生态环境学报 ›› 2024, Vol. 33 ›› Issue (11): 1727-1736.DOI: 10.16258/j.cnki.1674-5906.2024.11.007
收稿日期:
2024-05-16
出版日期:
2024-11-18
发布日期:
2024-12-06
通讯作者:
*方晰。E-mail: fangxizhang@sina.com作者简介:
何紫琪(1997年生),硕士研究生,研究方向为农业面源污染阻控研究。E-mail: 522617067@qq.com
基金资助:
HE Ziqi1(), FANG Xi1,2,*(
), HONG Yu1,3
Received:
2024-05-16
Online:
2024-11-18
Published:
2024-12-06
摘要:
控制和降低农田退水污染物浓度是防治灌区及水体富营养化的关键。农田排水沟是农田退水流经的首个场所,为了探究植物配置对农田排水沟底泥粒度特征及碳氮磷去除效果的影响,在宁夏引黄灌区3条独立的农田排水沟:芦苇(Phragmites australis)模式(沟-1),芦苇+香蒲(Typha orientalis)模式(沟-2),芦苇+香蒲+睡莲(Nymphaea tetragona)、狐尾藻(Myriophyllum verticillatum)、水葱(Scirpus validus)模式(沟-3)采集0-20 cm底泥,测定底泥颗粒组成、粒度参数及碳氮磷含量。结果表明:3条排水沟底泥属于粉砂壤土,以粉粒为主,黏粒占比最低,平均粒级为5.20-6.07Φ;分选性较差,偏度为近对称和正偏,峰度为中等和尖窄,分形维数为2.19-2.63,质地偏粗;随植物种类和覆盖度增加,底泥粉粒、黏粒体积分数显著增加,砂粒体积分数显著下降,粒度参数显著增大;沟-1、沟-2底泥粒度频率曲线呈单峰分布,沟-3呈双峰分布,粒度概率累积曲线以跃移组分为主,沟-3悬移组分累积体积分数显著高于沟-1、沟-2,植物配置显著改变底泥颗粒组成和粒度参数;底泥颗粒组成和粒度参数对碳氮磷含量影响显著,其中,分形维数、黏粒体积分数是关键影响因素,表明排水沟植物配置通过影响底泥颗粒组成、粒度参数而显著影响底泥对碳氮磷吸附、固定和分解消减能力,沟-2底泥对碳氮磷吸附固定能力最强,沟-3底泥对碳氮磷分解消减能力最强。因此,农田排水沟混种多种植物,适当提高植被覆盖度,可减弱水动力条件,提高底泥粉粒、黏粒占比,优化底泥粒度参数,增强底泥对有机污染物和氮磷的净化能力。
中图分类号:
何紫琪, 方晰, 洪瑜. 农田排水沟植物配置对底泥粒度特征及碳氮磷去除效果的影响[J]. 生态环境学报, 2024, 33(11): 1727-1736.
HE Ziqi, FANG Xi, HONG Yu. Influence of Plant Configuration on Sediment Size and the Removal of Carbon, Nitrogen and Phosphorus in Agricultural Drainage Ditches[J]. Ecology and Environment, 2024, 33(11): 1727-1736.
名称 | 沟长/m | 优势种 | 覆盖度/% | 植物配置 |
---|---|---|---|---|
沟-1 | 350 | 芦苇 Phragmites australis | 20‒30 | 沿农田排水沟水流方向自然生长 |
沟-2 | 350 | 芦苇 Phragmites australis、 香蒲 Typha orientalis | 30‒40 | 沿排水沟水流方向, 在自然生长芦苇、香蒲地段上补种香蒲, 芦苇、香蒲的比例约为2꞉1 |
沟-3 | 350 | 芦苇 Phragmites australis、香蒲 Typha orientalis、睡莲 Nymphaea tetragona、狐尾藻 Myriophyllum verticillatum、水葱 Scirpus validus | 60‒70 | 沿排水沟水流方向, 在芦苇、香蒲自然生长地段分3段种植, 第1段种植睡莲、香蒲, 芦苇和香蒲、睡莲的比例约为2꞉1꞉4; 第2段种植狐尾藻、香蒲, 芦苇和香蒲、狐尾藻比例约为2꞉1꞉4; 第3段种植水葱、香蒲, 芦苇和香蒲、水葱比例约为2꞉1꞉4 |
表1 农田排水沟3种植物配置的基本概况
Table 1 Basic overview of three plant planting configurations in farmland drainage ditches
名称 | 沟长/m | 优势种 | 覆盖度/% | 植物配置 |
---|---|---|---|---|
沟-1 | 350 | 芦苇 Phragmites australis | 20‒30 | 沿农田排水沟水流方向自然生长 |
沟-2 | 350 | 芦苇 Phragmites australis、 香蒲 Typha orientalis | 30‒40 | 沿排水沟水流方向, 在自然生长芦苇、香蒲地段上补种香蒲, 芦苇、香蒲的比例约为2꞉1 |
沟-3 | 350 | 芦苇 Phragmites australis、香蒲 Typha orientalis、睡莲 Nymphaea tetragona、狐尾藻 Myriophyllum verticillatum、水葱 Scirpus validus | 60‒70 | 沿排水沟水流方向, 在芦苇、香蒲自然生长地段分3段种植, 第1段种植睡莲、香蒲, 芦苇和香蒲、睡莲的比例约为2꞉1꞉4; 第2段种植狐尾藻、香蒲, 芦苇和香蒲、狐尾藻比例约为2꞉1꞉4; 第3段种植水葱、香蒲, 芦苇和香蒲、水葱比例约为2꞉1꞉4 |
粒径组分 | 沟-1 | 沟-2 | 沟-3 | |
---|---|---|---|---|
<0.002 mm黏粒 | 0.04±0.01a | 0.06±0.05a | 7.52±2.74b | |
0.002‒0.05 mm粉粒 | 0.002‒0.005 mm 细粉粒 | 8.15±0.47a | 9.48±0.97b | 11.15±0.37c |
0.005‒0.01 mm 中粉粒 | 14.13±0.87b | 17.16±1.07a | 18.07±0.83a | |
0.01‒0.05 mm 粗粉粒 | 46.06±1.35b | 49.15±1.76a | 46.17±2.00b | |
合计 | 68.34±2.60b | 75.80±3.30a | 75.39±1.72a | |
0.05‒2.0 mm 砂粒 | 0.05‒0.1 mm 极细砂 | 16.56±0.61a | 13.79±0.93b | 11.65±1.37c |
0.1‒0.25 mm细砂 | 10.30±1.19a | 6.84±1.61b | 4.23±0.57c | |
0.25‒0.5 mm中砂 | 3.40±0.27a | 2.76±0.70a | 0.94±0.34b | |
0.5‒1.0 mm粗砂 | 1.28±0.62a | 0.75±0.25b | 0.26±0.08b | |
1.0‒2.0 mm极粗砂 | 0.08±0.16 | 0.01±0.01 | 0.00±0.00 | |
合计 | 31.62±2.60c | 24.14±3.31b | 17.08±2.11a |
表2 农田排水沟不同植物配置下底泥不同粒径组分的体积分数
Table 2 Volume percentage of sediment with different particle size components under different planting configurations in farmland drainage ditch %
粒径组分 | 沟-1 | 沟-2 | 沟-3 | |
---|---|---|---|---|
<0.002 mm黏粒 | 0.04±0.01a | 0.06±0.05a | 7.52±2.74b | |
0.002‒0.05 mm粉粒 | 0.002‒0.005 mm 细粉粒 | 8.15±0.47a | 9.48±0.97b | 11.15±0.37c |
0.005‒0.01 mm 中粉粒 | 14.13±0.87b | 17.16±1.07a | 18.07±0.83a | |
0.01‒0.05 mm 粗粉粒 | 46.06±1.35b | 49.15±1.76a | 46.17±2.00b | |
合计 | 68.34±2.60b | 75.80±3.30a | 75.39±1.72a | |
0.05‒2.0 mm 砂粒 | 0.05‒0.1 mm 极细砂 | 16.56±0.61a | 13.79±0.93b | 11.65±1.37c |
0.1‒0.25 mm细砂 | 10.30±1.19a | 6.84±1.61b | 4.23±0.57c | |
0.25‒0.5 mm中砂 | 3.40±0.27a | 2.76±0.70a | 0.94±0.34b | |
0.5‒1.0 mm粗砂 | 1.28±0.62a | 0.75±0.25b | 0.26±0.08b | |
1.0‒2.0 mm极粗砂 | 0.08±0.16 | 0.01±0.01 | 0.00±0.00 | |
合计 | 31.62±2.60c | 24.14±3.31b | 17.08±2.11a |
名称 | 平均粒级 Mz (Φ) | 分选系数 σ0 (Φ) | 偏度 Sk | 峰度 Kg | 分形维数D |
---|---|---|---|---|---|
沟-1 | 5.20±0.12c | 1.82±0.09ab | -0.02±0.02b | 0.98±0.04b | 2.19±0.01b |
沟-2 | 5.54±0.16b | 1.70±0.08b | -0.05±0.02b | 0.98±0.02b | 2.22±0.06b |
沟-3 | 6.07±0.25a | 1.98±0.22a | 0.13±0.06a | 1.15±0.11a | 2.63±0.04a |
表3 农田排水沟不同植物配置下底泥的粒度参数
Table 3 Grain size parameters of sediment in farmland drainage ditch under different planting configurations
名称 | 平均粒级 Mz (Φ) | 分选系数 σ0 (Φ) | 偏度 Sk | 峰度 Kg | 分形维数D |
---|---|---|---|---|---|
沟-1 | 5.20±0.12c | 1.82±0.09ab | -0.02±0.02b | 0.98±0.04b | 2.19±0.01b |
沟-2 | 5.54±0.16b | 1.70±0.08b | -0.05±0.02b | 0.98±0.02b | 2.22±0.06b |
沟-3 | 6.07±0.25a | 1.98±0.22a | 0.13±0.06a | 1.15±0.11a | 2.63±0.04a |
图1 农田排水沟不同植物配置下底泥粒度频率与概率累积曲线 n=3,下同
Figure 1 Sediment grain size frequency and probability accumulation curve under different planting configurations in farmland drainage ditch
底泥理化指标 | 沟-1 | 沟-2 | 沟-3 |
---|---|---|---|
wWC/% | 35.40±2.84a | 41.12±6.75a | 37.71±6.60a |
EC/(mS·cm-1) | 0.47±0.02a | 0.36±0.08b | 0.28±0.03c |
pH | 8.16±0.05c | 8.32±0.04b | 8.54±0.13a |
wSOC/(g·kg-1)) | 7.80±0.72a | 8.93±1.35a | 5.14±1.16b |
wTN/(g·kg-1) | 0.77±0.07a | 0.89±0.12a | 0.50±0.04b |
wTP/(g·kg-1) | 0.35±0.03ab | 0.39±0.02a | 0.34±0.02b |
w(NH4+-N)/(mg·kg-1) | 4.59±1.64a | 5.74±1.66a | 2.47±0.36b |
w(NO3--N)/(mg·kg-1) | 0.93±0.14a | 1.13±0.21a | 1.01±0.20a |
wC/wN | 10.17±0.08a | 10.03±0.18a | 10.28±1.63a |
wC/wP | 22.21±0.91a | 22.80±2.66a | 15.30±2.98b |
wN/wP | 2.20±0.08a | 2.27±0.24a | 1.49±0.11b |
表4 农田排水沟不同植物配置下底泥的理化性质
Table 4 Physical and chemical properties of sediment in farmland drainage ditch under different planting configurations
底泥理化指标 | 沟-1 | 沟-2 | 沟-3 |
---|---|---|---|
wWC/% | 35.40±2.84a | 41.12±6.75a | 37.71±6.60a |
EC/(mS·cm-1) | 0.47±0.02a | 0.36±0.08b | 0.28±0.03c |
pH | 8.16±0.05c | 8.32±0.04b | 8.54±0.13a |
wSOC/(g·kg-1)) | 7.80±0.72a | 8.93±1.35a | 5.14±1.16b |
wTN/(g·kg-1) | 0.77±0.07a | 0.89±0.12a | 0.50±0.04b |
wTP/(g·kg-1) | 0.35±0.03ab | 0.39±0.02a | 0.34±0.02b |
w(NH4+-N)/(mg·kg-1) | 4.59±1.64a | 5.74±1.66a | 2.47±0.36b |
w(NO3--N)/(mg·kg-1) | 0.93±0.14a | 1.13±0.21a | 1.01±0.20a |
wC/wN | 10.17±0.08a | 10.03±0.18a | 10.28±1.63a |
wC/wP | 22.21±0.91a | 22.80±2.66a | 15.30±2.98b |
wN/wP | 2.20±0.08a | 2.27±0.24a | 1.49±0.11b |
图2 底泥理化性质与其颗粒组成、粒度参数的相关系数 *在0.05水平相关性显著;**在0.01水平相关性极显著;红色为正相关,蓝为负相关
Figure 2 Correlation coefficient between particle composition, particle size parameters and physical and chemical properties of sediment
图3 底泥理化性质与其颗粒组成、粒度参数的冗余分析 绿色代表底泥理化性质;橙色代表底泥粒度组成及粒度参数
Figure 3 Redundancy analysis of sediment particle composition, particle size parameters and physical and chemical properties of sediment
[1] | BALYAN G, PANDEY A K, 2024. Root exudates, the warrior of plant life: Revolution below the ground[J]. South African Journal of Botany, 164: 280-287. |
[2] | GIBLIN A E, HOPKINSON C S, TUCKER J, 1997. Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts[J]. Estuaries, 20(2): 346-364. |
[3] | GUO Q H, WU W L, 2024. Dynamics of soil water and nitrate within the vadose zone simulated by the WHCNS model calibrated based on deep learning[J]. Agricultural Water Management, 292: 108653. |
[4] | LIIKANEN A, MURTONIEMI T, TANSKANEN H, et al., 2002. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake[J]. Biogeochemistry, 59(3): 269-286. |
[5] | LI C F, WANG Z C, LI Z W, et al., 2021. Soil erosion impacts on nutrient deposition in a typical karst watershed[J]. Agriculture Ecosystems & Environment, 322: 107649. |
[6] | LIU B, ZHAO, H., YANG F, et al., 2023. A new aeolian activity proxy based on analysis of the grain size characteristics of surface soils across the Tengger Desert, northwest China, and its application to a Quaternary aeolian succession[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 622: 111594. |
[7] | LU J N, FENG S, WANG S K, et al., 2023. Patterns and driving mechanism of soil organic carbon, nitrogen, and phosphorus stoichiometry across northern China's desert-grassland transition zone[J]. Catena, 220(Part A): 106695. |
[8] | SILAN G, BUOSI A, BERTOLINI C, et al., 2024. Dynamics and drivers of carbon sequestration and storage capacity in Phragmites australis-dominated wetlands[J]. Estuarine, Coastal and Shelf Science, 298: 108640. |
[9] | ZHAO S, WANG J H, FENG S J, et al., 2022. Effects of ecohydrological interfaces on migrations and transformations of pollutants: A critical review[J]. Science of the Total Environment, 804: 150140. |
[10] | ZHANG T P, LEI Q L, LIANG X, et al., 2023. Optimization of the N footprint model and analysis of nitrogen pollution in irrigation areas: A case study of Ningxia Hui Autonomous Region, China[J]. Journal of Environmental Management, 340: 118002. |
[11] | 次瑞敏, 王莉, 可宇娜, 2020. 修复后临汾湿地公园土壤养分状况及沉积物污染特征[J]. 水土保持学报, 34(1): 371-379, 384-384. |
CI R M, WANG L, KE Y N, 2020. Soil nutrient status and sediment pollution characteristics of Linfen wetland park after rehabilitation[J]. Journal of Soil and Water Conservation, 34(1): 371-379, 384-384. | |
[12] | 伏耀龙, 张兴昌, 王金贵, 2012. 岷江上游干旱河谷土壤粒径分布分形维数特征[J]. 农业工程学报, 28(5): 120-125. |
FU Y L, ZHANG X C, WANG J G, 2012. Fractal dimension of soil particle-size distribution characteristics in dry valley of upper Minjiang river[J]. Transactions of the Chinese Society of Agricultural Engineering, 28(5): 120-125. | |
[13] | 樊子豪, 张瑞香, 冯雪琦, 等, 2023. 河滨湿地不同植物群落根系分布特征与土壤理化性质研究——以黄河中游荥阳段为例[J]. 生态学报, 43(11): 4772-4781. |
FAN Z H, ZHANG R X, FENG X Q, et al., 2023. Characteristics of root distribution and soil physical and chemical properties of different vegetation communities in tidal flat wetland: A case study of Xingyang section of Zhengzhou in the middle reaches of the Yellow River[J]. Acta Ecologica Sinica, 43(11): 4772-4781. | |
[14] | 郭忠升, 2011. 水资源紧缺地区土壤水分植被承载力论述[J]. 林业科学, 47(5): 140-144. |
GUO Z S, 2011. A Review of soil water carrying capacity for vegetation in water-limited regions[J]. Scientia Silvae Sinicae, 47(5): 140-144. | |
[15] | 洪瑜, 王英, 王芳, 等, 2020. 不同水生植物组合对稻田退水的氮磷净化效果[J]. 环境科学与技术, 43(3): 110-115. |
HONG Y, WANG Y, WANG F, et al., 2020. Purification effect of nitrogen and phosphorus in the return flow of rice paddy by different hydrophyte combinations[J]. Environmental Science & Technology, 43(3): 110-115. | |
[16] | 郝连成, 远继东, 郑立龙, 等, 2022. 湛江湾海域表层沉积物粒度特征及沉积环境[J]. 海洋地质前沿, 38(8): 1-10. |
HAO L C, YUAN J D, ZHENG L L, et al., 2022. Grain-size characteristics of surface sediment and sedimentary environment in Zhanjiang Bay[J]. Marine Geology Frontiers, 38(8): 1-10. | |
[17] | 金鑫, 单保庆, 李思敏, 等, 2016. 北方典型干旱缺水型河流氮磷时空分布特征与富营养化评价[J]. 环境工程学报, 10(7): 3538-3544. |
JIN X, SHAN B Q, LI S M, et al., 2016. Temporal and spatial variation of nitrogen and phosphorus and eutrophication assessment in typical arid river in northern China[J]. Chinese Journal of Environmental Engineering, 10(7): 3538-3544. | |
[18] | 吕圣桥, 高鹏, 耿广坡, 等, 2011. 黄河三角洲滩地土壤颗粒分形特征及其与土壤有机质的关系[J]. 水土保持学报, 25(6): 134-138. |
LÜ S Q, GAO P, GENG G P, et al., 2011. Characteristics of soil particles and their correlation with soil organic matter in lowlands of the Yellow River Delta[J]. Journal of Soil and Water Conservation, 25(6): 134-138. | |
[19] |
李胜男, 崔丽娟, 宋洪涛, 等, 2012. 不同湿地植物土壤氮、磷去除能力比较[J]. 生态环境学报, 21(11): 1870-1874.
DOI |
LI S N, CUI L J, SONG H T, et al., 2012. Comparison on purification capacity of soil nitrogen and phosphorus in different wetland plants[J]. Ecology and Environmental Sciences, 21(11): 1870-1874. | |
[20] | 李易珺, 杨自辉, 郭树江, 等, 2020. 青土湖干涸湖底2种典型固沙植物群落土壤粒径分布分形特征与养分关系研究[J]. 西北林学院学报, 35(5): 62-67. |
LI Y J, YANG Z H, GUO S J, et al., 2020. The relationship between fractal characteristics of soil particle size and soil nutrients of the soils of two typical sand-fixing plant communities at the bottom of the Qingtuhu Lake[J]. Journal of Northwest Forestry University, 35(5): 62-67. | |
[21] |
刘麟, 沙栢平, 高雪芹, 等, 2021. 宁夏引黄灌区水肥耦合对苜蓿地土壤分形特征和养分的影响[J]. 草地学报, 29(11): 2538-2546.
DOI |
LIU L, SHA B P, GAO X Q, et al., 2021. Effect of water and fertilizer coupling on soil fractal characteristics and nutrients of alfalfa fields in the Ningxia Yellow River diversion irrigation area[J]. Acta Agrestia Sinica, 29(11): 2538-2546.
DOI |
|
[22] | 卜晓燕, 米文宝, 许浩, 等, 2016. 宁夏平原不同类型湿地土壤碳氮磷含量及其生态化学计量学特征[J]. 浙江大学学报(农业与生命科学版), 42(1): 107-118. |
PU X Y, MI W B, XU H, et al., 2016. Contents and ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in wetlands of Ningxia plain[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 42(1): 107-118. | |
[23] | 潘延鑫, 冯绍元, 井思媛, 等, 2021. 盐碱化改良区农田排水沟水体与底泥界面微环境特征分析[J]. 农业工程学报, 37(2): 258-267. |
PAN Y X, FENG S Y, JING S Y, et al., 2021. Characteristics analysis of micro-environment of sediment-water interface in drainage ditches in reclamation areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 37(2): 258-267. | |
[24] |
潘昱伶, 璩向宁, 李琴, 等, 2023. 黄河宁夏段典型滩涂湿地土壤理化因子空间分布特征及其对微地形的响应[J]. 生态环境学报, 32(4): 668-677.
DOI |
PAN Y L, QU X N, LI Q, et al., 2023. Spatial distribution characteristics of soil physicochemical factors and their response to microtopography in a typical beach wetland of the Yellow River in Ningxia[J]. Ecology and Environmental Sciences, 32(4): 668-677. | |
[25] | 孙悦超, 麻硕士, 陈智, 等, 2010. 植被盖度和残茬高度对保护性耕作农田防风蚀效果的影响[J]. 农业工程学报, 26(8): 156-159. |
SUN Y C, MA S S, CHEN Z, et al., 2010. Influences of vegetation coverage and residual stubble height on preventing resistance to winderosion effect of conservation tillage farmland[J]. Transactions of the Chinese Society of Agricultural Engineering, 26(8): 156-159. | |
[26] | 孙博, 解建仓, 汪妮, 等, 2012. 芦苇对盐碱地盐分富集及改良效应的影响[J]. 水土保持学报, 26(3): 92-96. |
SUN B, XIE J C, WANG N, et al., 2012. Effect of reeds on salt enrichment and improvement of saline-alkali land[J]. Journal of Soil and Water Conservation, 26(3): 92-96. | |
[27] | 师自香, 孙志高, 胡星云, 等, 2022. 闽江河口芦苇和短叶茳芏空间扩展对湿地植物-土壤系统氮分布及转运特征的影响[J]. 环境科学学报, 42(9): 301-311. |
SHI Z X, SUN Z G, HU X Y, et al., 2022. Effect of spatial expansion between Phragmites australis and Cyperus malaccensis on distribution and transfer of nitrogen in plant-soil system of marshes in the Min River estuary[J]. Acta Scientiae Circumstantiae, 42(9): 301-311. | |
[28] | 孙清凡, 钱海燕, 陈莎莎, 等, 2023. 鄱阳湖泗洲头湿地土壤粒度组成及其对有机碳的影响[J]. 华中农业大学学报, 42(1): 197-204. |
SUN Q F, QIAN H Y, CHEN S S, et al., 2023. Composition of soil grain size and its effect on organic carbon in Sizhoutou wetland of Poyang Lake[J]. Journal of Huazhong Agricultural University, 42(1): 197-204. | |
[29] | 王富, 贾志军, 董智, 等, 2009. 不同生态修复措施下水库水源涵养区土壤粒径分布的分形特征[J]. 水土保持学报, 23(5): 113-117. |
WANG F, JIA Z J, DONG Z, et al., 2009. Fractal features of soil particle Size distribution on water source conservation areas under different measures of ecological restoration[J]. Journal of Soil and Water Conservation, 23(5): 113-117. | |
[30] |
王为东, 王亮, 聂大刚, 等, 2010. 白洋淀芦苇型水陆交错带水化学动态及其净化功能研究[J]. 生态环境学报, 19(3): 537-543.
DOI |
WANG W D, WANG L, NIE D G, et al., 2010. Studies on hydrochemical changes and purification effects of the Phragmites australis-dominated land/inland water ecotones in Baiyangdian Lake[J]. Ecology and Environmental Sciences, 19(3): 537-543. | |
[31] | 王勇辉, 何旭, 海米提·依米提, 2014. 艾比湖湿地土壤粒度特征分析[J]. 干旱地区农业研究, 32(6): 183-187. |
WANG Y H, HE X, HAIMITI Y, 2014. Analysis of soil granularity in Ebinur Lake wetland[J]. Agricultural Research in the Arid Areas, 32(6): 183-187. | |
[32] | 王则宇, 崔向新, 蒙仲举, 等, 2018. 风水复合侵蚀下锡林河流域不同管理方式草地表土粒度特征[J]. 土壤, 50(4): 819-825. |
WANG Z Y, CUI X X, MENG Z J, et al., 2018. Soil particle size distributions of different management styles under complex wind and water erosion in Xilin River Basin[J]. Soils, 50(4): 819-825. | |
[33] |
王明明, 刘新平, 李玉霖, 等, 2019. 不同植被盖度沙质草地生长季土壤水分动态[J]. 中国沙漠, 39(5): 54-61.
DOI |
WANG M M, LIU X P, LI Y L, et al., 2019. Soil moisture dynamic under different plant coverages in sandy grassland during growing season[J]. Journal of Desert Research, 39(5): 54-61.
DOI |
|
[34] | 王亚露, 赵建宁, 许彦骁, 等, 2022. 种间竞争对香蒲与芦苇生长的影响[J]. 生态学报, 42(7): 2891-2898. |
WANG Y L, ZHAO J N, XU Y X, et al., 2022. Effects of interspecific competition on the growth of Typha domingensis and Phragmites australis[J]. Acta Ecologica Sinica, 42(7): 2891-2898. | |
[35] | 吴林川, 2023. 芦苇对黄河三角洲湿地土壤理化性质及盐分的影响[J]. 东北林业大学学报, 51(3): 103-106. |
WU L C, 2023. Effects of Phragmites australis on soil physicochemical properties and salinity in wetland of the Yellow River Delta[J]. Journal of Northeast Forestry University, 51(3): 103-106. | |
[36] | 王传盈, 王凯月, 王浩然, 等, 2024. 黄河下游典型湿地土壤养分及其生态化学计量特征[J]. 环境科学, 45(3): 1674-1683. |
WANG C Y, WANG K Y, WANG H R, et al., 2024. Nutrients and ecological stoichiometry characteristics of typical wetland soils in the lower Yellow River[J]. Environmental Science, 45(3): 1674-1683. | |
[37] | 杨文, 周脚根, 张文钊, 2023. 洞庭湖源头流域典型塘库水体氮磷组分、pH、DO及水温昼夜变异特征[J]. 长江流域资源与环境, 32(2): 384-393. |
YANG W, ZHOU J G, ZHANG W Z, 2023. Diurnal variation of N and P component concentrations, pH, DO and water temperature in water bodies of typical ponds and reservoirs in the headstream of the Dongting lake basin[J]. Resources and Environment in the Yangtze Basin, 32(2): 384-393. | |
[38] | 张彩红, 茹豪, 武秀娟, 等, 2017. 庞泉沟流域土壤粒径分形维数特征[J]. 东北林业大学学报, 45(11): 83-88. |
ZHANG C H, RU H, WU X J, et al., 2017. Fractal dimension characteristics of soil particle size in Pangquangou catchment[J]. Journal of Northeast Forestry University, 45(11): 83-88. | |
[39] | 张剑, 宿力, 王利平, 等, 2019. 植被盖度对土壤碳、氮、磷生态化学计量比的影响——以敦煌阳关湿地为例[J]. 生态学报, 39(2): 580-589. |
ZHANG J, SU L, WANG L P, et al., 2019. The effect of vegetation cover on ecological stoichiometric ratios of soil carbon nitrogen and phosphorus: A case study of the Dunhuang Yangquan wetland[J]. Acta Ecologica Sinica, 39(2): 580-589. | |
[40] | 张嘉雯, 魏健, 刘利, 等, 2020. 衡水湖沉积物营养盐形态分布特征及污染评价[J]. 环境科学, 41(12): 5389-5399. |
ZHANG J W, WEI J, LIU L, et al., 2020. Distribution characteristics and pollution assessment of nutrients in Hengshui Lake sediments[J]. Environmental Science, 41(12): 5389-5399. | |
[41] | 张佛熠, 承勇, 阳雅荧, 等, 2023. 南昌不同城市化强度土壤粒度组成和分形特征及其影响因素[J]. 土壤, 55(5): 1138-1145. |
ZHANG F Y, CHENG Y, YANG Y Y, et al., 2023. Particle size composition, fractal characteristics and influencing factors of soils with different urbanization intensities in Nanchang[J]. Soil, 55(5): 1138-1145. | |
[42] | 张文馨, 范小莉, 王强, 等, 2020. 黄河三角洲植物多样性与生态系统多功能性间的关系[J]. 山东大学学报(理学版), 55(1): 110-116. |
ZHANG W X, FAN X L, WANG Q, et al., 2020. Delta relationship between plant diversity and ecosystem multifunctionality in the Yellow River[J]. Journal of Shandong University (Natural Science), 55(1): 110-116. | |
[43] | 张鹏, 张然然, 都韶婷, 2015. 植物体对硝态氮的吸收转运机制研究进展[J]. 植物营养与肥料学报, 21(3): 752-762. |
ZHANG P, ZHANG R R, DU S T, 2015. Research advances in nitrate uptake and transport in plants[J]. Journal of Plant Nutrition and Fertilizers, 21(3): 752-762. |
[1] | 戴晓爱, 马佳欣, 唐艺菱, 李为乐. 甘肃省植被时空动态变化及其归因分析[J]. 生态环境学报, 2024, 33(8): 1163-1173. |
[2] | 徐佳乐, 杨兴川, 赵文吉, 杨志强, 钟一雪, 师乐颜, 马鹏飞. 气候变化背景下内蒙古中西部植被覆盖度演变特征研究[J]. 生态环境学报, 2024, 33(7): 1008-1018. |
[3] | 汪东川, 李亭蓉, 王康健, 孙苗苗, 俞长锦, 杨菲, 杨琳, 张万恒, 刘云绮, 曾孔鹏. 金沙江观音岩库区植被覆盖度时空差异影响机制分析[J]. 生态环境学报, 2024, 33(7): 997-1007. |
[4] | 宋小龙, 马明德, 王鹏, 李陇堂, 米文宝, 宋永永. 2000—2022年宁夏不同地理分区生长季植被覆盖度时空非平稳性特征[J]. 生态环境学报, 2024, 33(6): 853-868. |
[5] | 张鐥文, 杨冉, 侯文星, 王丽丽, 刘爽, 宋汉扬, 赵文吉, 李令军. 生态补水前后永定河两岸植被覆盖度变化及驱动力分析[J]. 生态环境学报, 2023, 32(2): 264-273. |
[6] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
[7] | 李梦华, 韩颖娟, 赵慧, 王云霞. 基于地理探测器的宁夏植被覆盖度时空变化特征及其驱动因子分析[J]. 生态环境学报, 2022, 31(7): 1317-1325. |
[8] | 王瑞璠, 魏倪彬, 张仓皓, 鲍甜甜, 刘健, 余坤勇, 王帆. 南方丘陵区林下植被覆盖度无人机多角度遥感测量[J]. 生态环境学报, 2021, 30(12): 2294-2302. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||