[1] |
ALZU’BI F, AL-RAWABDEH A, ALMAGBILE A, 2024. Predicting air quality using random forest: A case study in Amman-Zarqa[J]. The Egyptian Journal of Remote Sensing and Space Sciences, 27(3): 604-613.
|
[2] |
HUBEL D H, WIESEL T N, 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex[J]. The Journal of Physiology, 160(1): 106-154.
|
[3] |
KE H B, GONG S L, HE J J, et al., 2022. Development and application of an automated air quality forecasting system based on machine learning[J]. Science of The Total Environment, 806(Part 3): 151204.
|
[4] |
KUMAR U, JAIN V K, 2010. ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO)[J]. Stochastic Environmental Research and Risk Assessment, 24: 751-760.
|
[5] |
LIU C C, LIN T C, YUAN K Y, et al., 2022. Spatio-temporal prediction and factor identification of urban air quality using support vector machine[J]. Urban Climate, 41: 101055.
|
[6] |
LIU C F, WU C Y, KANG X Y, et al., 2023. Evaluation of the prediction performance of air quality numerical forecast models in Shenzhen[J]. Atmospheric Environment, 314: 120058.
|
[7] |
VLACHOGIANNI A, KASSOMENOS P, KARPPINEN A, et al., 2011. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki[J]. Science of the Total Environment, 409(8): 1559-1571.
|
[8] |
WU X K, GU X Y, WEE K W, 2024. ADNNet: Attention-based deep neural network for Air Quality Index prediction[J]. Expert Systems with Applications, 258: 125128.
|
[9] |
ZHOU G Q, XU J M, XIE Y, et al., 2017. Numerical air quality forecasting over eastern China: An operational application of WRF-Chem[J]. Atmospheric Environment, 153: 94-108.
|
[10] |
陈仁杰, 陈秉衡, 阚海东, 2010. 我国113个城市大气颗粒物污染的健康经济学评价[J]. 中国环境科学, 30(3): 410-415.
|
|
CHEN Y J, CHEN B H, KAN H D, 2010. A health-based economic assessment of particulate air pollution in 113 Chinese cities[J]. China Environmental Science, 30(3): 410-415.
|
[11] |
陈伟, 徐学哲, 刘文清, 2024. 2017-2021年苏皖鲁豫交界区域PM2.5和O3时空变化特征及影响因素[J]. 环境科学, 45(4): 1950-1962.
|
|
CHEN W, XU X Z, LIU W Q, 2024. Spatial-temporal Characteristics and Influencing Factors of PM2.5 and Ozone in the Border Area of Jiangsu, Anhui, Shandong, and Henan from 2017 to 2021[J]. Environmental Science, 45(4): 1950-1962.
|
[12] |
郭雯雯, 陈永金, 刘阁, 等, 2020. 2016-2019年长江中游城市群空气质量时空变化特征及影响因素分析[J]. 生态环境学报, 29(10): 2034-2044.
DOI
|
|
GUO W W, CHEN Y J, LIU G, et al., 2020. Analysis on the characteristics and influencing factors of air quality of urban agglomeration in the middle reaches of the Yangtze River in 2016 to 2019[J]. Ecology and Environmental Sciences, 29(10): 2034-2044.
|
[13] |
蒋伯琪, 浮天, 程昳璇, 等, 2024. 沈阳市臭氧污染特征及其影响因素[J]. 生态环境学报, 33(1): 72-79.
DOI
|
|
JIANG B Q, FU T, CHENG Y X, et al., 2024. Characteristics of ozone pollution and its influencing factors in Shenyang[J]. Ecology and Environmental Sciences, 33(1): 72-79.
|
[14] |
雷冰冰, 牟云飞, 王晓峰, 等, 2024. 改进白鲸优化卷积网络在银川市空气质量预测中的应用[J]. 安全与环境学报, 24(10): 4079-4093.
|
|
LEI B B, MOU Y F, WANG X F, et al., 2024. Application of Improved Beluga Whale Optimization convolutional network for air quality prediction in Yinchuan City[J]. Journal of Safety and Environment, 24(10): 4079-4093.
|
[15] |
李杰, 翟亮, 桑会勇, 等, 2016. PM2.5浓度插值中不同空间插值方法对比[J]. 测绘科学, 41(4): 50-54, 101.
|
|
LI J, ZHAI L, SANG H Y, et al., 2016. Comparison of different spatial interpolation methods for PM2.5[J]. Science of Surveying and Mapping, 41(4): 50-54, 101.
|
[16] |
刘建伟, 宋志妍, 2022. 循环神经网络研究综述[J]. 控制与决策, 37(11): 2753-2768.
|
|
LIU J W, SONG Z Y, 2022. Overview of recurrent neural networks[J]. Control and Decision, 37(11): 2753-2768.
|
[17] |
罗珂, 田立涛, 何豫, 等, 2023. 基于文献计量的城市空间结构与生态环境关联性研究[J]. 生态学报, 43(17): 7352-7365.
|
|
LUO K, TIAN L T, HE Y, et al., 2023. A bibliometric-based study on the correlation between urban spatial structure and ecological environment[J]. Acta Ecologica Sinica, 43(17): 7352-7365.
|
[18] |
钱坤, 张克凡, 2023. 大数据融合在空气质量预测领域的应用——以宁波市为例[J]. 中国管理信息化, 26(11): 178-182.
|
|
QIAN K, ZHANG K F, 2023. Application of big data fusion in the field of air quality prediction: The case of Ningbo city[J]. China Management Informationization, 26(11): 178-182.
|
[19] |
薛生, 郑晓亮, 袁亮, 等, 2024. 基于机器学习的煤与瓦斯突出预测研究进展及展望[J]. 煤炭学报, 49(2): 664-694.
|
|
XUE S, ZHENG X L, YUAN L, et al., 2024. A review on coal and gas outburst prediction based on machine learning[J]. Journal of China Coal Society, 49(2): 664-694.
|
[20] |
赵越, 2007. 大气污染对城市居民的健康效应及经济损失研究[D]. 北京: 中国地质大学(北京).
|
|
ZHAO Y, 2007. Study on health effects and economic loss on urban citizens caused by air pollution[D]. Beijing: China University of Geosciences (Beijing).
|
[21] |
王宇蝶, 滕泽宇, 陈智文, 等, 2024. 环渤海地区空气质量时空变化特征及动态预测[J]. 中国环境监测, 40(1): 68-78.
|
|
WANG Y D, TENG Z Y, CHEN Z W, et al., 2024. Temporal and spatial variation characteristics and dynamic prediction of air quality in the Bohai Rim Region[J]. Environmental Monitoring in China, 40(1): 68-78.
|
[22] |
郑远攀, 李广阳, 李晔, 2019. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 55(12): 20-36.
DOI
|
|
ZHENG Y P, LI G Y, LI Y, 2019. Survey of application of deep learning in image recognition[J]. Computer Engineering and Applications, 55(12): 20-36.
DOI
|