生态环境学报 ›› 2023, Vol. 32 ›› Issue (6): 1123-1132.DOI: 10.16258/j.cnki.1674-5906.2023.06.014
杜丹丹1,2(), 高瑞忠1,2,*(
), 房丽晶1, 谢龙梅1
收稿日期:
2022-12-16
出版日期:
2023-06-18
发布日期:
2023-09-01
通讯作者:
*高瑞忠(1977年生),男,教授,博士,主要从事水资源评价、生态水文过程模拟研究。E-mail: ruizhonggao@qq.com作者简介:
杜丹丹(1968年生),女,高级实验师,硕士,主要从事土壤、水环境污染物的监测与分析评价的教学与研究。E-mail: duddpublic@163.com
基金资助:
DU Dandan1,2(), GAO Ruizhong1,2,*(
), FANG Lijing1, XIE Longmei1
Received:
2022-12-16
Online:
2023-06-18
Published:
2023-09-01
摘要:
为探明盐湖盆地土壤重金属铬(Cr)、汞(Hg)、砷(As)的分布特征及在其理化因素影响下呈现的分异规律,以内蒙吉兰泰盐湖盆地为研究区,采集土壤表层、50 cm、100 cm等不同土层深度150个样本,对Cr、Hg、As和土壤理化指标进行测试,以地统计学解析不同剖面土壤重金属空间变异特征及分布规律,运用多元统计和冗余分析法解释土壤中各土层重金属与土壤pH、TDS、TN、θ、土壤分形维数D等理化指标的赋存相关性。结果表明,土壤重金属Cr、Hg、As含量分别介于2.90—63.5、0.002—0.602、0.02—21.8 mg·kg-1之间,变幅较大;Cr、Hg、As的内蒙古地区背景值均在各层最大值和最小值之间,存在Cr、Hg、As的超标点或局部超标区域;各层土壤的Cr、Hg、As含量均在国家土壤污染风险管控标准范围之内;各土层Cr、Hg和100 cm处As的空间分布特征具有强烈的空间自相关性,土壤母质、气候环境等自然因素是土壤Cr、Hg、As含量的主要影响因素;As在表层、50 cm层属中等程度的空间自相关,空间变异是自然因素和随机因素的协同作用驱动所致;各层土壤理化指标对重金属变异特征影响效应具有相同的规律,贡献率排序D>pH>TDS>TN>θ,其中土壤分形维数D对土壤重金属的影响起主导性作用;在所有土层中分形维数对Cr、As产生正向影响,对Hg产生负向影响,达到极显著水平0.002(P<0.01)。研究成果可为旱区盐湖盆地土壤污染修复提供技术支持,为保护区域生态环境安全提供理论依据。
中图分类号:
杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132.
DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area[J]. Ecology and Environment, 2023, 32(6): 1123-1132.
层位 | 统计项目 | D | pH | w(TDS)/ (g·kg-1) | w(TN)/ (mg·kg-1) | w(soil water)/ % |
---|---|---|---|---|---|---|
表层 | 最小值 | 1.67 | 7.58 | 0.142 | 33.6 | 0.11 |
最大值 | 2.72 | 10.4 | 24.0 | 643 | 13.7 | |
平均值 | 2.42 | 9.35 | 4.11 | 214 | 4.64 | |
50 cm层 | 最小值 | 2.01 | 7.81 | 0.113 | 42.5 | 0.73 |
最大值 | 2.77 | 10.3 | 29.3 | 636 | 25.6 | |
平均值 | 2.48 | 9.31 | 3.70 | 208 | 7.79 | |
100 cm层 | 最小值 | 1.96 | 7.73 | 0.159 | 44.7 | 0.78 |
最大值 | 2.79 | 10.1 | 29.4 | 529 | 23.9 | |
平均值 | 2.44 | 9.24 | 4.26 | 177 | 8.22 |
表1 不同深度土壤理化指标统计特征
Table 1 Statistical characteristics of soil physical and chemical indicators at different depths
层位 | 统计项目 | D | pH | w(TDS)/ (g·kg-1) | w(TN)/ (mg·kg-1) | w(soil water)/ % |
---|---|---|---|---|---|---|
表层 | 最小值 | 1.67 | 7.58 | 0.142 | 33.6 | 0.11 |
最大值 | 2.72 | 10.4 | 24.0 | 643 | 13.7 | |
平均值 | 2.42 | 9.35 | 4.11 | 214 | 4.64 | |
50 cm层 | 最小值 | 2.01 | 7.81 | 0.113 | 42.5 | 0.73 |
最大值 | 2.77 | 10.3 | 29.3 | 636 | 25.6 | |
平均值 | 2.48 | 9.31 | 3.70 | 208 | 7.79 | |
100 cm层 | 最小值 | 1.96 | 7.73 | 0.159 | 44.7 | 0.78 |
最大值 | 2.79 | 10.1 | 29.4 | 529 | 23.9 | |
平均值 | 2.44 | 9.24 | 4.26 | 177 | 8.22 |
重金属 | 层位 | 最小值/ (mg·kg-1) | 最大值/ (mg·kg-1) | 平均值/ (mg·kg-1) | 峰度 | 偏度 | CV/ % | 内蒙古地区背景值/ (mg·kg-1) | 农用地土壤污染风险筛选值/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
Cr | 表层 | 2.90 | 55.2 | 27.3 | 1.35 | 0.496 | 34.4 | 41.4 | 250 |
50 cm层 | 8.13 | 58.5 | 28.7 | 1.46 | 0.533 | 31.5 | 41.4 | 250 | |
100 cm层 | 4.03 | 63.5 | 29.9 | 0.411 | 0.413 | 42.1 | 41.4 | 250 | |
Hg | 表层 | 0.002 | 0.602 | 0.174 | -0.485 | 0.823 | 92.3 | 0.04 | 3.40 |
50 cm层 | 0.003 | 0.545 | 0.170 | -0.638 | 0.689 | 87.7 | 0.04 | 3.40 | |
100 cm层 | 0.006 | 0.569 | 0.174 | 0.028 | 0.983 | 93.9 | 0.04 | 3.40 | |
As | 表层 | 0.41 | 21.7 | 12.1 | -0.825 | -0.167 | 46.8 | 7.50 | 25.0 |
50 cm层 | 0.45 | 20.4 | 12.8 | -0.821 | -0.301 | 38.7 | 7.50 | 25.0 | |
100 cm层 | 0.02 | 21.8 | 13.1 | -0.360 | -0.300 | 38.5 | 7.50 | 25.0 |
表2 不同深度土壤重金属统计学特征
Table 2 Statistical characteristics of heavy metals in soils at different depths
重金属 | 层位 | 最小值/ (mg·kg-1) | 最大值/ (mg·kg-1) | 平均值/ (mg·kg-1) | 峰度 | 偏度 | CV/ % | 内蒙古地区背景值/ (mg·kg-1) | 农用地土壤污染风险筛选值/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
Cr | 表层 | 2.90 | 55.2 | 27.3 | 1.35 | 0.496 | 34.4 | 41.4 | 250 |
50 cm层 | 8.13 | 58.5 | 28.7 | 1.46 | 0.533 | 31.5 | 41.4 | 250 | |
100 cm层 | 4.03 | 63.5 | 29.9 | 0.411 | 0.413 | 42.1 | 41.4 | 250 | |
Hg | 表层 | 0.002 | 0.602 | 0.174 | -0.485 | 0.823 | 92.3 | 0.04 | 3.40 |
50 cm层 | 0.003 | 0.545 | 0.170 | -0.638 | 0.689 | 87.7 | 0.04 | 3.40 | |
100 cm层 | 0.006 | 0.569 | 0.174 | 0.028 | 0.983 | 93.9 | 0.04 | 3.40 | |
As | 表层 | 0.41 | 21.7 | 12.1 | -0.825 | -0.167 | 46.8 | 7.50 | 25.0 |
50 cm层 | 0.45 | 20.4 | 12.8 | -0.821 | -0.301 | 38.7 | 7.50 | 25.0 | |
100 cm层 | 0.02 | 21.8 | 13.1 | -0.360 | -0.300 | 38.5 | 7.50 | 25.0 |
重金属 | 层位 | 拟合模型 | 块金值C0 | 基台值C0+C | 块基比[C0/(C0+C)]/% | 变程/km | 决定系数R2 |
---|---|---|---|---|---|---|---|
Cr | 表层 | 球状模型 | 0.100 | 76.0 | 0.131 | 15.9 | 0.991 |
50 cm层 | 球状模型 | 0.100 | 69.8 | 0.143 | 9.70 | 0.804 | |
100 cm层 | 高斯模型 | 0.100 | 159 | 0.063 | 10.0 | 0.880 | |
Hg | 表层 | 高斯模型 | 0.011 | 0.074 | 14.8 | 16.7 | 0.820 |
50 cm层 | 高斯模型 | 8.80×10-3 | 0.160 | 5.50 | 24.5 | 0.886 | |
100 cm层 | 指数模型 | 2.60×10-4 | 0.024 | 1.08 | 23.7 | 0.849 | |
As | 表层 | 高斯模型 | 13.5 | 52.1 | 25.8 | 74.8 | 0.929 |
50 cm层 | 高斯模型 | 12.0 | 37.2 | 32.4 | 84.3 | 0.998 | |
100 cm层 | 高斯模型 | 0.010 | 23.7 | 0.042 | 10.3 | 0.856 |
表3 不同深度土壤重金属含量的半方差函数模型与参数
Table 3 Semi variance function model and parameters of heavy metal content in soil at different depths
重金属 | 层位 | 拟合模型 | 块金值C0 | 基台值C0+C | 块基比[C0/(C0+C)]/% | 变程/km | 决定系数R2 |
---|---|---|---|---|---|---|---|
Cr | 表层 | 球状模型 | 0.100 | 76.0 | 0.131 | 15.9 | 0.991 |
50 cm层 | 球状模型 | 0.100 | 69.8 | 0.143 | 9.70 | 0.804 | |
100 cm层 | 高斯模型 | 0.100 | 159 | 0.063 | 10.0 | 0.880 | |
Hg | 表层 | 高斯模型 | 0.011 | 0.074 | 14.8 | 16.7 | 0.820 |
50 cm层 | 高斯模型 | 8.80×10-3 | 0.160 | 5.50 | 24.5 | 0.886 | |
100 cm层 | 指数模型 | 2.60×10-4 | 0.024 | 1.08 | 23.7 | 0.849 | |
As | 表层 | 高斯模型 | 13.5 | 52.1 | 25.8 | 74.8 | 0.929 |
50 cm层 | 高斯模型 | 12.0 | 37.2 | 32.4 | 84.3 | 0.998 | |
100 cm层 | 高斯模型 | 0.010 | 23.7 | 0.042 | 10.3 | 0.856 |
土壤理化指标 | 表层 | 50 cm层 | 100 cm层 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Hg | As | Cr | Hg | As | Cr | Hg | As | |||
D | 0.549** 1) | -0.382** | 0.288* 2) | 0.512** | -0.379** | 0.604** | 0.465** | -0.376** | 0.501** | ||
pH | -0.165 | 0.355** | -0.134 | -0.098 | 0.385** | -0.329* | -0.131 | 0.385** | -0.224 | ||
TDS | 0.434** | -0.135 | -0.126 | 0.388** | -0.184 | 0.346* | 0.444** | -0.149 | 0.406** | ||
TN | 0.019 | 0.291* | -0.033 | 0.121 | 0.028 | -0.01 | 0.185 | -0.071 | -0.156 | ||
θ | 0.457** | -0.099 | 0.097 | 0.230 | -0.104 | 0.096 | 0.216 | -0.119 | 0.062 |
表4 不同深度土壤重金属与土壤理化指标相关系数
Table 4 Correlation coefficient between soil heavy metals and soil physical and chemical indicators at different depths
土壤理化指标 | 表层 | 50 cm层 | 100 cm层 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Hg | As | Cr | Hg | As | Cr | Hg | As | |||
D | 0.549** 1) | -0.382** | 0.288* 2) | 0.512** | -0.379** | 0.604** | 0.465** | -0.376** | 0.501** | ||
pH | -0.165 | 0.355** | -0.134 | -0.098 | 0.385** | -0.329* | -0.131 | 0.385** | -0.224 | ||
TDS | 0.434** | -0.135 | -0.126 | 0.388** | -0.184 | 0.346* | 0.444** | -0.149 | 0.406** | ||
TN | 0.019 | 0.291* | -0.033 | 0.121 | 0.028 | -0.01 | 0.185 | -0.071 | -0.156 | ||
θ | 0.457** | -0.099 | 0.097 | 0.230 | -0.104 | 0.096 | 0.216 | -0.119 | 0.062 |
土壤理化指标 | 表层 | 50 cm层 | 100 cm层 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
解释率/% | 贡献率/% | F | P | 解释率/% | 贡献率/% | F | P | 解释率/% | 贡献率/% | F | P | |||
D | 31.3 | 56.2 | 10.2 | 0.002 | 45.5 | 68.8 | 15.9 | 0.002 | 36.5 | 56.8 | 11.6 | 0.002 | ||
pH | 8.20 | 14.8 | 2.80 | 0.030 | 7.60 | 11.5 | 2.90 | 0.030 | 10.5 | 16.4 | 3.50 | 0.014 | ||
TDS | 7.90 | 14.2 | 2.80 | 0.032 | 6.10 | 9.20 | 2.70 | 0.036 | 10.5 | 16.4 | 3.70 | 0.024 | ||
TN | 5.30 | 9.50 | 1.90 | 0.156 | 5.10 | 7.70 | 1.90 | 0.160 | 5.80 | 9.10 | 2.10 | 0.090 | ||
θ | 2.90 | 5.20 | 1.10 | 0.356 | 1.90 | 2.80 | 0.70 | 0.522 | 0.80 | 1.30 | 0.30 | 0.818 |
表5 RDA土壤理化指标贡献率排序
Table 5 Ranking of contribution rate of soil physical and chemical indicators of RDA
土壤理化指标 | 表层 | 50 cm层 | 100 cm层 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
解释率/% | 贡献率/% | F | P | 解释率/% | 贡献率/% | F | P | 解释率/% | 贡献率/% | F | P | |||
D | 31.3 | 56.2 | 10.2 | 0.002 | 45.5 | 68.8 | 15.9 | 0.002 | 36.5 | 56.8 | 11.6 | 0.002 | ||
pH | 8.20 | 14.8 | 2.80 | 0.030 | 7.60 | 11.5 | 2.90 | 0.030 | 10.5 | 16.4 | 3.50 | 0.014 | ||
TDS | 7.90 | 14.2 | 2.80 | 0.032 | 6.10 | 9.20 | 2.70 | 0.036 | 10.5 | 16.4 | 3.70 | 0.024 | ||
TN | 5.30 | 9.50 | 1.90 | 0.156 | 5.10 | 7.70 | 1.90 | 0.160 | 5.80 | 9.10 | 2.10 | 0.090 | ||
θ | 2.90 | 5.20 | 1.10 | 0.356 | 1.90 | 2.80 | 0.70 | 0.522 | 0.80 | 1.30 | 0.30 | 0.818 |
[1] |
ALEMI M H, AZARI A S, NIELSEN D R, 1988. Kriging and univariate modeling of a spatial correlated date[J]. Soil Technology, 1(2): 117-132.
DOI URL |
[2] |
BANKS M K, SCHWAB A P, HENDERSON C, 2006. Leaching and reduction of chromium in soil as affected by soil organic content and plants[J]. Chemosphere, 62(2): 255-264.
PMID |
[3] |
ISLAM K R, AHSAN S, BARIK K, et al., 2013. Biosolid impact on heavy metal accumulation and lability in soiln under alternate-year no-till corn-soybean rotation[J]. Water, Air and soil pollution, 224(2): 1451-1455.
DOI URL |
[4] | JUNTA Y, CHOUNG K L, UMEDA M, et al., 2000. Spatial variability of soil chemical properties in a paddy field[J]. Soil science and plant nutrition, 46(2): 473-482. |
[5] |
LIAO H, ZHANG Y C, ZUO Q Y, et al., 2018. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China[J]. Science of the Total Environment, 635: 784-792.
DOI URL |
[6] | 白利平, 王业耀, 2009. 铬在土壤及地下水中迁移转化研究综述[J]. 地质与资源, 18(2): 144-148. |
BAIL P, WANG Y Y, 2009. Research progress of chromium disposition and distribution in soil and groundwater[J]. Geology and Resources, 18(2): 144-148. | |
[7] |
鲍根生, 王玉琴, 宋梅玲, 等, 2019. 狼毒斑块对狼毒型退化草地植被和土壤理化性质影响的研究[J]. 草业学报, 28(3): 51-61.
DOI |
BAO G S, WAN Y Q, SONG M L, et al., 2019. Effects ofStellerachamaejasme patches on the surrounding grassland community and on soil physical-chemical properties in degraded grasslands susceptible toS.chamaejasme invasion[J]. ActaPrataculturaeSinica, 28(3): 51-61. | |
[8] |
常文静, 李枝坚, 周妍姿, 等, 2020. 深圳市不同功能区土壤表层重金属污染及其综合生态风险评价[J]. 应用生态学报, 31(3): 999-1007.
DOI |
CHANG W J, LI Z J, ZHOU Y Z, et al., 2020. Heavy metal pollution and comprehensive cological risk assessment of surface soil in different functional areas of Shenzhen, China[J]. Chinese Journal of Applied Ecology, 31(3): 999-1007. | |
[9] | 常学秀, 施晓东, 2001. 土壤重金属污染与食品安全[J]. 云南环境科学, 20(S1): 21-24, 77. |
CHANG X X, SHI X D, 2001. Heavy metal pollution and food security[J]. Yunnan Environmental Science, 20(S1): 21-24, 77. | |
[10] | 陈培培, 2015. 土壤中砷的迀移转化特征的研究[D]. 上海: 华东师范大学:26-27, 38. |
CHEN P P, 2015. The study on the migration and transformation of arsenic in soil[D]. Shanghai: East China Normal University:26-27, 38. | |
[11] | 代豫杰, 郭建英, 董智, 等, 2017. 不同沙生灌木下土壤颗粒及重金属空间分布特征[J]. 环境科学, 38(11): 4809-4818. |
DAI Y J, GUO J Y, DONG Z, et al., 2017. Spatial distribution of soil particles and heavy metals under different psammophilic shrubs in the Ulan Buh Desert[J]. Environmental Science, 38(11): 4809-4818. | |
[12] | 窦苗, 陶玉柱, 高瑶瑶, 2022. 田头山自然保护区林地土壤理化性质与重金属相关性研究[J]. 广东园林, 44(1): 16-21. |
DOU M, TAO Y Z, GAO Y Y, 2022. Correlation between physico- chemical properties and heavy metals in forest soils of TiantouMountain nature reserve[J]. Guangdong Landscape Architecture, 44(1): 16-21. | |
[13] | 樊燕, 武伟, 刘洪斌, 2007. 土壤重金属与土壤理化性质的空间变异及研究[J]. 西南师范大学学报(自然科学版), 32(4): 58-63. |
FAN Y, WU W, LIU H B, 2007. Study of the variations in the distribution of soil heavy metals and soil physico-chemical properties and their correlation: A case study of Zheng’an County of Guizhou Province[J]. Journal of Southwest China Normal University (Natural Science Edition), 32(4): 58-63. | |
[14] |
姜哲浩, 周泽, 陈建忠, 等, 2019. 三江源区不同海拔高寒草原土壤养分及化学计量特征[J]. 草地学报, 27(4): 1029-1036.
DOI |
JIANG Z H, ZHOU Z, CHENG J Z, et al., 2019. Soil nutrient and stoichiometry of alpine steppe under different altitudes in the Three-river Headwaters region[J]. Acta Agrestia Sinica, 27(4): 1029-1036. | |
[15] | 李俊莉, 宋华明, 2003. 土壤理化性质对重金属行为的影响分析[J]. 环境科学动态(1): 24-26. |
LI J L, SONG H M, 2003. Effects of soil physical and chemical properties on behavior of heavy metals[J]. Environmental Science Trends(1): 24-26. | |
[16] | 李琳丽, 黄小凤, 赵丹, 等, 2022. 汞矿区土壤重金属迁移转化及治理技术研究综述[J]. 有色金属工程, 12(2): 128-137. |
LI L L, HUANG X F, ZHAO D, et al., 2022. Review on migration, transformation and treatment of soil heavy metals in mercury mining area[J]. Nonferrous Metals Engineering, 12(2): 128-137. | |
[17] | 李向阳, 吴疆, 刘洪强, 2019. 鄂东南5种森林土壤重金属含量及污染评价[J]. 中南林业科技大学学报, 39(10): 102-108. |
LI X Y, WU J, LIU H Q, 2019. Concentration and ecology risk assessment of heavy metal in five forest soils in southeastern Hubei Province[J]. Journal of Central South University of Forestry & Technology, 39(10): 102-108. | |
[18] | 李仰征, 莫世江, 马建华, 2014. 公路旁土壤重金属空间分布及其与理化性质的关系[J]. 湖北农业科学, 53(3): 527-531. |
LI Y Z, MO S J, MA J H, 2014. Spatial distribution of heavy metals in roadside soils and its correlation with soil physicochemical properties[J]. Hubei Agricultural Sciences, 53(3): 527-531. | |
[19] | 刘亚男, 李取生, 杜烨锋, 等, 2011. 滩涂土壤淋洗过程中盐分变化及其对重金属的影响[J]. 环境科学, 32(7): 2087-2091. |
LIU Y N, LI Q S, DU Y F, et al., 2011. Salinity change and its impact on heavy metals during beach soil leaching and desalination[J]. Environmental Science, 32(7): 2087-2091. | |
[20] | 孙波, 赵其国, 闾国年, 2002. 低丘红壤肥力的时空变异[J]. 土壤学报, 39(2): 190-198. |
SUN B, ZHAO Q G, LÜ G N, 2002. Spatio-temporal variability of red soil fertility in low hill region[J]. Acta Pedologica Sinica, 39(2): 190-198. | |
[21] | 唐发静, 祖艳群, 2008. 土壤重金属空间变异的研究方法[J]. 云南农业大学学报, 93(4): 558-561. |
TANG F J, ZU Y Q, 2008. Research methods of spatial variation of soil heavy metals[J]. Journal of Yunnan Agricultural University, 93(4): 558-561. | |
[22] | 王诚煜, 李玉超, 于成广, 等, 2021. 葫芦岛东北部土壤重金属分布特征及来源解析[J]. 中国环境科学, 41(11): 5227-5236. |
WANG C Y, LI Y C, YU C G, et al., 2021. Distribution characteristics and sources of soil heavy metals in soils in the area of northeastern Huludao City[J]. China Environmental Science, 41(11): 5227-5236. | |
[23] | 王国梁, 周生路, 赵其国, 2005. 土壤颗粒的体积分形维数及其在土地利用中的应用[J]. 土壤学报, 42(4): 545-550. |
WANG G L, ZHOU S L, ZHAO Q G, 2005. Volume fractal dimension of soil particles and its applications to land use[J]. Acta Pedologica Sinica, 42(4): 545-550. | |
[24] | 王乔林, 宋云涛, 王成文, 等, 2021. 滇西地区土壤重金属来源解析及空间分布[J]. 中国环境科学, 41(8): 3693-3703. |
WANG Q L, SONG Y T, WANG C W, et al., 2021. Source identification and spatial distribution of soil heavy metals in western Yunnan[J]. China Environmental Science, 41(8): 3693-3703. | |
[25] | 王文栋, 任振武, 张红英, 等, 2021. 新疆天山中部森林土壤重金属含量及其与土壤理化性质的相关性[J]. 西北农林科技大学学报(自然科学版), 49(3): 47-56, 66. |
WANG W D, REN Z W, ZHANG H Y, et al., 2021. Soil heavy metal contents and correlations with soil physical and chemical properties in central Tianshan forest Xinjiang[J]. Journal of Northwest A&F University (Natural Science Edition), 49(3): 47-56, 66. | |
[26] | 吴江瑛, 2013. 西安市道路路域土壤重金属赋存形态研究[D]. 西安: 长安大学:44-47. |
WU J Y, 2013. The speciation of heavy metal in the soil along Xi’an roadside[D]. Xi’an: Chang’an University:44-47. | |
[27] | 吴敏, 2021. 重金属铅铬在土壤中的迁移特征——以泉州市为例[J]. 中国煤炭地质, 33(2): 68-72, 77. |
WU M, 2021. Migration features of heavy metal Pb and Cr in soil: A case study of Quanzhou City[J]. Coal Geology of China, 33(2): 68-72, 77. | |
[28] | 阎欣, 安慧, 刘任涛, 2019. 荒漠草原沙漠化对土壤物理和化学特性的影响[J]. 土壤, 51(5): 1006-1012. |
YAN X, AN H, LIU R T, 2019. Effects of desertification on soil physiochemical properties of desert grassland[J]. Soils, 51(5): 1006-1012. | |
[29] | 杨阳, 周正朝, 张福平, 等, 2014. 沣河沿岸土壤重金属分布特征及来源分析[J]. 干旱区研究, 31(2): 237-243. |
YANG Y, ZHOU Z Z, ZHANG F P, et al., 2014. Spatial distribution and sources of heavy metals in soil samples collected from the riparian area of the Fenghe River[J]. Arid Zone Research, 31(2): 237-243. | |
[30] | 姚静, 赵晓光, 温娜, 等, 2021. 含水率对水稻土中重金属Cr形态的影响[J]. 节水灌溉(10): 65-70. |
YAOJ, ZHAOX G, WEN N, et al., 2021. Effect of water content on the form of heavy metal Cr in paddy Soil[J]. Water Saving Irrigation(10): 65-70. | |
[31] |
余斐, 叶彩红, 许窕孜, 等, 2022. 韶关市花岗岩地区森林土壤重金属污染评价[J]. 生态环境学报, 31(2): 354-362.
DOI |
YU F, YE C H, XU T Z, et al., 2022. Evaluation of heavy metal pollution in woodland soil of granite area in Shaoguan City[J]. Ecology and Environmental Sciences, 31(2): 354-362. | |
[32] | 张达政, 2013. 某废旧电子拆解区地下水系统重金属污染特征及影响因素[D]. 北京: 中国地质大学 (北京):95-111. |
ZHANG D Z, 2013. Characteristic and influence factors of heavy metal in groundwater system in an waste electronic disassemtling area[D]. Beijing: China University of Geosciences (Beijing):95-111. | |
[33] | 张兰, 夏红霞, 朱启红, 等, 2022. 水分调节对施用生物炭的重金属污染土壤速效养分的影响研究[J]. 节水灌溉 (4): 60-64, 76. |
ZHANG L, XIA H X, ZHU Q H, et al., 2022. Effects of water regulation on available nutrients of heavy metal polluted soil applied biochar[J]. Water Saving Irrigation (4): 60-64, 76 | |
[34] | 曾昭婵, 李本云, 2016. 万山汞矿区土壤汞污染及其防治研究[J]. 环境科学与管理, 41(5): 115-118. |
ZENG Z C, LI B Y, 2016. Preliminary study on soil mercury pollution and its prevention and control in Wanshan mercury mine area[J]. Environmental Science and Management, 41(5): 115-118. | |
[35] | 郑顺安, 郑向群, 李晓辰, 等, 2013. 外源Cr(Ⅲ) 在我国22种典型土壤中的老化特征及关键影响因子研究[J]. 环境科学, 34(2): 698-704. |
ZHENG S A, ZHENG X Q, LI X C, et al., 2013. Aging process of Cr(Ⅲ) in 22 typical soils of China and influence factors analysis[J]. Environmental Science, 34(2): 698-704. | |
[36] |
钟晓兰, 周生路, 黄明丽, 等, 2009. 土壤重金属的形态分布特征及其影响因素[J]. 生态环境学报, 18(4): 1266-1273.
DOI |
ZHONG X L, ZHOU S L, HUANG M L, et al., 2009. Chemical form distribution characteristic of soil heavy metals and its influencing factors[J]. Ecology and Environmental Sciences, 18(4): 1266-1273. | |
[37] | 张阿龙, 高瑞忠, 张生, 等, 2018. 吉兰泰盐湖盆地土壤铬、汞、砷污染的负荷特征与健康风险评价[J]. 干旱区研究, 35(5): 1057-1067. |
ZHANG A L, GAO R Z, ZHANG S, et al., 2018. Pollution load characteristics and health risk as sessment of heavy metals Cr, Hg and Asin salt lake basin of the northwest arid area, China[J]. Arid Zone Research, 35(5): 1057-1067. | |
[38] | 张阿龙, 高瑞忠, 张生, 等, 2020. 吉兰泰盐湖盆地土壤重金属铬、汞、砷分布的多方法评价[J]. 土壤学报, 57(1): 130-141. |
ZHANG A L, GAO R Z, ZHANG S, et al., 2020. Evaluation using numerous methods of distribution of heavy metals Cr, Hg and As in Jilantai Salt Lake Basin[J]. Acta Pedologica Sinica, 57(1): 130-141. | |
[39] | 中国环境监测总站, 1990. 中国土壤元素背景值[M]. 北京: 中国科学出版社. |
China Environmental Monitoring Station, 1990. Background value of soil elements in China[M]. Beijing: China Science Press. | |
[40] | 中华人民共和国生态环境部, 国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国环境出版集团. |
Ministry of Ecology and Environment of the People’s Republic of China,andState Administration for Market Regulation, 2018. Soil environment quality risk control standard for soil contamination of agriculture land: GB 15618—2018[S]. Beijing: China Environmental Publishing Group. |
[1] | 潘昱伶, 璩向宁, 李琴, 王磊, 王筱平, 谭鹏, 崔庚, 安雨, 佟守正. 黄河宁夏段典型滩涂湿地土壤理化因子空间分布特征及其对微地形的响应[J]. 生态环境学报, 2023, 32(4): 668-677. |
[2] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[3] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[4] | 李善家, 王兴敏, 刘海锋, 孙梦格, 雷雨昕. 河西走廊荒漠植物多样性及其对环境因子的响应[J]. 生态环境学报, 2023, 32(3): 429-438. |
[5] | 崔远远, 张征云, 刘鹏, 张运春, 张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响[J]. 生态环境学报, 2023, 32(1): 158-165. |
[6] | 肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182. |
[7] | 黄宏, 郑欣芸, 李迎东, 赵旭, 俞锦辰, 汪振华. 大陈岛海域不同年龄褐菖鲉对重金属富集作用研究[J]. 生态环境学报, 2022, 31(9): 1885-1891. |
[8] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[9] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[10] | 陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646. |
[11] | 李莹, 张洲, 杨高明, 祖艳群, 李博, 陈建军. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657-1666. |
[12] | 王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349. |
[13] | 罗松英, 李秋霞, 邱锦坤, 邓素炎, 李一锋, 陈碧珊. 南三岛土壤-红树植物系统中重金属形态特征及迁移转化规律[J]. 生态环境学报, 2022, 31(7): 1409-1416. |
[14] | 董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455. |
[15] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||