[1] |
AKIMOTO H, SATO K, SASE H, et al., 2022. Development of science and policy related to acid deposition in East Asia over 30 years[J]. Ambio, 51(8): 1800-1818.
|
[2] |
CHANG M, CAO J C, MA M R, et al., 2020. Dry deposition of reactive nitrogen to different ecosystems across Eastern China: A comparison of three community models[J]. Science of the Total Environment, 720: 137548.
|
[3] |
CONNAN O, PELLERIN G, MARO D, et al., 2018. Dry deposition velocities of particles on grass: Field experimental data and comparison with models[J]. Journal of Aerosol Science, 123(21): 58-67.
|
[4] |
CONTINI D, DONATEO A, BELOSI F, et al., 2010. Deposition velocity of ultrafine particles measured with the Eddy‐Correlation Method over the Nansen Ice Sheet (Antarctica)[J]. Journal of Geophysical Research: Atmospheres, 115(D16): 013600.
|
[5] |
DONG H Y, KANG X Y, DENG S X, et al., 2023. Dry and wet deposition fluxes and source of atmospheric Mercury in the forest in Southeast China[J]. Sustainability, 15(4): 3213.
|
[6] |
EMERSON E W, KATICH J M, SCHWARZ J P, et al., 2018. Direct measurements of dry and wet deposition of black carbon over a grassland[J]. Journal of Geophysical Research: Atmospheres, 123(21): 12277-12290.
|
[7] |
FAGERLI H, AAS W, 2008. Trends of nitrogen in air and precipitation: Model results and observations at EMEP sites in Europe, 1980-2003[J]. Environmental Pollution, 154(3): 448-461.
|
[8] |
FARMER D K, BOEDICKER E K, DEBOLT H M, 2021. Dry deposition of atmospheric aerosols: Approaches, observations, and mechanisms[J]. Annual Review of Physical Chemistry, 72(1): 375-397.
|
[9] |
JAVID M, BAHRAMIFAR N, YOUNESI H, et al., 2015. Dry deposition, seasonal variation and source interpretation of ionic species at Abali, Firouzkouh and Varamin, Tehran Province, Iran[J]. Atmospheric Research, 13(1): 74-90.
|
[10] |
LAMB D, BOWERSOX V, 2000. The national atmospheric deposition program: An overview[J]. Atmospheric Environment, 34(11): 1661-1663.
|
[11] |
LAVI A, FARMER D K, SEGRE E, et al., 2013. Fluxes of fine particles over a semi-arid pine forest: Possible effects of a complex terrain[J]. Aerosol Science and Technology, 47(8): 906-915.
|
[12] |
LIU J K, ZHU L J, WANG H H, et al., 2016. Dry deposition of particulate matter at an urban forest, wetland and lake surface in Beijing[J]. Atmospheric Environment, 125(Part A): 178-187.
|
[13] |
LÓPEZ-GARCÍA P, GELADO-CABALLERO M D, SANTANA- CASTELLANO D, et al., 2013. A three-year time-series of dust deposition flux measurements in Gran Canaria, Spain: A comparison of wet and dry surface deposition samplers[J]. Atmospheric Environment, 79: 689-694.
|
[14] |
MACDONALD K M, SHARMA S, TOOM D, et al., 2017. Observations of atmospheric chemical deposition to high Arctic snow[J]. Atmospheric Chemistry and Physics, 17(9): 5775-5788.
|
[15] |
MAMUN A A, CHENG I, ZHANG L, et al., 2019. Overview of size distribution, concentration, and dry deposition of airborne particulate elements measured worldwide[J]. Environmental Reviews, 28(1): 77-78.
|
[16] |
MOHAN S, 2015. An overview of particulate dry deposition: measuring methods, deposition velocity and controlling factors[J]. International Journal of Environmental Science and Technology, 13(1): 387-402.
|
[17] |
PAN Y, LIU B, CAO J, et al., 2021. Enhanced atmospheric phosphorus deposition in Asia and Europe in the past two decades[J]. Atmospheric and Oceanic Science Letters, 14(5): 10-14.
|
[18] |
PAN Y, WANG Y, TANG G, et al., 2012. Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China[J]. Atmospheric Chemistry and Physics, 12(14): 6515-6535.
|
[19] |
PAN Y P, WANG Y S, TANG G Q, et al., 2013. Spatial distribution and temporal variations of atmospheric sulfur deposition in Northern China: Insights into the potential acidification risks[J]. Atmospheric Chemistry and Physics, 13(3): 1675-1688.
|
[20] |
PETROFF A, ZHANG L, 2010. Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models[J]. Geoscientific Model Development, 3(2): 753-769.
|
[21] |
QI J H, YU Y, YAO X H, et al., 2020. Dry deposition fluxes of inorganic nitrogen and phosphorus in atmospheric aerosols over the Marginal Seas and Northwest Pacific[J]. Atmospheric Research, 245: 105076.
|
[22] |
RUIJGROK W, TIEBEN H, EISINGA P, 1997. The dry deposition of particles to a forest canopy: A comparison of model and experimental results[J]. Atmospheric Environment, 31(3): 399-415.
|
[23] |
SHEPPARD L J, LEITH I D, MIZUNUMA T, et al., 2011. Dry deposition of ammonia gas drives species change faster than wet deposition of ammonium ions: Evidence from a long-term field manipulation[J]. Global Change Biology, 17(12): 3589-3607.
|
[24] |
SUN K, TAO L, MILLER D J, et al., 2017. Vehicle emissions as an important urban Ammonia source in the United States and China[J]. Environmental Science & Technology, 51(4): 2472-2481.
|
[25] |
TEGEN I, HARRISON S P, KOHFELD K, et al., 2002. Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study[J]. Journal of Geophysical Research-Atmospheres, 107(D21): 4576.
|
[26] |
TIAN S L, PAN Y P, LIU Z R, et al., 2014. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China[J]. Journal of Hazardous Materials, 279: 452-460.
DOI
PMID
|
[27] |
WESELY M L, 1989. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models[J]. Atmospheric Environment, 23(6): 1293-1304.
|
[28] |
YI S M, TOTTEN L A, THOTA S, et al., 2006. Atmospheric dry deposition of trace elements measured around the urban and industrially impacted NY-NJ harbor[J]. Atmospheric Environment, 40(34): 6626-6637.
|
[29] |
ZHANG J, SHAO Y, HUANG N, 2014. Measurements of dust deposition velocity in a wind-tunnel experiment[J]. Atmospheric Chemistry and Physics, 14(17): 8869-8882.
|
[30] |
ZHANG L M, GONG S L, PADRO J, et al., 2001. A size-segregated particle dry deposition scheme for an atmospheric aerosol module[J]. Atmospheric Environment, 35(3): 549-560.
|
[31] |
顾梦娜, 潘月鹏, 宋琳琳, 等, 2021. 2019年国庆节前后北京气态氨和气溶胶铵盐浓度的同步观测[J]. 环境科学, 42(1): 1-8.
|
|
GU M N, PAN Y P, SONG L L, et al., 2021. Concurrent collection of ammonia gas and aerosol ammonium in urban Beijing during national celebration days utilizing an acid-coated honeycomb denuder in combination with a filter system[J]. Environmental Science, 42(1): 1-8.
|
[32] |
姚利, 刘进, 潘月鹏, 等, 2017. 北京大气颗粒物和重金属铅干沉降通量及季节变化[J]. 环境科学, 38(2): 423-428.
|
|
YAO L, LIU J, PAN Y P, et al., 2017. Atmospheric dry deposition fluxes and seasonal variations of particulate matter and lead in urban Beijing[J]. Environmental Science, 38(2): 423-428.
|
[33] |
苏泳松, 宋松, 陈叶, 等, 2022. 珠江三角洲人类活动净氮输入时空特征及其影响因素[J]. 生态环境学报, 31(8): 1599-1609.
DOI
|
|
SUN Y S, SONG S, CHEN Y, et al., 2022. Temporal and spatial characteristics of net anthropogenic nitrogen input and its influencing factors in the Pearl River Delta[J]. Ecology and Environmental Sciences, 31(8): 1599-1609.
|
[34] |
张仁健, 浦一芬, 徐永福, 等, 2004. 青岛大气气溶胶的浓度分布和干沉降的观测研究[J]. 气候与环境研究, 9(2): 390-395.
|
|
ZHANG R J, PU Y F, XU Y F, et al., 2004. Observation on mass concentration and dry deposition of atmospheric aerosols in Qingdao[J]. Climatic and Environmental Research, 9(2): 390-395.
|