] | DENG J, GUO P Y, ZHANG X Y, et al., 2020. Microplastics and accumulated heavy metals in restored mangrove wetland surface sediments at Jinjiang Estuary (Fujian, China)[J]. Marine Pollution Bulletin, 159: 111482. |
[18] |
DENG Y, ZHANG Y, QIAO R, et al., 2018. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus)[J]. Journal of Hazardous Materials, 357: 348-354.
DOI PMID |
[19] | DIEPENS N J, KOELMANS A A, 2018. Accumulation of plastic debris and associated contaminants in aquatic food webs[J]. Environmental Science & Technology, 52(15): 8510-8520. |
[20] | DUAN J H, HAN J, CHEUNG S G, et al., 2021. How mangrove plants affect microplastic distribution in sediments of coastal wetlands: Case study in Shenzhen Bay, South China[J]. Science of The Total Environment, 767: 144695. |
[21] | DUARTE C M, MIDDELBURG J J, CARACO N, 2005. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2(1): 1-8. |
[22] | FENG Z H, ZHANG T, SHI H H, et al., 2020. Microplastics in bloom-forming macroalgae: Distribution, characteristics and impacts[J]. Journal of Hazardous Materials, 397: 122752. |
[23] | FOK L, CHEUNG P K, 2015. Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution[J]. Marine Pollution Bulletin, 99(1): 112-118. |
[24] | GAO Y, YU G R, YANG T T, et al., 2016. New insight into global blue carbon estimation under human activity in land-sea interaction area: A case study of China[J]. Earth-Science Reviews, 159: 36-46. |
[25] | GARCÍA RELLÁN A, VÁZQUEZ ARES D, VÁZQUEZ BREA C, et al., 2023. Sources, sinks and transformations of plastics in our oceans: Review, management strategies and modelling[J]. Science of The Total Environment, 854: 158745. |
[26] | GOLDSTEIN M C, TITMUS A J, FORD M, 2013. Scales of spatial heterogeneity of plastic marine debris in the northeast Pacific Ocean[J]. PLoS One, 8(11): e80020. |
[27] | GRIGORAKIS S, DROUILLARD K G, 2018. Effect of microplastic amendment to food on diet assimilation efficiencies of PCBs by fish[J]. Environmental Science & Technology, 52(18): 10796-10802. |
[28] | GUTH P, GAO C Y, KNORR K H, 2023. Electron accepting capacities of a wide variety of peat materials from around the globe similarly explain CO2 and CH4 formation[J]. Global Biogeochemical Cycles, 37(1): e2022GB007459. |
[29] | HODSON M E, DUFFUS-HODSON C A, CLARK A, et al., 2017. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J]. Environmental Science & Technology, 51(8): 4714-4721. |
[30] | HU B, GUO P Y, HAN S Y, et al., 2022. Distribution characteristics of microplastics in the soil of mangrove restoration wetland and the effects of microplastics on soil characteristics[J]. Ecotoxicology, 31(7): 1120-1136. |
[31] | HUANG J W, SUN Y Y, LI Q S, et al., 2024. Increased risk of heavy metal accumulation in mangrove seedlings in coastal wetland environments due to microplastic inflow[J]. Environmental Pollution, 349: 123927. |
[32] | IQBAL S, XU J, ARIF M S, et al., 2024. Do added microplastics, native soil properties, and prevailing climatic conditions have consequences for carbon and nitrogen contents in soil? A global data synthesis of pot and greenhouse studies[J]. Environ Science Technol, 58(19): 8464-8479. |
[33] | JEONG S W, 2014. The effect of grain size on the viscosity and yield stress of fine-grained sediments[J]. Journal of Mountain Science, 11(1): 31-40. |
[34] |
JIANG C, YIN L, LI Z, et al., 2019. Microplastic pollution in the rivers of the Tibet Plateau[J]. Environmental Pollution, 249: 91-98.
DOI PMID |
[35] |
KARAMI A, ROMANO N, GALLOWAY T, 2016. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus)[J]. Environmental Research, 151: 58-70.
DOI PMID |
[36] |
KHAN F R, SYBERG K, SHASHOUA Y, et al., 2015. Influence of polyethylene microplastic beads on the uptake and localization of silver in zebrafish (Danio rerio)[J]. Environmental Pollution, 206: 73-79.
DOI PMID |
[37] | KHUYEN V T K, LE D V, FISCHER A R, et al., 2021. Comparison of Microplastic Pollution in Beach Sediment and Seawater at UNESCO Can Gio Mangrove Biosphere Reserve[J]. Global Challenges, 5(11): 2100044. |
[38] | KLEIN S, WORCH E, KNEPPER T P, 2015. Occurrence and Spatial Distribution of Microplastics in River Shore Sediments of the Rhine-Main Area in Germany[J]. Environmental Science & Technology, 49(10): 6070-6076. |
[39] | KUMAR S, HATHA A A M, CHRISTI K S, 2007. Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags[J]. Revista de Biología Tropical, 55(3-4): 777-786. |
[40] |
LAW K L, MORÉT-FERGUSON S, MAXIMENKO N A, et al., 2010. Plastic Accumulation in the North Atlantic Subtropical Gyre[J]. Science, 329(5996): 1185-1188.
DOI PMID |
[41] | LI C C, GILLINGS M R, ZHANG C, et al., 2024. Ecology and risks of the global plastisphere as a newly expanding microbial habitat[J]. Innovation (Camb), 5(1): 100543. |
[42] | LI J J, HUANG W, XU Y J, et al., 2020. Microplastics in sediment cores as indicators of temporal trends in microplastic pollution in Andong salt marsh, Hangzhou Bay, China[J]. Regional Studies in Marine Science, 35: 101149. |
[43] | LI N, WU M, ZHANG Y Z, et al., 2023. A review on microplastics pollution in coastal wetlands[J]. Watershed Ecology and the Environment, 5: 24-37. |
[44] | LIN W, SU F, LIN M Z, et al., 2020. Effect of microplastics PAN polymer and/or Cu2+ pollution on the growth of Chlorella pyrenoidosa[J]. Environmental Pollution, 265(Part A): 114985. |
[45] |
LIU H F, YANG X M, LIU G B, et al., 2017. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 185: 907-917.
DOI PMID |
[46] | MEI W P, CHEN G E, BAO J Q, et al., 2020. Interactions between microplastics and organic compounds in aquatic environments: A mini review[J]. Science of The Total Environment, 736: 139472. |
[47] | MONDOL M, ANGON P B, ROY A, 2025. Effects of microplastics on soil physical, chemical and biological properties[J]. Natural Hazards Research, 5(1): 14-20. |
[48] | NGUYEN M K, RAKIB M R J, LIN C, et al., 2023. A comprehensive review on ecological effects of microplastic pollution: An interaction with pollutants in the ecosystems and future perspectives[J]. TrAC Trends in Analytical Chemistry, 168: 117294. |
[49] | OUYANG X, DUARTE C M, CHEUNG S G, et al., 2022. Fate and Effects of Macro-and Microplastics in Coastal Wetlands[J]. Environ Science Technol, 56(4): 2386-2397. |
[50] | QIAN J, TANG S J, WANG P F, et al., 2021. From source to sink: Review and prospects of microplastics in wetland ecosystems[J]. Science of The Total Environment, 758: 143633. |
[51] |
QIU Q X, PENG J P, YU X B, et al., 2015. Occurrence of microplastics in the coastal marine environment: First observation on sediment of China[J]. Marine Pollution Bulletin, 98(1-2): 274-280.
DOI PMID |
[52] | QIU Y F, ZHOU S L, ZHANG C C, et al., 2022. Soil microplastic characteristics and the effects on soil properties and biota: A systematic review and meta-analysis[J]. Environmental Pollution, 313: 120183. |
[53] | RILLIG M C, HOFFMANN M, LEHMANN A, et al., 2021. Microplastic fibers affect dynamics and intensity of CO2 and N2O fluxes from soil differently[J]. Microplastics and Nanoplastics, 1(1): 3. |
[54] | ROZMAN U, KLUN B, KALČÍKOVÁ G, 2023. Distribution and removal of microplastics in a horizontal sub-surface flow laboratory constructed wetland and their effects on the treatment efficiency[J]. Chemical Engineering Journal, 461: 142076. |
[55] | SARKAR D J, DAS SARKAR S, DAS B K, et al., 2021. Occurrence, fate and removal of microplastics as heavy metal vector in natural wastewater treatment wetland system[J]. Water Research, 192: 116853. |
[56] | SHI J, WANG Z, PENG Y M, et al., 2023. Effects of microplastics on soil carbon mineralization: The crucial role of oxygen dynamics and electron transfer[J]. Environmental Science & Technology, 57(36): 13588-13600. |
[57] | STEINMAN A D, SCOTT J, GREEN L, et al., 2020. Persistent organic pollutants, metals, and the bacterial community composition associated with microplastics in Muskegon Lake (MI)[J]. Journal of Great Lakes Research, 46(5): 1444-1458. |
[58] | SU P J, BU N S, LIU X Y, et al., 2024. Stimulated soil CO2 and CH4 emissions by microplastics: A hierarchical perspective[J]. Soil Biology and Biochemistry, 194: 109425. |
[59] | TA A T, BABEL S, 2020. Microplastic contamination on the lower Chao Phraya: Abundance, characteristic and interaction with heavy metals[J]. Chemosphere, 257: 127234. |
[60] | TANG S, LIN L J, WANG X S, et al., 2020. Interfacial interactions between collected nylon microplastics and three divalent metal ions (Cu(II), Ni(II), Zn(II)) in aqueous solutions[J]. Journal of Hazardous Materials, 403: 123548. |
[61] | TREVISAN R, VOY C, CHEN S X, et al., 2019. Nanoplastics Decrease the Toxicity of a Complex PAH Mixture but Impair Mitochondrial Energy Production in Developing Zebrafish[J]. Environmental Science & Technology, 53(14): 8405-8415. |
[62] |
VAN CAUWENBERGHE L, CLAESSENS M, VANDEGEHUCHTE M B, et al., 2013. Assessment of marine debris on the Belgian Continental Shelf[J]. Marine Pollution Bulletin, 73(1): 161-169.
DOI PMID |
[63] | VIET DUNG L, HUU DUC T, THI KHANH LINH L, et al., 2021. Depth Profiles of Microplastics in Sediment Cores from Two Mangrove Forests in Northern Vietnam[J]. Journal of Marine Science and Engineering, 9(12): 1381. |
[64] | WANG F M, TANG J W, YE S Y, et al., 2021. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Bulletin of Chinese Academy of Sciences (Chinese Version), 36(3): 241-251. |
[65] | WANG F Y, WANG Q L, ADAMS C A, et al., 2022. Effects of microplastics on soil properties: Current knowledge and future perspectives[J]. Journal of Hazardous Materials, 424(Part C): 127531. |
[66] | WANG F Y, ZHANG X Q, ZHANG S Q, et al., 2020. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J]. Chemosphere, 254: 126791. |
[67] | WANG H L, YANG Q, LI D, et al., 2023. Stable isotopic and metagenomic analyses reveal microbial-mediated effects of microplastics on sulfur cycling in coastal Sediments[J]. Environmental Science & Technology, 57(2): 1167-1176. |
[68] | WANG S M, ZHOU Q X, HU X G, et al., 2024. Polyethylene microplastic-induced microbial shifts affected greenhouse gas emissions during litter decomposition in coastal wetland sediments[J]. Water Research, 251: 121167. |
[69] | WILLIS K A, ERIKSEN R, WILCOX C, et al., 2017. Microplastic distribution at different sediment depths in an urban estuary[J]. Frontiers in Marine Science, 4: 00419. |
[70] | XIANG Y J, JIANG L, ZHOU Y Y, et al., 2022. Microplastics and environmental pollutants: Key interaction and toxicology in aquatic and soil environments[J]. Journal of Hazardous Materials, 422: 126843. |
[71] | XIE H F, CHEN J J, FENG L M, et al., 2021. Chemotaxis-selective colonization of mangrove rhizosphere microbes on nine different microplastics[J]. Science of The Total Environment, 752: 142223. |
[72] | XU G H, LIU Y, YU Y, 2021. Effects of polystyrene microplastics on uptake and toxicity of phenanthrene in soybean[J]. Science of The Total Environment, 783: 147016. |
[73] |
YAN M, YU L F, ZHANG L, et al., 2014. Phosphatase activity and culture conditions of the yeast Candida mycoderma sp. and analysis of organic phosphorus hydrolysis ability[J]. Journal of Environmental Sciences, 26(11): 2315-2321.
DOI PMID |
[74] | YANG X Y, HE Q, GUO F C, et al., 2020. Nanoplastics disturb nitrogen removal in constructed wetlands: Responses of microbes and macrophytes[J]. Environmental Science & Technology, 54(21): 14007-14016. |
[75] | YAO W M, DI D, WANG Z F, et al., 2019. Micro-and macroplastic accumulation in a newly formed Spartina alterniflora colonized estuarine saltmarsh in southeast China[J]. Marine Pollution Bulletin, 149: 110636. |
[76] | YI M L, ZHOU S H, ZHANG L L, et al., 2021. The effects of three different microplastics on enzyme activities and microbial communities in soil[J]. Water Environ Research, 93(1): 24-32. |
[77] | YOU X Q, CAO X Q, ZHANG X, et al., 2021. Unraveling individual and combined toxicity of nano/microplastics and ciprofloxacin to Synechocystis sp. at the cellular and molecular levels[J]. Environment International, 157: 106842. |
[78] | YU H W, QI W X, CAO X F, et al., 2021. Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system?[J]. Environment International, 156: 106708. |
[79] | YU L Y, LI R L, ZHANG Z, et al., 2022. Distribution, characteristics, and human exposure to microplastics in mangroves within the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Marine Pollution Bulletin, 175: 113395. |
[80] | ZHANG X Y, LI Y, OUYANG D, et al., 2021. Systematical review of interactions between microplastics and microorganisms in the soil environment[J]. Journal of Hazardous Materials, 418: 126288. |
[81] | ZHAO S Y, ZHU L X, LI D J, 2015a. Characterization of small plastic debris on tourism beaches around the South China Sea[J]. Regional Studies in Marine Science, 1: 55-62. |
[82] | ZHAO S Y, ZHU L X, LI D J, 2015b. Microplastic in three urban estuaries, China[J]. Environmental Pollution, 206: 597-604. |
[83] | ZHONG L, WU T, SUN H J, et al., 2023. Recent advances towards micro(nano)plastics research in wetland ecosystems: A systematic review on sources, removal, and ecological impacts[J]. Journal of Hazardous Materials, 452: 131341. |
[84] | ZHOU Q, ZHANG H B, WANIEK J J, et al., 2020. The distribution and characteristics of microplastics in coastal beaches and mangrove wetlands[J]. Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges, 95: 77-92. |
[85] | ZHOU X, XIAO C D, LI X Y, et al., 2023. Microplastics in coastal blue carbon ecosystems: A global Meta-analysis of its distribution, driving mechanisms, and potential risks[J]. Science of The Total Environment, 878: 163048. |
[86] | ZOU J Y, LIU X P, ZHANG D M, 2020. Adsorption of three bivalent metals by four chemical distinct microplastics[J]. Chemosphere, 248: 126064. |
[87] | ZUO L Z, LI H X, LIN L, et al., 2019. Sorption and desorption of phenanthrene on biodegradable poly (butylene adipate co-terephtalate) microplastics[J]. Chemosphere, 215: 25-32. |
[88] | ZUO L Z, SUN Y X, LI H X, et al., 2020. Microplastics in mangrove sediments of the Pearl River Estuary, South China: Correlation with halogenated flame retardants' levels[J]. Science of The Total Environment, 725: 138344. |
[89] | 陈锟, 郗敏, 陈飞潼, 等, 2025. 可降解和不可降解微塑料对滨海湿地土壤有机碳矿化的影响[J]. 生态学杂志, 44(4): 1170-1180. |
CHEN K, XI M, CHEN F T, et al., 2025. Effects of degradable and non-degradable microplastics on soil organic carbon mineralization in a coastal wetland soil[J]. Chinese Journal of Ecology, 44(4): 1170-1180. | |
[90] | 何磊, 叶思源, 赵广明, 等, 2023. 海岸带滨海湿地蓝碳管理的研究进展[J]. 中国地质, 50(3): 777-794. |
HE L, YE S Y, ZHAO G M, et al., 2023. Research progress on blue carbon management in coastal wetland ecotones[J]. Geology in China, 50(3): 777-794. | |
[91] | 王警锋, 2023. 不同微塑料及植物物种组成对湿地生态系统多功能性的影响[D]. 青岛: 山东大学. |
WANG J F, 2023. The effects of different microplastics and plant speciescompositions on ecosystem multifunctionality of wetlands[D]. Qingdao: Shandong University. | |
[92] | 周倩, 2016. 典型滨海潮滩及近海环境中微塑料污染特征与生态风险[D]. 烟台: 中国科学院烟台海岸带研究所. |
ZHOU Q, 2016. Occurrences and ecological risks of microplastics in the typical coastal beaches and seas[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences. |
[1] | 张蔷, 李令军, 鹿海峰, 刘保献, 李琪, 王涵霖. 北京地区9种典型绿化树种的BVOCs释放及二次污染生成潜势[J]. 生态环境学报, 2025, 34(9): 1432-1441. |
[2] | 李冬林, 张姣佼, 杨磊, 王鹏, 何冬梅. 水系连通与碱蓬复播对滨海退化湿地植被恢复及土壤理化性质的影响[J]. 生态环境学报, 2025, 34(9): 1421-1431. |
[3] | 肖咏茵, 王帆, 李灿桦, 汪超, 王万军. 淡水中可生物降解微塑料生物膜上耐药基因的富集特征及其健康风险[J]. 生态环境学报, 2025, 34(7): 1029-1041. |
[4] | 赵曦, 韦斯. 超短链PFASs类新污染物的环境特性、全球水平、来源及风险[J]. 生态环境学报, 2025, 34(7): 1064-1078. |
[5] | 李雪, 王震, 毛雪飞. 聚乙烯与聚丙烯微塑料对镉胁迫下水稻幼苗生长及抗氧化作用的影响[J]. 生态环境学报, 2025, 34(7): 1053-1063. |
[6] | 陈琳, 兰冠宇, 徐妍, 李雪, 毛雪飞. 氢键有机框架材料在环境污染物吸附和检测中的研究进展[J]. 生态环境学报, 2025, 34(3): 474-483. |
[7] | 陈文涛, 肖娴, 张怡, 方国东, 涂保华, 陈宁. 稻田土壤羟基自由基生成机制及环境效应[J]. 生态环境学报, 2025, 34(10): 1654-1660. |
[8] | 王安侯, 谢志宜, 陈多宏, 王博瑾, 黄莹, 逯颖, 王玉, 杨行健, 李永涛. 广州市典型小流域降雨时期农业面源污染特征分析[J]. 生态环境学报, 2025, 34(10): 1633-1643. |
[9] | 温珊, 邢思奇, 肖宇翔, 刘云, 吴旭. 基于多场耦合有限元的天福庙水库清淤过程污染物磷释放行为研究[J]. 生态环境学报, 2024, 33(9): 1438-1450. |
[10] | 魏代晓, 门亚泰, 李尧捷, 徐铭忆, 蔡文秀, 沈国锋. 生物质颗粒燃料取暖的环境健康效益及经济成本分析[J]. 生态环境学报, 2024, 33(6): 927-934. |
[11] | 李程, 程志鹏, 刘育金, 姚义鸣, 李春雷. 全(多)氟烷基化合物生态风险及其管控政策研究[J]. 生态环境学报, 2024, 33(6): 980-996. |
[12] | 潘光, 苗亚茹, 谷树茂, 唐厚全, 毛书帅, 张桂芹, 闫学军. 济南市不同类型燃煤供暖企业废气组分特征及排放估算[J]. 生态环境学报, 2024, 33(6): 919-926. |
[13] | 何艺, 秦欣欣, 张翔, 孙楠, 杨雅淋, 连军锋. 微塑料断面分布的不均一性——以赣江水域赣州段为例[J]. 生态环境学报, 2024, 33(4): 626-632. |
[14] | 谢舒雅, 李香兰. 互花米草入侵对中国滨海湿地土壤碳收支的影响[J]. 生态环境学报, 2024, 33(10): 1516-1524. |
[15] | 赵琼, 胡溪, 张伟, 张增凯, 薛文博, 赵静. 京津冀区域燃煤小锅炉清洁改造环境效益评估[J]. 生态环境学报, 2024, 33(10): 1554-1562. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||