生态环境学报 ›› 2024, Vol. 33 ›› Issue (7): 1079-1088.DOI: 10.16258/j.cnki.1674-5906.2024.07.009
卢睿霖1,2(), 曹芳1,2,*, 林煜棋1,2, 吴长流1,2, 章炎麟1,2
收稿日期:
2024-04-22
出版日期:
2024-07-18
发布日期:
2024-09-04
通讯作者:
*曹芳。作者简介:
卢睿霖(1999年生),男,硕士研究生,研究方向为大气化学。E-mail: relynlu@163.com
基金资助:
LU Ruilin1,2(), CAO Fang1,2,*, LIN Yuqi1,2, WU Changliu1,2, ZHANG Yanlin1,2
Received:
2024-04-22
Online:
2024-07-18
Published:
2024-09-04
摘要:
大气颗粒物中化学组分的粒径分布与其来源、形成过程、环境及健康效应密切相关。而过去对不同季节颗粒物的粒径分布特征,以及不同来源对粗、细颗粒物的贡献的研究相对较少。于2022年12月(冬季)和2023年8月(夏季)在南京采集了大气分粒径颗粒物样品,分析了粗颗粒物(PM2.1-10)和细颗粒物(PM2.1)中碳质组分和主要水溶性无机离子的粒径分布和季节变化,运用正定矩阵因子分解模型(Positive Matrix Factorization,PMF)进行PM2.1-10和PM2.1的源解析。结果表明,在粒径分布特征上,冬夏两季有机碳(OC)、元素碳(EC)、水溶性有机碳(WSOC)的平均浓度呈双峰型分布。SO42−和NO3−的季节平均浓度均为双峰型分布。NH4+主要分布在细颗粒物中,季节平均浓度呈单峰型分布,冬夏季均在0.43-0.65μm出现峰值。在季节变化上,颗粒物中除Na+和SO42−外的主要化学组分浓度均在冬季高于夏季。冬夏两季Ca2+、Mg2+主要集中在粗颗粒物中。根据PMF模型解析结果,南京大气颗粒物主要有4类来源贡献,即交通源、二次生成、生物质燃烧和扬尘源。PM2.1主要来自二次生成和生物质燃烧源,冬夏季分别贡献了65.7%和61.0%,其中冬季生物质燃烧和二次硝酸盐的贡献占主导地位,而夏季主要来自二次硫酸盐的贡献。冬季PM2.1-10主要来自交通源(41.8%),夏季则主要来自生物质燃烧和硝酸盐的二次生成贡献(43.9%)。研究探讨了大气颗粒物的化学组分的粒径分布特征、季节差异及来源,可为制定有针对性的大气污染防控措施提供科学依据。
中图分类号:
卢睿霖, 曹芳, 林煜棋, 吴长流, 章炎麟. 南京大气颗粒物化学组分的粒径分布和来源解析[J]. 生态环境学报, 2024, 33(7): 1079-1088.
LU Ruilin, CAO Fang, LIN Yuqi, WU Changliu, ZHANG Yanlin. Size Distribution and Source Apportionment of Chemical Compositions in Nanjing Atmospheric Particulate Matter[J]. Ecology and Environment, 2024, 33(7): 1079-1088.
采样时间 | 气温/℃ | 相对湿度/% | 气压/hPa | 风向 | 风速/(m∙s−1) | ρ(PM2.5)/(μg∙m−3) | ρ(O2)/(μg∙m−3) | 能见度/km |
---|---|---|---|---|---|---|---|---|
8.3‒8.5 | 31 | 69 | 1000 | 东北风 | 5.1 | 12.46 | 60.26 | 21.6 |
8.7‒8.9 | 29 | 85 | 997 | 西北风 | 4.6 | 14.46 | 79.98 | 9.0 |
8.9‒8.11 | 29 | 66 | 1000 | 北风 | 4.3 | 20.85 | 114.88 | 13.8 |
8.24‒8.25 | 30 | 53 | 1004 | 微风 | 3.2 | 22.69 | 120.60 | 15.9 |
8.30‒9.1 | 23 | 88 | 1007 | 微风 | 1.4 | 13.80 | 77.81 | 17.6 |
12.17‒12.19 | 0 | 54 | 1033 | 西南风 | 5.2 | 18.46 | 47.29 | 10.4 |
12.19‒12.21 | 5 | 41 | 1022 | 南风 | 4.8 | 38.08 | 33.06 | 12.5 |
12.21‒12.23 | 7 | 36 | 1015 | 西风 | 9.5 | 29.63 | 64.91 | 8.0 |
12.23‒12.25 | 3 | 15 | 1022 | 南风 | 5.1 | 25.46 | 56.57 | 22.8 |
表1 采样期间的气象条件和空气质量
Table 1 Meteorological conditions and air quality during the sampling period
采样时间 | 气温/℃ | 相对湿度/% | 气压/hPa | 风向 | 风速/(m∙s−1) | ρ(PM2.5)/(μg∙m−3) | ρ(O2)/(μg∙m−3) | 能见度/km |
---|---|---|---|---|---|---|---|---|
8.3‒8.5 | 31 | 69 | 1000 | 东北风 | 5.1 | 12.46 | 60.26 | 21.6 |
8.7‒8.9 | 29 | 85 | 997 | 西北风 | 4.6 | 14.46 | 79.98 | 9.0 |
8.9‒8.11 | 29 | 66 | 1000 | 北风 | 4.3 | 20.85 | 114.88 | 13.8 |
8.24‒8.25 | 30 | 53 | 1004 | 微风 | 3.2 | 22.69 | 120.60 | 15.9 |
8.30‒9.1 | 23 | 88 | 1007 | 微风 | 1.4 | 13.80 | 77.81 | 17.6 |
12.17‒12.19 | 0 | 54 | 1033 | 西南风 | 5.2 | 18.46 | 47.29 | 10.4 |
12.19‒12.21 | 5 | 41 | 1022 | 南风 | 4.8 | 38.08 | 33.06 | 12.5 |
12.21‒12.23 | 7 | 36 | 1015 | 西风 | 9.5 | 29.63 | 64.91 | 8.0 |
12.23‒12.25 | 3 | 15 | 1022 | 南风 | 5.1 | 25.46 | 56.57 | 22.8 |
组分种类 | 冬季 | 夏季 | |||||
---|---|---|---|---|---|---|---|
PM2.1 | PM2.1-10 | PMtotal | PM2.1 | PM2.1-10 | PMtotal | ||
OC | 7.82±2.64 | 6.73±1.94 | 14.55±3.46 | 7.29±0.92 | 4.93±0.69 | 12.22±1.22 | |
EC | 3.22±1.07 | 2.80±0.63 | 6.02±0.63 | 1.68±0.36 | 1.78±0.69 | 3.47±0.97 | |
WSOC | 7.19±1.98 | 5.54±0.74 | 12.72±2.04 | 3.03±0.94 | 2.44±0.89 | 5.47±1.74 | |
OC/EC | 2.54±0.74 | 2.56±0.96 | 2.45±0.64 | 4.42±0.55 | 3.16±1.10 | 3.72±0.77 | |
Na+ | 0.99±0.50 | 1.71±0.30 | 2.70±0.56 | 1.98±0.57 | 2.68±1.41 | 4.66±1.80 | |
NH4+ | 2.69±0.97 | 0.11±0.05 | 2.80±0.94 | 1.57±0.52 | 0.11±0.07 | 1.68±0.57 | |
K+ | 0.96±0.66 | 0.25±0.14 | 1.95±1.89 | 0.26±0.15 | 0.37±0.24 | 0.63±0.32 | |
Mg2+ | 0.02±0.00 | 0.14±0.08 | 0.15±0.08 | 0.05±0.02 | 0.07±0.04 | 0.12±0.06 | |
Ca2+ | 0.27±0.03 | 1.64±0.80 | 1.91±0.82 | 0.47±0.22 | 0.86±0.80 | 1.33±1.01 | |
F− | 0.09±0.02 | 0.19±0.10 | 0.28±0.09 | 0.05±0.01 | 0.10±0.06 | 0.15±0.06 | |
Cl− | 1.12±0.27 | 1.00±0.71 | 2.12±0.50 | 0.39±0.12 | 0.83±0.46 | 1.22±0.57 | |
NO3− | 4.69±2.18 | 1.01±0.29 | 5.70±2.12 | 0.88±0.59 | 1.98±0.79 | 2.86±1.11 | |
SO42− | 1.78±0.31 | 1.24±0.31 | 3.02±0.40 | 3.84±0.90 | 0.99±0.22 | 4.82±0.78 |
表2 研究期间不同粒径段主要化学组分的质量浓度
Table 2 Concentrations of major chemical compositions in each size- segregated PM fraction μg?m?3
组分种类 | 冬季 | 夏季 | |||||
---|---|---|---|---|---|---|---|
PM2.1 | PM2.1-10 | PMtotal | PM2.1 | PM2.1-10 | PMtotal | ||
OC | 7.82±2.64 | 6.73±1.94 | 14.55±3.46 | 7.29±0.92 | 4.93±0.69 | 12.22±1.22 | |
EC | 3.22±1.07 | 2.80±0.63 | 6.02±0.63 | 1.68±0.36 | 1.78±0.69 | 3.47±0.97 | |
WSOC | 7.19±1.98 | 5.54±0.74 | 12.72±2.04 | 3.03±0.94 | 2.44±0.89 | 5.47±1.74 | |
OC/EC | 2.54±0.74 | 2.56±0.96 | 2.45±0.64 | 4.42±0.55 | 3.16±1.10 | 3.72±0.77 | |
Na+ | 0.99±0.50 | 1.71±0.30 | 2.70±0.56 | 1.98±0.57 | 2.68±1.41 | 4.66±1.80 | |
NH4+ | 2.69±0.97 | 0.11±0.05 | 2.80±0.94 | 1.57±0.52 | 0.11±0.07 | 1.68±0.57 | |
K+ | 0.96±0.66 | 0.25±0.14 | 1.95±1.89 | 0.26±0.15 | 0.37±0.24 | 0.63±0.32 | |
Mg2+ | 0.02±0.00 | 0.14±0.08 | 0.15±0.08 | 0.05±0.02 | 0.07±0.04 | 0.12±0.06 | |
Ca2+ | 0.27±0.03 | 1.64±0.80 | 1.91±0.82 | 0.47±0.22 | 0.86±0.80 | 1.33±1.01 | |
F− | 0.09±0.02 | 0.19±0.10 | 0.28±0.09 | 0.05±0.01 | 0.10±0.06 | 0.15±0.06 | |
Cl− | 1.12±0.27 | 1.00±0.71 | 2.12±0.50 | 0.39±0.12 | 0.83±0.46 | 1.22±0.57 | |
NO3− | 4.69±2.18 | 1.01±0.29 | 5.70±2.12 | 0.88±0.59 | 1.98±0.79 | 2.86±1.11 | |
SO42− | 1.78±0.31 | 1.24±0.31 | 3.02±0.40 | 3.84±0.90 | 0.99±0.22 | 4.82±0.78 |
离子种类 | 夏季 | 冬季 | |||
---|---|---|---|---|---|
PM2.1 | PM2.1-10 | PM2.1 | PM2.1-10 | ||
NH4+-NO3− | 0.098 | 0.166 | 0.984** | 0.111 | |
NH4+-SO42− | 0.986** 2) | −0.475* 1) | 0.801** | 0.050 | |
Na+-NO3− | 0.743** | 0.049 | 0.018 | 0.218 | |
K+-NO3− | 0.667** | 0.535** | −0.017 | −0.136 | |
NH4+-(NO3−+SO42−) | 0.956** | 0.015 | 0.979** | 0.111 | |
(NH4++Ca2+)-(NO3−+SO42−) | 0.933** | 0.377 | 0.986** | 0.827** | |
Na+-Cl− | 0.054 | 0.313 | 0.155 | 0.634* | |
K+-Cl− | −0.243 | −0.174 | 0.241 | 0.036 | |
Ca2+-NO3− | −0.363 | 0.429* | −0.183 | 0.718** |
表3 不同季节特定阴阳离子间的相关系数
Table 3 The correlation coefficients between specific cations and anions during different seasons
离子种类 | 夏季 | 冬季 | |||
---|---|---|---|---|---|
PM2.1 | PM2.1-10 | PM2.1 | PM2.1-10 | ||
NH4+-NO3− | 0.098 | 0.166 | 0.984** | 0.111 | |
NH4+-SO42− | 0.986** 2) | −0.475* 1) | 0.801** | 0.050 | |
Na+-NO3− | 0.743** | 0.049 | 0.018 | 0.218 | |
K+-NO3− | 0.667** | 0.535** | −0.017 | −0.136 | |
NH4+-(NO3−+SO42−) | 0.956** | 0.015 | 0.979** | 0.111 | |
(NH4++Ca2+)-(NO3−+SO42−) | 0.933** | 0.377 | 0.986** | 0.827** | |
Na+-Cl− | 0.054 | 0.313 | 0.155 | 0.634* | |
K+-Cl− | −0.243 | −0.174 | 0.241 | 0.036 | |
Ca2+-NO3− | −0.363 | 0.429* | −0.183 | 0.718** |
[1] | AGGARWAL S G, KAWAMURA K, 2009. Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction[J]. Atmospheric Environment, 43(16): 2532-2540. |
[2] | BOND T C, BERGSTROM R W, 2006. Light absorption by carbonaceous particles: An investigative review[J]. Aerosol science and technology, 40(1): 27-67. |
[3] | CAO J J, WU F, CHOW J C, et al., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China[J]. Atmospheric Chemistry and Physics, 5(11): 3127-3137. |
[4] |
CHENG Y, ENGLING G, HE K B, et al., 2014. The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks[J]. Environmental Pollution, 185: 149-157.
DOI PMID |
[5] | CHOW J C, WATSON J G, CHEN L W A, et al., 2004. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols[J]. Environmental Science & Technology, 38(16): 4414-4422. |
[6] | CHOW J C, WATSON J G, LU Z, et al., 1996. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/ AUSPEX[J]. Atmospheric Environment, 30(12): 2079-2112. |
[7] | DING X X, KONG L D, DU C T, et al., 2017. Long-range and regional transported size-resolved atmospheric aerosols during summertime in urban Shanghai[J]. Science of the total environment, 583: 334-343. |
[8] | GAO Y, LEE S C, HUANG Y, et al., 2016. Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area[J]. Atmospheric Research, 170: 112-122. |
[9] | GENG G N, ZHANG Q, TONG D, et al., 2017. Chemical composition of ambient PM2.5 over China and relationship to precursor emissions during 2005-2012[J]. Atmospheric Chemistry and Physics, 17(14): 9187-9203. |
[10] | HAN Y M, CAO J J, CHOW J C, et al., 2009. Elemental carbon in urban soils and road dusts in Xi'an, China and its implication for air pollution[J]. Atmospheric Environment, 43(15): 2464-2470. |
[11] | HUA Y, CHENG Z, WANG S X, et al., 2015. Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China[J]. Atmospheric Environment, 123(Part B): 380-391. |
[12] | HUANG X F, YU J Z, HE L Y, et al., 2006. Water‐soluble organic carbon and oxalate in aerosols at a coastal urban site in China: Size distribution characteristics, sources, and formation mechanisms[J]. Journal of Geophysical Research: Atmospheres, 111(D22): D22212-1-D22212-11-0. |
[13] | HUANG X F, YU J Z, 2008. Size distributions of elemental carbon in the atmosphere of a coastal urban area in South China: characteristics, evolution processes, and implications for the mixing state[J]. Atmospheric Chemistry and Physics, 8(19): 5843-5853. |
[14] | HUANG X F, DAI J, ZHU Q, et al., 2019. Abundant biogenic oxygenated organic aerosol in atmospheric coarse particles: plausible sources and atmospheric implications[J]. Environmental Science & Technology, 54(3): 1425-1430. |
[15] | JÖLLER M, BRUNNER T, OBERNBERGER I, 2007. Modeling of aerosol formation during biomass combustion for various furnace and boiler types[J]. Fuel Processing Technology, 88(11-12): 1136-1147. |
[16] | KARANASIOU A A, SISKOS P A, ELEFTHERIADIS K, 2009. Assessment of source apportionment by Positive Matrix Factorization analysis on fine and coarse urban aerosol size fractions[J]. Atmospheric Environment, 43(21): 3385-3395. |
[17] | LAN Z J, CHEN D L, LI X, et al., 2011. Modal characteristics of carbonaceous aerosol size distribution in an urban atmosphere of South China[J]. Atmospheric Research, 100(1): 51-60. |
[18] | LIU Y, WU L, HUANG S, et al., 2023. Sources, size-resolved deposition in the human respiratory tract and health risks of submicron black carbon in urban atmosphere in Pearl River Delta, China[J]. Science of the total environment, 891: 164391. |
[19] | MASRI S, KANG C M, KOUTRAKIS P, 2015. Composition and sources of fine and coarse particles collected during 2002-2010 in Boston, MA[J]. Journal of the Air & Waste Management Association, 65(3): 287-297. |
[20] | MILFORD J B, DAVIDSON C I, 1987. The sizes of particulate sulfate and nitrate 1B the atmopshere: A review[J]. Journal of the Air & Waste Management Association, 37(2): 125-134. |
[21] | PAN Y P, WANG Y S, 2014. Atmospheric wet and dry deposition of trace elements at ten sites in Northern China[J]. Atmospheric Chemistry and Physics, 14(14): 20647-20676. |
[22] | PANT P, HARRISON R M, 2012. Critical review of receptor modelling for particulate matter: A case study of India[J]. Atmospheric Environment. 49: 1-12. |
[23] | PARK J, JANG M, YU Z, 2017. Heterogeneous photo-oxidation of SO2 in the presence of two different mineral dust particles: Gobi and Arizona dust[J]. Environmental Science & Technology, 51(17): 9605-9613. |
[24] | PAULOT F, PAYNTER D, GINOUX P, et al., 2017. Gas-aerosol partitioning of ammonia in biomass burning plumes: Implications for the interpretation of spaceborne observations of ammonia and the radiative forcing of ammonium nitrate[J]. Geophysical Research Letters, 44(15): 8084-8093. |
[25] | QIAO B Q, CHEN Y, TIAN M, et al., 2019. Characterization of water soluble inorganic ions and their evolution processes during PM2.5 pollution episodes in a small city in southwest China[J]. Science of the Total Environment, 650(Part 2): 2605-2613. |
[26] | REN Y Q, WANG G H, WU C, et al., 2017. Changes in concentration, composition and source contribution of atmospheric organic aerosols by shifting coal to natural gas in Urumqi[J]. Atmospheric Environment, 148: 306-315. |
[27] | SCHAUER J J, KLEEMAN M J, CASS G R, et al., 2001. Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood[J]. Environmental Science & Technology, 35(9): 1716-1728. |
[28] | SEINFELD J H, CARMICHAEL G R, ARIMOTO R, et al., 2004. ACE-ASIA: Regional climatic and atmospheric chemical effects of Asian dust and pollution[J]. Bulletin of the American Meteorological Society, 85(3): 367-380. |
[29] | SHAO P Y, TIAN H Z, SUN Y J, et al., 2018. Characterizing remarkable changes of severe haze events and chemical compositions in multi-size airborne particles (PM1, PM2.5 and PM10) from January 2013 to 2016-2017 winter in Beijing, China[J]. Atmospheric Environment, 189: 133-144. |
[30] | SULLIVAN R C, GUAZZOTTI S A, SODEMAN D A, PRATHER K, 2007. Direct observations of the atmospheric processing of Asian mineral dust[J]. Atmospheric Chemistry and Physics, 7(5): 1213-1236. |
[31] | TANG X, ZHANG X S, WANG Z W, et al., 2016. Water-soluble organic carbon (WSOC) and its temperature-resolved carbon fractions in atmospheric aerosols in Beijing[J]. Atmospheric Research, 181: 200-210. |
[32] | TAO Y, YIN Z, YE X N, et al., 2014. Size distribution of water-soluble inorganic ions in urban aerosols in Shanghai[J]. Atmospheric Pollution Research, 5(4): 639-647. |
[33] |
TIAN S L, PAN Y P, LIU Z R, et al., 2014. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China[J]. Journal of Hazardous Materials, 279: 452-460.
DOI PMID |
[34] | TIAN S L, PAN Y P, WANG Y S, 2016. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes[J]. Atmospheric Chemistry and Physics, 16(1): 1-19. |
[35] | TIAN Y Z, HARRISON R M, FENG Y C, et al., 2021. Size-resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components[J]. Environmental Pollution, 289: 117932. |
[36] | TIAN Y Z, SHI G L, HAN S Q, et al., 2013. Vertical characteristics of levels and potential sources of water-soluble ions in PM10 in a Chinese megacity[J]. Science of the total environment, 447: 1-9. |
[37] | TREBS I, METZGER S, MEIXNER F X, et al., 2005. The NH4+‐NO3-‐Cl-‐SO42-‐H2O aerosol system and its gas phase precursors at a pasture site in the Amazon Basin: How relevant are mineral cations and soluble organic acids?[J]. Journal of Geophysical Research: Atmospheres, 110(D7): JD005478. |
[38] | WANG G H, ZHOU B H, CHENG C L, et al., 2013. Impact of Gobi desert dust on aerosol chemistry of Xi’an, inland China during spring 2009: differences in composition and size distribution between the urban ground surface and the mountain atmosphere[J]. Atmospheric Chemistry and Physics, 13(2): 819-835. |
[39] | WATSON J G, CHOW J C, LOWENTHAL D H, et al., 1994. Differences in the carbon composition of source profiles for diesel-and gasoline-powered vehicles[J]. Atmospheric Environment, 28(15): 2493-2505. |
[40] | WU H, CHEN P L, WANG T J, et al., 2022. Characteristics and Source Apportionment of Size-Fractionated Particulate Matter at Ground and above the Urban Canopy (380 m) in Nanjing, China[J]. Atmosphere, 13(6): 883. |
[41] |
XIE M J, FENG W, HE S Y, et al., 2022. Seasonal variations, temperature dependence, and sources of size-resolved PM components in Nanjing, east China[J]. Journal of Environmental Sciences, 121: 175-186.
DOI PMID |
[42] | XIU G L, ZHANG D N, CHEN J Z, et al., 2004. Characterization of major water-soluble inorganic ions in size-fractionated particulate matters in Shanghai campus ambient air[J]. Atmospheric Environment, 38(2): 227-236. |
[43] | YAN C Q, ZHENG M, SULLIVAN A P, et al., 2015. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions[J]. Atmospheric Environment, 121: 4-12. |
[44] | YANG L, SHANG Y, HANNIGAN M P, et al., 2021. Collocated speciation of PM2.5 using tandem quartz filters in northern Nanjing, China: Sampling artifacts and measurement uncertainty[J]. Atmospheric Environment, 246: 118066. |
[45] | YU Y Y, DING F, MU Y F, et al., 2020. High time-resolved PM2.5 composition and sources at an urban site in Yangtze River Delta, China after the implementation of the APPCAP[J]. Chemosphere, 261: 127746. |
[46] | ZHANG X Y, ZHAO X, JI G X, et al., 2019. Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China[J]. Journal of Atmospheric Chemistry, 76(1): 73-88. |
[47] | ZHAO P S, DONG F, HE D, et al., 2013. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China[J]. Atmospheric Chemistry and Physics, 13(9): 4631-4644. |
[48] | ZHAO Z Y, CAO F, FAN M Y, et al., 2020. Coal and biomass burning as major emissions of NOx in Northeast China: Implication from dual isotopes analysis of fine nitrate aerosols[J]. Atmospheric Environment, 242: 117762. |
[49] | ZHENG B, TONG D, LI M, et al., 2018. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions[J]. Atmospheric Chemistry and Physics, 18(19): 14095-14111. |
[50] | 曹芳, 张艺璇, 章炎麟, 等, 2019. TD-GCMS测定分粒径气溶胶样品上非极性有机物的进样方法[P]. CN201910680947.4, 2019-10-18. |
CAO F, ZHANG Y X, ZHANG Y L, et al., 2019. TD-GCMS injection method for the determination of nonpolar organic matter on fractionated aerosol samples [P]. CN201910680947.4, 2019-10-18. | |
[51] | 高丽波, 王体健, 崔金梦, 等, 2019. 2016年夏季南京大气污染特征观测分析[J]. 中国环境科学, 39(1): 1-12. |
GAO L B, WANG T J, CUI J M, et al., 2019. Observation and analysis of the characteristics of air pollution in Nanjing in summer 2016[J]. China Environmental Science, 39(1): 1-12. | |
[52] | 耿冠楠, 肖清扬, 郑逸璇, 等, 2020. 实施《大气污染防治行动计划》对中国东部地区PM2.5化学成分的影响[J]. 中国科学: 地球科学, 50(4): 469-482. |
GENG G N, XIAO Q Y, ZHENG Y X, et al., 2020. Impact of China’s Air Pollution Prevention and Control Action Plan on PM2.5 chemical composition over eastern China[J]. Science China Earth Sciences, 50(4): 469-482. | |
[53] | 郭子雍, 阳宇翔, 彭龙, 等, 2021. 广州地区不同粒径段大气颗粒物中水溶性有机碳的吸光贡献[J]. 中国环境科学, 41(2): 497-504. |
GUO Z Y, YANG Y X, PENG L, et al., 2021. The size-resolved light absorption contribution of water soluble organic carbon in the atmosphere of Guangzhou[J]. China Environmental Science, 41(2): 497-504. | |
[54] | 韩力慧, 王红梅, 向欣, 等, 2019. 北京市典型区域降水特性及其对细颗粒物影响[J]. 中国环境科学, 39(9): 3635-3646. |
HAN L H, WANG H M, XIANG X, et al., 2019. The characteristics of precipitation and its impact on fine particles at a representative region in Beijing[J]. China Environmental Science, 39(9): 3635-3646. | |
[55] | 郝娇, 葛颖, 何书言, 等, 2018. 南京市秋季大气颗粒物中金属元素的粒径分布[J]. 中国环境科学, 38(12): 4409-4414. |
HAO J, GE Y, HE S Y, et al., 2018. Size distribution characteristics of metal elements in air particulate matter during autumn in Nanjing[J]. China Environmental Science, 38(12): 4409-4414. | |
[56] | 黄欢, 毕新慧, 彭龙, 等, 2016. 广州城区秋冬季大气颗粒物中WSOC吸光性研究[J]. 环境科学, 37(1): 16-21. |
HUANG H, BI X H, PENG L, et al., 2016. Light absorption properties of water-soluble organic carbon (WSOC) associated with particles in autumn and winter in the urban area of Guangzhou[J]. Environmental Science, 37(1): 16-21. | |
[57] | 黄柯, 刘刚, 周丽敏, 等, 2015. 森林生物质燃烧烟尘中的有机碳和元素碳[J]. 环境科学, 36(6): 1998-2004. |
HUANG K, LIU G, ZHOU L M, et al., 2015. Organic carbon and elemental carbon in forest biomass burning smoke[J]. Environmental Science, 36(6): 1998-2004. | |
[58] | 李昌龙, 王静怡, 苗新慧, 等, 2018. 徐州市冬季PM2.5中碳质组分和水溶性离子特征分析[J]. 环境科技, 31(2): 23-28. |
LI C L, WANG J Y, MIAO X H, et al., 2018. Characteristics of carbon and water-soluble ions of PM2.5 in winter of Xuzhou City[J]. Environmental Science and Technology, 31(2): 23-28. | |
[59] | 鲁慧莹, 彭龙, 张国华, 等, 2019. 广州大气颗粒物水溶性有机氮的粒径分布特征和来源分析[J]. 地球化学, 48(1): 57-66. |
LU H Y, PENG L, ZHANG G H, et al., 2019. Size distribution and sources of water-soluble organic nitrogen associated with atmospheric particles in Guangzhou[J]. Geochimica, 48(1): 57-66. | |
[60] | 施双双, 王红磊, 朱彬, 等, 2017. 冬季临安大气本底站气溶胶来源解析及其粒径分布特征[J]. 环境科学, 38(10): 4024-4033. |
SHI S S, WANG H L, ZHU B, et al., 2017. Source apportionment and size distribution of aerosols at Lin’an atmosphere regional background station during winter[J]. Environmental Science, 38(10): 4024-4033. | |
[61] | 孙有昌, 姜楠, 王申博, 等, 2020. 安阳市大气PM2.5中水溶性离子季节特征及来源解析[J]. 环境科学, 41(1): 75-81. |
SUN Y C, JIANG N, WANG S B, et al., 2020. Seasonal characteristics and source analysis of water-soluble ions in PM2.5 of Anyang City[J]. Environmental Science, 41(1): 75-81. | |
[62] | 王牧青, 2022. 新冠疫情对浙江省用电的影响——基于区县数据的视角[D]. 成都: 西南财经大学. |
WANG M Q, 2022. Impact of the COVID-19 on electricity consumption in Zhejiang Province: A perspective based on district and county data[D]. Chengdu: Southwestern University of Finance and Economics. | |
[63] | 王伟, 2017. 南京市大气PM2.5中重金属元素时空分布、来源及健康风险评价[D]. 南京: 南京信息工程大学. |
WANG W, 2017. Spatial-temporal variation, sources and risk assessment of heavy metals in ambient PM2.5 of Nanjing[D]. Nanjing: Nanjing University of Information Science and Technology. | |
[64] | 吴丹, 沈开源, 盖鑫磊, 等, 2017. 南京北郊大气气溶胶中水溶性有机碳 (WSOC) 的污染特征[J]. 中国环境科学, 37(9): 3237-3246. |
WU D, SHEN K Y, GAI X L, et al., 2017. Characteristics of water- soluble organic carbon (WSOC) in atmospheric particulate matter at northern suburb of Nanjing[J]. China Environmental Science, 37(9): 3237-3246. | |
[65] | 薛国强, 朱彬, 王红磊, 2014. 南京市大气颗粒物中水溶性离子的粒径分布和来源解析[J]. 环境科学, 35(5): 1633-1643. |
XUE G Q, ZHU B, WANG H L, 2014. Size distributions and source apportionment of soluble ions in aerosol in Nanjing[J]. Environmental Science, 35(5): 1633-1643. | |
[66] | 张毓秀, 于兴娜, 刘偲嘉, 等, 2020. 南京江北新区大气颗粒物化学组分的粒径分布特征[J]. 环境科学, 41(11): 4803-4812. |
ZHANG Y X, YU X N, LIU S J, et al., 2020. Size distribution of particulate chemical components in Nanjing Jiangbei new area[J]. Environmental Science, 41(11): 4803-4812. | |
[67] | 张园园, 2017. 南京北郊PM2.5中水溶性离子特征在线监测研究[D]. 南京: 南京信息工程大学. |
ZHANG Y Y, 2017. Charadteristic of water-soluble ions in PM2.5 in the northern suburb of Nanjing based on on-line monitoring[D]. Nanjing: Nanjing University of Information Science and Technology. | |
[68] | 郑龙飞, 2016. 南京地区细颗粒物污染特征及灰霾事件成因研究[D]. 济南: 山东大学. |
ZHENG L F, 2016. Atmospheric fine particles and haze pollutions in Nanjing[D]. Ji’nan: Shandong University. |
[1] | 张莉, 李铖, 谭皓泽, 韦家怡, 程炯, 彭桂香. 广州典型城市林地对大气颗粒物的削减效应及影响因素[J]. 生态环境学报, 2023, 32(2): 341-350. |
[2] | 王占永, 陈昕, 胡喜生, 何红弟, 蔡铭, 彭仲仁. 植物屏障影响路边大气颗粒物分布机理及研究方法的进展[J]. 生态环境学报, 2022, 31(5): 1047-1058. |
[3] | 朱旭, 李海梅, 李彦华, 孙迎坤, 田园. 8种灌木对大气颗粒物污染的生理响应[J]. 生态环境学报, 2022, 31(3): 535-545. |
[4] | 赵晓亮, 郭猛, 吕美婷, 赵雪莹, 姜瑰国, 黄媛媛, 王凡, 姬亚芹. 阜新市绿化树种对大气颗粒物及重金属滞留能力研究[J]. 生态环境学报, 2021, 30(8): 1662-1671. |
[5] | 董鑫, 郎嘉钰, 楚原梦冉, 赵姗姗, 张晋东, 白文科. 川金丝猴家域的季节性差异[J]. 生态环境学报, 2021, 30(7): 1342-1352. |
[6] | 黄成, 吴月颖, 吉恒宽, 陈丽铭, 李倍莹, 符传良, 李建宏, 吴蔚东, 吴治澎. 海南典型水稻土厌氧铁还原特征对DOM分子特性的响应[J]. 生态环境学报, 2021, 30(5): 957-967. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||