生态环境学报 ›› 2024, Vol. 33 ›› Issue (9): 1438-1450.DOI: 10.16258/j.cnki.1674-5906.2024.09.011
温珊1(), 邢思奇1,2, 肖宇翔1, 刘云1, 吴旭1,2,3,*(
)
收稿日期:
2024-05-09
出版日期:
2024-09-18
发布日期:
2024-10-18
通讯作者:
*吴旭。E-mail: profxuwu@hust.edu.cn作者简介:
温珊(1999年生),女,硕士研究生,主要从事水环境治理研究。E-mail: 2993626430@qq.com
基金资助:
WEN Shan1(), XING Siqi1,2, XIAO Yuxiang1, LIU Yun1, WU Xu1,2,3,*(
)
Received:
2024-05-09
Online:
2024-09-18
Published:
2024-10-18
摘要:
天福庙水库处于黄柏河流域东支,是宜昌市嫘祖镇的水源地,受周边磷矿开采的影响,2015年以来水库水环境质量不断恶化,为此宜昌市政府对天福庙库区河道实施了生态环保清淤工程。实施过程中发现,清淤船作业时清淤设备吸头会对周边水体及底泥造成扰动,进而可能会对水库水体造成二次污染。为了探究清淤过程导致的底泥沉积物扰动情况,利用COMSOL Multiphysics中的层流和稀物质传递等模块建立水库底泥污染物磷释放模型,基于天福庙水库水质和清淤设备的属性数据,以及前人总结的经验值,模拟清淤扰动过程中不同清淤时间和不同水平扰动范围下底泥的扩散速度分布特征,以及水库底泥和孔隙水中的磷污染物的释放规律,并进一步通过实地模拟底泥扰动实验验证模型可靠性。模拟和实验结果表明:当清淤扰动时间不断增加,底泥及其所含的污染物会逐渐向水面扩散,扩散速度和污染物浓度会随时间的推移而不断增大;在同一清淤扰动时间下,再悬浮液和磷污染物的纵向扩散受水平扰动范围的影响明显,水平扰动范围越大,底泥向水面扩散越多,底泥磷污染物释放浓度越多,对水库水环境质量危害越大。释放初期,水体中污染物浓度增加较为剧烈,孔隙水中的磷污染物释放起主导作用;随后水体中污染物浓度增加速度变缓,后期再悬浮液逐渐混合均匀,垂线上的总磷浓度差距减小,底泥中污染物的释放达到平衡状态。研究发现模型能够对清淤扰动造成的水体总磷浓度变化进行合理预测,为湖泊型深水水库清淤工程实践的防范措施提供了科学依据。
中图分类号:
温珊, 邢思奇, 肖宇翔, 刘云, 吴旭. 基于多场耦合有限元的天福庙水库清淤过程污染物磷释放行为研究[J]. 生态环境学报, 2024, 33(9): 1438-1450.
WEN Shan, XING Siqi, XIAO Yuxiang, LIU Yun, WU Xu. Study on Pollutant Phosphorus Release Behavior during Dredging Process of Tianfumiao Reservoir Based on Multi-field Coupling Finite Element Method[J]. Ecology and Environment, 2024, 33(9): 1438-1450.
模拟参数 | 参数值 | 参考文献 |
---|---|---|
水的密度ρ1 | 1000 kg∙m−3 | 张坤, |
含污染物磷溶液密度ρ2 | 1005 kg∙m−3 | 张坤, |
紊动扩散系数D | 6.12×10−10 m2∙s−1 | Сухоруики et al., |
水体初始PO43−浓度c0 | 0.004 mol∙m−3 | 刘明盟等, |
底泥孔隙水PO43−浓度c1 | 0.013 mol∙m−3 | 刘明盟等, |
水体动力黏度μ1 | 0.001 Pa·s | 程鹏达等, |
再悬浮液动力黏度μ2 | 0.01 Pa·s | 程鹏达等, |
气动泵吸口瞬时射流速度us | 0.03 m∙s−1 | 陈建等, |
垂线平均流速um | 0.0027 m∙s−1 | 孙景春, |
表1 模拟参数
Table 1 Simulation parameters
模拟参数 | 参数值 | 参考文献 |
---|---|---|
水的密度ρ1 | 1000 kg∙m−3 | 张坤, |
含污染物磷溶液密度ρ2 | 1005 kg∙m−3 | 张坤, |
紊动扩散系数D | 6.12×10−10 m2∙s−1 | Сухоруики et al., |
水体初始PO43−浓度c0 | 0.004 mol∙m−3 | 刘明盟等, |
底泥孔隙水PO43−浓度c1 | 0.013 mol∙m−3 | 刘明盟等, |
水体动力黏度μ1 | 0.001 Pa·s | 程鹏达等, |
再悬浮液动力黏度μ2 | 0.01 Pa·s | 程鹏达等, |
气动泵吸口瞬时射流速度us | 0.03 m∙s−1 | 陈建等, |
垂线平均流速um | 0.0027 m∙s−1 | 孙景春, |
文献来源 | 污染物扩散模型 | 水质模型 | 模型验证 | 优势 | 劣势 |
---|---|---|---|---|---|
Huang et al., | 4个控制方程: 溶解态磷、吸附在泥沙的磷、好氧层和厌氧层中的磷浓度变化 | 二维水动力模型和泥沙输运模型 | 无模型验证, 用于预测太湖的磷行为 | 建立风力、波浪作用平衡方程, 定量评估其对磷释放和分布的影响; 磷迁移模型涉及对流扩散、吸附-解吸、沉积-再悬浮等物理化学过程 | 仅适用于没有季节性分层的浅水湖泊 |
Cheng et al., | 耦合N-S方程、Darcy方程、溶质运移方程、吸附/解吸方程 | 建立二维几何模型模拟边界附近的释放 | 不同粒径沉积物的吸附实验和水槽实验 | 研究不同流速和粒径条件下, 未悬浮底泥向上覆水中分子扩散和对流扩散污染物的特征 | 二维几何模型中仅设置了边界条件和初始条件 |
Hu et al., | 基于紊动扩散和污染物沉降的水质二维对流扩散方程 | 二维水动力模型 | 水槽水动力实验 | 研究沉积物营养盐释放与流速之间的定量关系; 模型体现了悬浮泥沙中污染物的沉降 | 水动力模型未考虑到垂向方向上的动量方程, 仅适用于浅水湖泊 |
张坤, | 耦合渗流动量方程和对流扩散方程 | 建立水槽二维几何模型, 耦合N-S方程、Darcy方程和连续性方程 | 动水条件下的水槽底泥污染物扩散实验 | 模拟不同流速下, 底泥污染物对上覆水体的影响; 考虑了底泥沉积层多孔介质中污染物的扩散迁移 | 未考虑到环境因素的影响 |
本文 | 对流扩散方程 | 水流控制方程: 不可压缩质量方程和动量守恒方程控制 | 实地模拟测定实验 | 依据水库流场, 建立二维及三维几何模型; 根据水温、pH和DO的二次回归多项式模型, 考察不同扰动时间和范围下, 底泥起动及磷释放特征; 采用实地的测定实验, 更能验证本模型的合理性 | 仅考虑了扰动时磷污染物的对流扩散 |
表2 扰动条件下污染物磷释放模型对比分析
Table 2 Comparative analysis of pollutant phosphorus release models under disturbance conditions
文献来源 | 污染物扩散模型 | 水质模型 | 模型验证 | 优势 | 劣势 |
---|---|---|---|---|---|
Huang et al., | 4个控制方程: 溶解态磷、吸附在泥沙的磷、好氧层和厌氧层中的磷浓度变化 | 二维水动力模型和泥沙输运模型 | 无模型验证, 用于预测太湖的磷行为 | 建立风力、波浪作用平衡方程, 定量评估其对磷释放和分布的影响; 磷迁移模型涉及对流扩散、吸附-解吸、沉积-再悬浮等物理化学过程 | 仅适用于没有季节性分层的浅水湖泊 |
Cheng et al., | 耦合N-S方程、Darcy方程、溶质运移方程、吸附/解吸方程 | 建立二维几何模型模拟边界附近的释放 | 不同粒径沉积物的吸附实验和水槽实验 | 研究不同流速和粒径条件下, 未悬浮底泥向上覆水中分子扩散和对流扩散污染物的特征 | 二维几何模型中仅设置了边界条件和初始条件 |
Hu et al., | 基于紊动扩散和污染物沉降的水质二维对流扩散方程 | 二维水动力模型 | 水槽水动力实验 | 研究沉积物营养盐释放与流速之间的定量关系; 模型体现了悬浮泥沙中污染物的沉降 | 水动力模型未考虑到垂向方向上的动量方程, 仅适用于浅水湖泊 |
张坤, | 耦合渗流动量方程和对流扩散方程 | 建立水槽二维几何模型, 耦合N-S方程、Darcy方程和连续性方程 | 动水条件下的水槽底泥污染物扩散实验 | 模拟不同流速下, 底泥污染物对上覆水体的影响; 考虑了底泥沉积层多孔介质中污染物的扩散迁移 | 未考虑到环境因素的影响 |
本文 | 对流扩散方程 | 水流控制方程: 不可压缩质量方程和动量守恒方程控制 | 实地模拟测定实验 | 依据水库流场, 建立二维及三维几何模型; 根据水温、pH和DO的二次回归多项式模型, 考察不同扰动时间和范围下, 底泥起动及磷释放特征; 采用实地的测定实验, 更能验证本模型的合理性 | 仅考虑了扰动时磷污染物的对流扩散 |
[1] | CHENG P D, ZHU H W, FAN J Y, et al., 2013. Numerical research for contaminant release from un-suspended bottom sediment under different hydrodynamic conditions[J]. Journal of Hydrodynamics, 25(4): 620-627. |
[2] | HU K M, PANG Y, WANG H, et al., 2011. Simulation study on water quality based on sediment release flume experiment in Lake Taihu, China[J]. Ecological Engineering, 37(4): 607-615. |
[3] |
HUANG L, FANG H W, HE G J, et al., 2016. Effects of internal loading on phosphorus distribution in the Taihu Lake driven by wind waves and lake currents[J]. Environmental Pollution, 219: 760-773.
DOI PMID |
[4] | MICHAEL J S, NICHOLAS F, 1997. Lake restoration by sediment dredging[J]. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 26(2):776-781. |
[5] | SONDERGAARD M, KRISTENSEN P, JEPPESEN E, 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark[J]. Hydrobiologia, 228(1): 91-99. |
[6] | WANG S R, JIN X C, ZHAO H C, et al., 2006. Phosphorus fractions and its release in the sediments from the shallow lakes in the middle and lower reaches of Yangtze River area in China[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 273(1): 109-116. |
[7] | 敖静, 2005. 浅水湖泊二维水流-沉积物污染水质耦合模型研究与应用[D]. 南京: 河海大学. |
AO J, 2005. The study and application of Two-dimensional Flow-sediment-water quality coupling model[D]. Nanjing: Hohai University. | |
[8] | 白杨, 2017. 深水湖泊与浅水湖泊热力分层特征及其影响因素[D]. 无锡: 江南大学. |
BAI Y, 2017. The characteristics of thermal stratification and its influencing factors in deep lake and shallow lake[D]. Wuxi: Jiangnan University. | |
[9] | 包宇飞, 李姗泽, 胡明明, 等, 2020. 宜昌市天福庙水库表层沉积物营养盐分布特征与污染评价[C]// 中国水利学会,黄河水利委员会. 中国水利学会2020学术年会论文集第二分册. 中国北京. |
BAO Y F, LI S Z, HU M M, et al., 2020. Distribution characteristics and pollution assessment of nutrients in surface sediments of Tianfumiao Reservoir in Yichang City[C]// China Water Conservancy Association, Yellow River Water Conservancy Commission. Proceedings of the 2020 Annual Academic Conference of China Water Conservancy Society Volume 2, Beijing China. | |
[10] | 陈建, 刘琴琴, 刘明潇, 等, 2021. 射流扰动对明渠底泥的清淤效果研究[J]. 武汉大学学报 (工学版), 54(4): 307-314. |
CHEN J, LIU Q Q, LIU M X, et al., 2021. Study on the dredging effect of jet disturbance on the open channel sediment[J]. Engineering Journal of Wuhan University, 54(4): 307-314. | |
[11] | 陈美丹, 2007. 河网底泥释放规律及其与模型耦合应用研究[D]. 南京: 河海大学. |
CHEN M D, 2007. Study on rule of contaminant releasing from sediment in river network area and its application in coupled model[D]. Nanjing: Hohai University. | |
[12] | 陈永俊, 孙如华, 王翔, 等, 2020. 基于COMSOL热强化SVE技术的污染场地数值模拟[J]. 环境工程, 38(3): 174-179. |
CHEN Y J, SUN R H, WANG X, et al., 2020. Numerical simulation of polluted sites based on COMSOL thermal enhancemed sve technology[J]. Environmental Engineering, 38(3): 174-179. | |
[13] |
程鹏达, 朱心广, 冯春, 等, 2020. 再悬浮底泥中非吸附性污染物释放的数值模拟[J]. 力学学报, 52(3): 689-697.
DOI |
CHENG P D, ZHU X G, FENG C, et al., 2020. Numerical simulation on the release of non-adsorption pollutants during the sediment resuspended[J]. Chinese Journal of Theoretical and Applied Mechanics, 52(3): 689-697. | |
[14] | СУХОРУИКИ А·К, 李树华, 1984. 根据原体观测资料估算河流中污染物质的紊动扩散系数[J]. 水道港口 (3): 61-63. |
Сухоруики А·К, LI S H, 1984. The turbulent diffusion coefficient of pollutants in rivers is estimated according to the original observation data[J]. Journal of Waterway and Harbor (3): 61-63. | |
[15] | 傅扬, 鲁屹, 陈松松, 等, 2015. 模拟再清淤对南淝河底泥氮磷释放的影响研究[J]. 农业环境科学学报, 34(6): 1181-1186. |
FU Y, LU Y, CHEN S S, et al., 2015. Releases of nitrogen and phosphorus from sediments from Nanfei river after simulated follow-up dredging[J]. Journal of Agro-Environment Science, 34(6): 1181-1186. | |
[16] | 胡晓东, 张建华, 吴沛沛, 等, 2016. 基于氮、磷释放的太湖生态清淤时间效应研究[J]. 水利水电技术, 47(10): 58-61, 72. |
HU X D, ZHANG J H, WU P P, et al., 2016. Nitrogen and phosphorus release-based study on time-effect of eco-dredging[J]. Water Resources and Hydropower Engineering, 47(10): 58-61, 72. | |
[17] | 黄琼, 2015. 汤浦水库底泥中氮磷释放规律及其影响因素的研究[D]. 西安: 西安理工大学环境工程. |
HUANG Q, 2015. Experimental study of Tangpu reservoir sediments nitrogen and phosphorus release and its influencing factors[D]. Xi’an: Environmental engineering, Xi'an University of Technology. | |
[18] | 黄勇, 严过房, 董运常, 等, 2020. 底泥氮磷释放的影响因素及控制策略[J]. 江西农业学报, 32(10):116-120, 130. |
HUANG Y, YAN G F, DONG Y C, et al., 2020. Influencing factors and control strategies of nitrogen and phosphorus release from sediment[J]. Acta Agriculturae Jiangxi, 32(10): 116-120, 130. | |
[19] | 金晓丹, 吴昊, 陈志明, 等, 2015. 长江河口水库沉积物磷形态、吸附和释放特性[J]. 环境科学, 36(2): 448-456. |
JIN X D, WU H, CHEN Z M, et al., 2015. Phosphorus fractions, sorption characteristics and its release in the sediments of Yangtze Estuary Reservoir, China[J]. Environmental Science, 36(2): 448-456. | |
[20] | 李浩萍, 2022. 邛崃市南河流域氮磷分布与释放规律研究[D]. 成都: 西南交通大学. |
LI H P, 2022. Study on distribution and release law of nitrogen and phosphorus in Nanhe river basin of Qionglai city[D]. Chengdu: Southwest Jiaotong University. | |
[21] | 李乾岗, 田颖, 刘玲, 等, 2022. 水体中沉积物氮和磷的释放机制及其影响因素研究进展[J]. 湿地科学, 20(1): 94-103. |
LI Q G, TIAN Y, LIU L, et al., 2022. Research progress on the release mechanism and influencing factors of nitrogen and phosphorus in sediments of water bodies[J]. Wetland Science, 20(1): 94-103. | |
[22] | 李琼, 刘佳, 李永凯, 2019. 黄柏河流域水库底泥内源磷释放对水质影响分析[J]. 人民长江, 50(3): 60-65. |
LI Q, LIU J, LI Y K, 2019. Analysis of the effect of endogenous phosphorus release from reservoir sediment on water quality in Huangbai River Basin[J]. Yangtze River, 50(3): 60-65. | |
[23] | 李芮, 2019. 基于COMSOL的甲苯催化燃烧过程的数值模拟[D]. 昆明: 昆明理工大学. |
LI R, 2019. COMSOL simulations of wall flow reactors for toluene catalytic combustion[D]. Kunming: Kunming University of science and technology. | |
[24] | 李毓佳, 2016. 深水水库内源磷化氢释放迁移及环境效应研究[D]. 北京: 中国地质大学 (北京). |
LI Y J, 2016. Research on the transportation and environmental effect of endogenous phosphine in deep reservoir[D]. Beijing: China University of Geosciences (Beijing). | |
[25] | 刘佳, 2018. 黄柏河流域梯级水库富磷沉积物磷负荷研究[D]. 宜昌: 三峡大学水利工程. |
LIU J, 2018. Phosphorus load in rich-phosphorus sediments in cascade reservoirs of the Huangbai River[D]. Yichang: Hydraulic Engineering, China Three Gorges University. | |
[26] | 刘明盟, 李永福, 葛继稳, 等, 2018. 宜昌市天福庙水库沉积物磷形态分布特征及其释放通量估算[J]. 环境科学研究, 31(7): 1258-1265. |
LIU M M, LI Y F, GE J W, et al., 2018. Distribution of phosphorus forms and release flux in Tianfumiao Reservoir, Yichang City[J]. Research of Environmental Sciences, 31(7): 1258-1265. | |
[27] | 刘芫, 2023. 大冶湖沉积物-上覆水氮磷交换通量及影响因素研究[D]. 武汉: 湖北大学. |
LIU Y, 2023. Study on the exchange flux of nitrogen and phosphorus and influencing factors at the sediment- overlying water in Daye Lake[D]. Wuhan: Hubei University. | |
[28] | 裴佳瑶, 冯民权, 2020. 环境因子对雁鸣湖沉积物氮磷释放的影响[J]. 环境工程学报, 14(12): 3447-3459. |
PEI J Y, FENG M Q, 2020. Effects of environmental factors on the release of nitrogen and phosphorus from the sediment of the Yanming Lake, China[J]. Chinese Journal of Environmental Engineering, 14(12): 3447-3459. | |
[29] | 濮培民, 王国祥, 胡春华, 等, 2000. 底泥疏浚能控制湖泊富营养化吗?[J]. 湖泊科学, 12(3): 269-279. |
PU P M, WANG G X, HU C H, et al., 2000. Can we control lake eutrophication by dredging?[J]. Journal of Lake Sciences, 12(3): 269-279. | |
[30] | 裘杰, 2018. 杭州城市河道底泥特征及底泥清除技术研究[D]. 杭州: 浙江大学. |
QIU J, 2018. Study of sediments characteristics and dredge technology in urban rivers in Hangzhou city[D]. Hangzhou: Zhejiang University. | |
[31] | 任慧君, 2018. 黄柏河流域天福庙水库的水质监测及蓝藻去除新方法研究[D]. 宜昌: 三峡大学. |
REN H J, 2018. Water quality monitoring of Tianfumiao Reservoir in Huangbai River Basin and study on new methods for removal of cyanobacteria[D]. Yichang: China Three Gorges University. | |
[32] | 生态环境部, 国家质量监督检验检疫总局, 2002. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国标准出版社. |
Ministry of Ecology and Environmental, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2002. Environmental quality standards for surface water: GB 3838—2002[S]. Beijing: China Standards Press. | |
[33] | 孙景春, 2002. 畅流期不同水深流速测点分布对垂线平均流速的影响[J]. 吉林水利 (4): 18-20. |
SUN J C, 2002. The influence of the distribution of velocity measuring points in different water depths on the average velocity of the vertical line during the free-flow period[J]. Jilin Water Resources (4): 18-20. | |
[34] | 孙铭, 2010. 河流底泥氮磷释放规律及其对环境清淤的影响研究[D]. 合肥: 合肥工业大学. |
SUN M, 2010. Study on the nitrogen and phosphorus release of river's sediment and the affect on the ecodredging-As the case of Nanfeihe River[D]. Hefei: Hefei University of Technology. | |
[35] | 童运调, 吴丽珠, 1989. 佛子岭水库深水温度试验研究[J]. 水文 (3): 36-39. |
TONG Y T, WU L Z, 1989. Experimental study on deep-water temperature of Foziling Reservoir[J]. Journal of China Hydrology (3): 36-39. | |
[36] |
王立志, 王国祥, 2012. 苦草密度对扰动引起各形态磷释放的影响[J]. 生态环境学报, 21(6): 1096-1101.
DOI |
WANG L Z, WANG G X, 2012. The effect of eelgrass herb density on the release of various forms of phosphorus caused by disturbance[J]. Ecology and Environmental Sciences, 21(6): 1096-1101. | |
[37] | 王平, 黄爽兵, 韩占涛, 等, 2015. 基于溶质运移模拟的某化工场地污染物对拟建水库污染风险预测[J]. 现代地质, 29(2): 307-315. |
WANG P, HUANG S B, HAN Z T, et al., 2015. A chemical site's pollution risk prediction to the proposed reservoir based on solute transport simulation[J]. Geoscience, 29(2): 307-315. | |
[38] | 王兴菊, 于文晴, 赵华青, 等, 2023. 大冶水库夏秋季热分层对沉积物氮磷释放的影响[J]. 环境科学与技术, 46(10): 42-52. |
WANG X J, YU W Q, ZHAO H Q, et al., 2023. Effect of thermal stratification on nitrogen and phosphorus release from sediments in Daye Reservoir[J]. Environmental Science & Technology, 46(10): 42-52. | |
[39] |
魏岚, 刘传平, 邹献中, 等, 2012. 广东省不同水库底泥理化性质对内源氮磷释放影响[J]. 生态环境学报, 21(7): 1304-1310.
DOI |
WEI L, LIU C P, ZOU X Z, et al., 2012. Release of nitrogen and phosphorus from the sediments of ten reservoirs in Guangdong province[J]. Ecology and Environmental Sciences, 21(7): 1304-1310. | |
[40] | 温亚军, 胡志逵, 2021. 谷河底泥磷释放的影响因素研究[J]. 安徽农学通报, 27(11): 143-145. |
WEN Y J, HU Z K, 2021. Research on remarkable affecting factors of phosphorus release from Gu River sediments[J]. Anhui Agricultural Science Bulletin, 27(11): 143-145. | |
[41] | 武丽娜, 2022. 向家坝库区沉积物-水界面氮磷迁移关键过程研究[D]. 邯郸: 河北工程大学市政工程 (含给排水等). |
WU L N, 2022. Study on the key processes of nitrogen and phosphorus migration at sediment-water interface in Xiangjiaba Reservoir Area[D]. Handan: Municipal Engineering (including water supply and drainage, etc.), Hebei University of Engineering. | |
[42] | 夏威, 张萌, 周慜, 等, 2023. 大型深水湖库溶解氧时空变化及驱动因素: 以江西仙女湖为例[J]. 湖泊科学, 35(3): 874-885. |
XIA W, ZHANG M, ZHOU M, et al., 2023. Spatio-temporal dynamics of dissolved oxygen and its influencing factors in Lake Xiannv Jiangxi, China[J]. Journal of Lake Sciences, 35(3): 874-885. | |
[43] | 肖文胜, 杨开, 郭建林, 2009. 环境因子对湖泊底泥释磷的影响研究[J]. 中国给水排水, 25(3): 50-53. |
XIAO W S, YANG K, GUO J L, 2009. Study on effect of environmental factors on phosphorus release from sediments in lake[J]. China Water & Wastewater, 25(3): 50-53. | |
[44] | 徐启明, 2001. 巢湖航道疏浚工程中的环保措施[J]. 交通环保, 22(5): 42-43. |
XU Q M, 2001. Environmental measures for waterway dredging in Chaohu[J]. Environmental Protection in Transportation, 22(5): 42-43. | |
[45] | 杨白露, 2014. 基于底泥污染物释放规律的环保疏浚技术研究[D]. 重庆: 重庆交通大学. |
YANG B L, 2014. Environmental dredging technology based on pollutants release rule from sediment[D]. Chongqing: Chongqing Jiaotong University. | |
[46] | 杨盛, 2020. 基于COMSOL模拟开裂混凝土中的氯离子扩散行为[J]. 科技创新与应用 (6): 14-15. |
YANG S, 2020. Simulation of chloride diffusion behavior in cracked concrete based on COMSOL[J]. Technology Innovation and Application (6): 14-15. | |
[47] | 余晓, 诸葛亦斯, 刘晓波, 等, 2020. 大型深水水库溶解氧层化结构演化机制[J]. 湖泊科学, 32(5): 1496-1507. |
YU X, ZHU GE Y S, LIU X B, et al., 2020. Evolution mechanism of dissolved oxygen stratification in a large deep reservoir[J]. Journal of Lake Sciences, 32(5): 1496-1507. | |
[48] | 张坤, 2011. 污染底泥对上覆水体水质影响研究[D]. 上海: 上海大学. |
ZHANG K, 2011. Research of contaminated sediments effect on overlying water quality[D]. Shanghai: Shanghai University. | |
[49] | 张路, 范成新, 秦伯强, 等, 2001. 模拟扰动条件下太湖表层沉积物磷行为的研究[J]. 湖泊科学, 13(1): 35-42. |
ZHANG L, FAN C X, QIN B Q, et al., 2001. Phosphorus release and absorption of surficial sediments in Taihu Lake under simulative disturbing conditions[J]. Journal of Lake Science, 13(1): 35-42. | |
[50] | 张洋, 2023. 基于COMSOL Multiphysics 软件的地下水污染物运移模拟研究[J]. 地下水, 45(2): 17-19. |
ZHANG Y, 2023. Simulation study of groundwater contaminant transportation based on COMSOL multiphysics software[J]. Ground water, 45(2): 17-19. | |
[51] | 章阅, 2023. 大伙房水库pH值季节性异常原因探究[J]. 吉林水利 (5): 48-51. |
ZHANG Y, 2023. Research on the causes of seasonal pH anomalies in Dahuofang Reservoir[J]. Jilin Water Resources (5): 48-51. | |
[52] | 中国气象局科技与气候变化司, 2016. 2016年中国气候公报[R]. [2024-03-05]. https://www.cma.gov.cn/zfxxgk/gknr/qxbg/201705/t20170525_1709269.html. |
Department of Science, Technology and Climate Change, China Meteorological Administration, 2016 China Climate Bulletin 2016[R]. [2024-03-05]. https://www.cma.gov.cn/zfxxgk/gknr/qxbg/201705/t20170525_1709269.html. | |
[53] | 钟继承, 范成新, 2007. 底泥疏浚效果及环境效应研究进展[J]. 湖泊科学, 19(1): 1-10. |
ZHONG J C, FAN C X, 2007. Advance in the study on the effectiveness and environmental impact of sediment dredging[J]. Journal of lake Sciences, 19(1): 1-10. | |
[54] | 朱伯芳, 1985. 库水温度估算[J]. 水利学报 (2): 12-21. |
ZHU B F, 1985. Reservoir water temperature estimation[J]. Journal of Hydraulic Engineering (2): 12-21. | |
[55] | 朱红伟, 蒋基安, 程鹏达, 等, 2013. 泥沙污染物起动再悬浮释放机理[J]. 水科学进展, 24(4): 537-542. |
ZHU H W, JIANG J A, CHENG P D, et al., 2013. The mechanism of sediment pollutant starting and resuspension release[J]. Advances in Water Science, 24(4): 537-542. | |
[56] | 朱红伟, 尚晓, 张坤, 等, 2014. 疏浚水流扰动作用下的河道底泥污染物释放效应[J]. 净水技术, 33(2): 81-85. |
ZHU H W, SHANG X, ZHANG K, et al., 2014. Effects of Pollutants Release from River Sediment under Hydro-Dredging Disturbance Conditions[J]. Water Purification Technology, 33(2): 81-85. | |
[57] | 朱红伟, 王道增, 樊靖郁, 等, 2015. 水体泥沙污染物起动再悬浮释放的物理过程和影响因素[J]. 中国科学(物理学力学天文学), 45(10): 18-28. |
ZHU H W, WANG D Z, FAN J Y, et al., 2015. Physical processes and influencing factors of contaminants release due to resuspended sediments in water environment[J]. Scientia Sinica Physica, Mechanica & Astronomica, 45(10): 18-28. (in Chinese) | |
[58] | 朱伟, 侯豪, 孙继鹏, 等, 2024. 河湖库淤积治理中底泥清淤的内涵与发展方向[J]. 水利学报, 55(4): 456-467. |
ZHU W, HOU H, SUN J P, et al., 2024. The connotation and development direction of sediment dredging in the siltation control of rivers, lakes and reservoirs[J]. Journal of Hydraulic Engineering, 55(4): 456-467. |
[1] | 张雪容, 刘奕慧, 杨玉敏, 宋玉梅, 任卫波, 叶珊, 郭鹏然. 地下水监测井建井材料金属元素的释放特征研究[J]. 生态环境学报, 2024, 33(8): 1245-1256. |
[2] | 张宝东, 王彪, 吴艳兰, 孟玉, 徐升, 钱贞兵, 秦军. 安徽省农村黑臭水体特征分析及识别[J]. 生态环境学报, 2024, 33(8): 1257-1268. |
[3] | 欧阳美凤, 尹宇莹, 张金谌, 刘清霖, 谢意南, 方平. 洞庭湖典型水域重金属含量的空间分布与来源解析[J]. 生态环境学报, 2024, 33(8): 1269-1278. |
[4] | 刘泽碧, 毛旭锋, 吴艺, 宋秀华, 于红妍, 金鑫, 杜凯, 谢顺邦. 海湖湿地水体蓝藻水华期浮游生物群落特征及其影响因素[J]. 生态环境学报, 2024, 33(6): 946-957. |
[5] | 赵乐依, 朱雪强, 刘健, 路平. 碳球负载纳米零价铁活化过硫酸盐降解水中恩诺沙星的性能研究[J]. 生态环境学报, 2024, 33(5): 757-770. |
[6] | 吴文伟, 沈城, 沙晨燕, 林匡飞, 吴健, 谢雨晴, 周璇. 城市工业地块土壤重金属污染风险评价与源解析[J]. 生态环境学报, 2024, 33(5): 791-801. |
[7] | 何艺, 秦欣欣, 张翔, 孙楠, 杨雅淋, 连军锋. 微塑料断面分布的不均一性——以赣江水域赣州段为例[J]. 生态环境学报, 2024, 33(4): 626-632. |
[8] | 肖扬岚, 沈惠柔, 许一涵, 尤添革, 郑艺婧, 谢候展, 宁静. 基于GBDT-LSTM的闽江流域水质预测[J]. 生态环境学报, 2024, 33(4): 597-606. |
[9] | 王亚军, 秦楚桐, 李肇隆, 杨胜, 姜舒恒, 王艳纯. 好氧颗粒污泥结构稳定强化策略研究评述[J]. 生态环境学报, 2024, 33(3): 478-486. |
[10] | 张德嵩, 陈振东, 孔德锦, 李柏林, 何晓曼, 杨列. 碳源补充型高级氧化法工艺净化水中磺胺类抗生素研究进展与趋势[J]. 生态环境学报, 2024, 33(2): 321-332. |
[11] | 梁贝竹, 陈建耀, 杨再智, 张鹏程, 任坤, 梁作兵, 杨晨晨, 吴洁珊. 华南滨海小流域地下水中PPCPs的分布、来源及影响因素——以珠海市唐家湾镇为例[J]. 生态环境学报, 2024, 33(2): 249-260. |
[12] | 李晴, 张梦悦, 于明乔, 李小璇, 常明, 陈立斌, 丁森. 东莞城市河流大型底栖动物群落结构及影响因子[J]. 生态环境学报, 2024, 33(1): 101-110. |
[13] | 蒋伯琪, 浮天, 程昳璇, 苏枞枞, 沈建东, 于谨铖, 于兴娜. 沈阳市臭氧污染特征及其影响因素[J]. 生态环境学报, 2024, 33(1): 72-79. |
[14] | 李丹怡, 黄显婷, 李继超, 李颖洁, 闫家普, 林慰. 氧化石墨烯及其复合材料去除水体抗生素的研究进展[J]. 生态环境学报, 2024, 33(1): 144-155. |
[15] | 高尧峰, 段艳平, 陈昱如, 涂耀仁, 高峻. 长江流域氧氟沙星和金霉素的人体健康水质基准研究[J]. 生态环境学报, 2024, 33(1): 92-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||