生态环境学报 ›› 2023, Vol. 32 ›› Issue (11): 2019-2029.DOI: 10.16258/j.cnki.1674-5906.2023.11.012
赵丹丹1,2(), 李文健3, 江丽霞4, 单锐2,*(
), 陈德珍1, 袁浩然1,2, 陈勇1,2
收稿日期:
2022-09-26
出版日期:
2023-11-18
发布日期:
2024-01-17
通讯作者:
* 单锐。E-mail: shanrui@ms.giec.ac.cn作者简介:
赵丹丹(1982年生),女,副研究员,硕士,研究方向为有机固废资源化高值化利用。E-mail: zhaodd@ms.giec.ac.cn
基金资助:
ZHAO Dandan1,2(), LI Wenjian3, JIANG Lixia4, SHAN Rui2,*(
), CHEN Dezhen1, YUAN Haoran1,2, CHEN Yong1,2
Received:
2022-09-26
Online:
2023-11-18
Published:
2024-01-17
摘要:
基于生物质热解得到生物炭材料具有发达的孔隙结构、高比表面积和电子传递效率高等性质,已经被广泛应用于化工、材料、能源、环境等研究领域。目前,由于水体中各种有机污染物的大范围增加,对人体和环境造成的安全隐患不容忽视。因此,利用绿色高效的光催化剂对有机物污染物废水进行高效处置具有重要意义。该文针对不同合成方法制备的生物炭基光催化剂对废水中各种有机污染物处置的最新研究进展进行了综述。首先对生物炭载体的不同制备方法进行了对比与分析,为后续生物炭最佳制备方式的选择提供了思路。生物炭基载体能够有效避免纳米光催化材料的团聚现象,促进光催化剂在生物炭表面的分散。因此,该文还介绍了溶胶-凝胶法、水解法、超声法和热缩聚等光催化剂的制备方法,阐述了不同制备条件对光催化降解有机污染物活性的影响机制。在此基础上,重点综述了生物炭基复合材料在去除废水中典型有机污染物(甲基橙、吉米沙星、罗丹明B、磺胺甲恶唑等)方面的应用与有效性,并且将光催化剂的反应机理总结为污染物吸附、光激发电子-空穴以及污染物催化降解3个步骤。同时,生物炭基光催化材料能够增加与污染物的接触面积与提高污染物的传质过程,从而显著提高光催化剂的催化活性。最后,从绿色、清洁、可持续的角度展望了该领域的研究重点及前景,希望该综述能为新型生物炭基催化剂的研发及其在光催化研究方面提供指导性建议。
中图分类号:
赵丹丹, 李文健, 江丽霞, 单锐, 陈德珍, 袁浩然, 陈勇. 生物炭基光催化剂的制备及其降解废水中的有机污染物研究进展[J]. 生态环境学报, 2023, 32(11): 2019-2029.
ZHAO Dandan, LI Wenjian, JIANG Lixia, SHAN Rui, CHEN Dezhen, YUAN Haoran, CHEN Yong. Progress in the Preparation and Performance of Biochar-based Photocatalysts[J]. Ecology and Environment, 2023, 32(11): 2019-2029.
催化剂 | 生物质 | 金属 | 应用 | 去除率 (Re) 和回收率 (Rc) | 时间1)/h | 去除过程 | 合成过程 | 参考文献 |
---|---|---|---|---|---|---|---|---|
TiO2/biochar | 轮胎 | Ti | 苯酚 | Re: 99%; Rc: 99%/3次 | 6 | 吸附和NSI4) | 溶胶-凝胶 | Makrigianni et al., |
TiO2/biochar | 玉米芯 | Ti | 磺胺甲恶唑 | Re: 91% | 6 | 吸附和ULI5) | 溶胶-凝胶 | Kim et al., |
TiO2/biochar | 核桃壳 | Ti | 甲基橙 | Re: 96.88%; Rc: 92.45%/5次 | 3.5 | 吸附和ULI | 水解 | Lu et al., |
TiO2/biochar | 芒草秸秆芯和软木芯 | Ti | 苯酚 | Re: 64.1% (ULI); 33.6% (VLI) Rc: (54.1%‒64.1%)/5次 (ULI) | 4 | 吸附和ULI, VLI | 连续热解和超声 | Lisowski et al., |
TiO2/biochar | 芦苇秸秆 | Ti | 磺胺甲恶唑 | Re: 91.27%; Rc: (86%‒91.27%)/5次 | 3.5 | 吸附和ULI | 溶胶-凝胶 | Zhang et al., |
TiO2/biochar | 人厌槐叶萍 | Ti | 酸性橙7染料 | Re: 90%; Rc: ~90%/6次 | 4 | 吸附和ULI | 溶胶-凝胶 | Silvestri et al., |
TiO2/biochar | 聚醚酰亚胺 | Ti | 酸性橙7染料 | Re: 90.4% | 1.5 | 吸附和ULI | 热解 | Wang et al., |
ZnO/ biochar | 麦壳、造纸污泥 | Zn | 吉米沙星 | Re: 96.1%; Rc: (86.1%‒96.1%)/5次 | 0.75 | 超声辐射 | 水热合成 | Norouzi et al., |
TiO2/N-biochar | 鸡毛 | Ti | 罗丹明 B | Re: 90.91% | 5 | 吸附和VLI | 自组装交联 | Li et al., |
N-F-TiO2/char | 轮胎 | Ti | 苯酚 | Re: 70% (SSLI)和60% (VLI); Rc: 58%/3次 (VLI) | 5 (SSLI)2), 11 (VLI)3) | 吸附和SSLI, VLI | 溶胶-凝胶 | Antonopoulou et al., |
Zn-TiO2/ biochar | 芦苇秸秆 | Zn, Ti | 磺胺甲恶唑 | Re: 81.21%; Rc: (77.41%‒81.21%)/5次 | 3.5 | 吸附和VLI | 改性溶胶- 凝胶 | Xie et al., |
Ag-TiO2/ biochar | Ag, Ti | 甲基橙 | Re: 94.9%; Rc: ~90%/5次 | 1 | 吸附和ULI | 水解 | Shan et al., | |
g-C3N4/ biochar | 水稻秸秆 | ‒ | 罗丹明B (RhB)和甲基橙(MO) | Re: 98.2% (RhB), 92.4% (MO); Rc: ~98.2% (RhB), ~92.4% (MO)/4次 | 3 | 吸附和VLI | 热缩聚法 | Meng et al., |
g-C3N4/ biochar | 木兰花 | ‒ | 2-巯基苯 并噻唑 | Re: 90.5%; Rc: (90.1%‒90.5%)/4次 | 1.5 | 吸附和VLI | 超声 | Zhu et al., |
g-C3N4/ biochar | 木制漂白牛皮纸浆 | ‒ | 甲醛 | Re: 84.63%; Rc: ~84.63%/5次 | 5 | VLI | 一步共热法 | Li et al., |
g-MoS2/ biochar | 水稻秸秆 | Mo | 盐酸四环素 | Re: 80%; Rc: (>70%)/3次 | 4 | 吸附和VLI | 水解 | Ye et al., |
Bi/Bi2O3/ biochar | 水稻秸秆 | Bi | 雌激素酮 | Re: 94.9%; Rc: (82.9%‒94.9%)/5次 | 2 | 吸附和ULI | 超声、热解 | Zhu et al., |
BiOCl/biochar BiOBr/biochar | ‒ | Bi | 甲基橙 | Re: 90% | 2.5 | VLI | 一步水解 | Li et al., |
BiOCl/biochar | 竹叶 | Bi | 盐酸四环素 | Re: 71.8%; Rc: 70%/5次 | 2.5 | 吸附和VLI | 一锅法 | Yan et al., |
Biochar@ ZnFe2O4/BiOBr | 松花粉 | Zn, Fe, Bi | 环丙沙星 | Re: 84%; Rc: (~84%)/4次 | 1.5 | 吸附和VLI | 溶剂热合成 | Chen et al., |
biochar@CoFe2O4/Ag3PO4 | 松花粉 | Co, Fe, Ag | 双酚A | Re: 91.12%; Rc: (73.94%‒91.12%)/4次 | 1.5 | 吸附和VLI | 一锅法与 原位沉淀 | Zhai et al., |
Cu2O-CuO@ biochar | 废弃燃料和拆迁废料 | Cu | 活性橙29 | Re: 94.12%; Rc: (~94.12%)/5次 | 2 | 吸附和ULI | 水热合成 | Khataee et al., |
CdSe/ biochar | 竹子 | Cd | 四环素 | Re: 73%; Rc: (~73%)/4次 | 1.83 | 吸附和VLI | 水热和 原位合成 | Men et al., |
CuWO4/ biochar | 绿印楝叶 | Cu, W | 环丙沙星 | Re: 97% | 1.5 | VLI | 水热合成 | Thiruppathi et al., |
Fe3O4/BiOBr/ biochar | 芦苇秸秆 | Fe, Bi | 卡马西平 | Re: 95.51%; Rc: (90.15%‒95.51%)/5次 | 4 | 吸附和VLI | 一步水解法和超声 | Li et al., |
Fe3O4/BiVO4/ biochar | 喜马拉雅长叶松 | Fe, Bi, V | 对羟基安息香酸甲酯 | Re: 97.4%; Rc: (68.24%‒92.11%)/6次 | 3 | 吸附和NSI | 共沉淀和 原位合成 | Kumar et al., |
表1 生物炭基光催化剂对有机污染物的光降解反应
Table 1 Photodegradation of organic pollutants over Biochar-based photocatalysts
催化剂 | 生物质 | 金属 | 应用 | 去除率 (Re) 和回收率 (Rc) | 时间1)/h | 去除过程 | 合成过程 | 参考文献 |
---|---|---|---|---|---|---|---|---|
TiO2/biochar | 轮胎 | Ti | 苯酚 | Re: 99%; Rc: 99%/3次 | 6 | 吸附和NSI4) | 溶胶-凝胶 | Makrigianni et al., |
TiO2/biochar | 玉米芯 | Ti | 磺胺甲恶唑 | Re: 91% | 6 | 吸附和ULI5) | 溶胶-凝胶 | Kim et al., |
TiO2/biochar | 核桃壳 | Ti | 甲基橙 | Re: 96.88%; Rc: 92.45%/5次 | 3.5 | 吸附和ULI | 水解 | Lu et al., |
TiO2/biochar | 芒草秸秆芯和软木芯 | Ti | 苯酚 | Re: 64.1% (ULI); 33.6% (VLI) Rc: (54.1%‒64.1%)/5次 (ULI) | 4 | 吸附和ULI, VLI | 连续热解和超声 | Lisowski et al., |
TiO2/biochar | 芦苇秸秆 | Ti | 磺胺甲恶唑 | Re: 91.27%; Rc: (86%‒91.27%)/5次 | 3.5 | 吸附和ULI | 溶胶-凝胶 | Zhang et al., |
TiO2/biochar | 人厌槐叶萍 | Ti | 酸性橙7染料 | Re: 90%; Rc: ~90%/6次 | 4 | 吸附和ULI | 溶胶-凝胶 | Silvestri et al., |
TiO2/biochar | 聚醚酰亚胺 | Ti | 酸性橙7染料 | Re: 90.4% | 1.5 | 吸附和ULI | 热解 | Wang et al., |
ZnO/ biochar | 麦壳、造纸污泥 | Zn | 吉米沙星 | Re: 96.1%; Rc: (86.1%‒96.1%)/5次 | 0.75 | 超声辐射 | 水热合成 | Norouzi et al., |
TiO2/N-biochar | 鸡毛 | Ti | 罗丹明 B | Re: 90.91% | 5 | 吸附和VLI | 自组装交联 | Li et al., |
N-F-TiO2/char | 轮胎 | Ti | 苯酚 | Re: 70% (SSLI)和60% (VLI); Rc: 58%/3次 (VLI) | 5 (SSLI)2), 11 (VLI)3) | 吸附和SSLI, VLI | 溶胶-凝胶 | Antonopoulou et al., |
Zn-TiO2/ biochar | 芦苇秸秆 | Zn, Ti | 磺胺甲恶唑 | Re: 81.21%; Rc: (77.41%‒81.21%)/5次 | 3.5 | 吸附和VLI | 改性溶胶- 凝胶 | Xie et al., |
Ag-TiO2/ biochar | Ag, Ti | 甲基橙 | Re: 94.9%; Rc: ~90%/5次 | 1 | 吸附和ULI | 水解 | Shan et al., | |
g-C3N4/ biochar | 水稻秸秆 | ‒ | 罗丹明B (RhB)和甲基橙(MO) | Re: 98.2% (RhB), 92.4% (MO); Rc: ~98.2% (RhB), ~92.4% (MO)/4次 | 3 | 吸附和VLI | 热缩聚法 | Meng et al., |
g-C3N4/ biochar | 木兰花 | ‒ | 2-巯基苯 并噻唑 | Re: 90.5%; Rc: (90.1%‒90.5%)/4次 | 1.5 | 吸附和VLI | 超声 | Zhu et al., |
g-C3N4/ biochar | 木制漂白牛皮纸浆 | ‒ | 甲醛 | Re: 84.63%; Rc: ~84.63%/5次 | 5 | VLI | 一步共热法 | Li et al., |
g-MoS2/ biochar | 水稻秸秆 | Mo | 盐酸四环素 | Re: 80%; Rc: (>70%)/3次 | 4 | 吸附和VLI | 水解 | Ye et al., |
Bi/Bi2O3/ biochar | 水稻秸秆 | Bi | 雌激素酮 | Re: 94.9%; Rc: (82.9%‒94.9%)/5次 | 2 | 吸附和ULI | 超声、热解 | Zhu et al., |
BiOCl/biochar BiOBr/biochar | ‒ | Bi | 甲基橙 | Re: 90% | 2.5 | VLI | 一步水解 | Li et al., |
BiOCl/biochar | 竹叶 | Bi | 盐酸四环素 | Re: 71.8%; Rc: 70%/5次 | 2.5 | 吸附和VLI | 一锅法 | Yan et al., |
Biochar@ ZnFe2O4/BiOBr | 松花粉 | Zn, Fe, Bi | 环丙沙星 | Re: 84%; Rc: (~84%)/4次 | 1.5 | 吸附和VLI | 溶剂热合成 | Chen et al., |
biochar@CoFe2O4/Ag3PO4 | 松花粉 | Co, Fe, Ag | 双酚A | Re: 91.12%; Rc: (73.94%‒91.12%)/4次 | 1.5 | 吸附和VLI | 一锅法与 原位沉淀 | Zhai et al., |
Cu2O-CuO@ biochar | 废弃燃料和拆迁废料 | Cu | 活性橙29 | Re: 94.12%; Rc: (~94.12%)/5次 | 2 | 吸附和ULI | 水热合成 | Khataee et al., |
CdSe/ biochar | 竹子 | Cd | 四环素 | Re: 73%; Rc: (~73%)/4次 | 1.83 | 吸附和VLI | 水热和 原位合成 | Men et al., |
CuWO4/ biochar | 绿印楝叶 | Cu, W | 环丙沙星 | Re: 97% | 1.5 | VLI | 水热合成 | Thiruppathi et al., |
Fe3O4/BiOBr/ biochar | 芦苇秸秆 | Fe, Bi | 卡马西平 | Re: 95.51%; Rc: (90.15%‒95.51%)/5次 | 4 | 吸附和VLI | 一步水解法和超声 | Li et al., |
Fe3O4/BiVO4/ biochar | 喜马拉雅长叶松 | Fe, Bi, V | 对羟基安息香酸甲酯 | Re: 97.4%; Rc: (68.24%‒92.11%)/6次 | 3 | 吸附和NSI | 共沉淀和 原位合成 | Kumar et al., |
[1] |
ABDULLAH S H Y S, HANAPI N H M, AZID A, et al., 2017. A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production[J]. Renewable and Sustainable Energy Reviews, 70: 1040-1051.
DOI URL |
[2] |
AHERN J C, FAIRCHILD R, THOMAS J S, et al., 2015. Characterization of BiOX compounds as photocatalysts for the degradation of pharmaceuticals in water[J]. Applied Catalysis B: Environmental, 179: 229-238.
DOI URL |
[3] |
AN X F, CHEN Y, AO M H, et al., 2022. Sequential photocatalytic degradation of organophosphorus pesticides and recovery of orthophosphate by biochar/α-Fe2O3/MgO composite: A new enhanced strategy for reducing the impacts of organophosphorus from wastewater[J]. Chemical Engineering Journal, 435(Part 2): 135087.
DOI URL |
[4] |
ANTONOPOULOU M, KARAGIANNI P, GIANNAKAS A, et al., 2017. Photocatalytic degradation of phenol by char/N-TiO2and char/N-F-TiO2 composite photocatalysts[J]. Catalysis Today, 280: 114-121.
DOI URL |
[5] |
BEESLEY L, MORENO-JIMENEZ E, GOMEZ-EYLES J L, et al., 2011. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental Pollution, 159(12): 3269-3282.
DOI PMID |
[6] |
BENNETT J A, WILSON K, LEE A F, 2016. Catalytic applications of waste derived materials[J]. Journal of Materials Chemistry A, 4(10): 3617-3637.
DOI URL |
[7] |
CAO T T, CUI H, ZHANG Q W, et al., 2021. Facile synthesis of Co(Ⅱ)-BiOCl@biochar nanosheets for photocatalytic degradation of p-nitrophenol under vacuum ultraviolet (VUV) irradiation[J]. Applied Surface Science, 559: 149938.
DOI URL |
[8] |
CHA J S, PARK S H, JUNG S C, et al., 2016. Production and utilization of biochar: A review[J]. Journal of Industrial and Engineering Chemistry, 40: 1-15.
DOI URL |
[9] |
CHEN L, WANG P, SHEN Y F, et al., 2021. Spent lithium-ion battery materials recycling for catalytic pyrolysis or gasification of biomass[J]. Bioresource Technology, 323: 124584.
DOI URL |
[10] |
CHEN M X, DAI Y Z, GUO J, et al., 2019. Solvothermal synthesis of biochar@ZnFe2O4/BiOBr Z-scheme heterojunction for efficient photocatalytic ciprofloxacin degradation under visible light[J]. Applied Surface Science, 493: 1361-1367.
DOI URL |
[11] |
COLMENARES J C, VARMA R S, LISOWSKI P, 2016. Sustainable hybrid photocatalysts: Titania immobilized on carbon materials derived from renewable and biodegradable resources[J]. Green Chemistry, 18(21): 5736-5750.
DOI URL |
[12] | DING Y, LIU Y, LIU S, et al., 2016. Biochar to improve soil fertility. A review[J]. Agronomy for Sustainable Development, 36(2): 1774-0746. |
[13] |
ELKHALIFA S, AL-ANSARI T, MACKEY H R, et al., 2019. Food waste to biochars through pyrolysis: A review[J]. Resources, Conservation and Recycling, 144: 310-320.
DOI URL |
[14] |
FENG P F, ZHAO J P, ZHANG J C, et al., 2017. Long persistent photocatalysis of magnesium gallate nanorodes[J]. Journal of Alloys and Compounds, 695: 1884-1890.
DOI URL |
[15] |
FITO J, KEFENI K K, NKAMBULE T T I, 2022. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater[J]. Science of The Total Environment, 829: 154648.
DOI URL |
[16] |
GAO C, WANG J, XU H X, et al., 2017. Coordination chemistry in the design of heterogeneous photocatalysts[J]. Chemical Society Reviews, 46(10): 2799-2823.
DOI PMID |
[17] |
GASCO G, PAZ-FERREIRO J, ALVAREZ M L, et al., 2018. Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure[J]. Waste Management, 79: 395-403.
DOI PMID |
[18] |
GENG A B, XU L J, GAN L, et al., 2020. Using wood flour waste to produce biochar as the support to enhance the visible-light photocatalytic performance of BiOBr for organic and inorganic contaminants removal[J]. Chemosphere, 250: 126291.
DOI URL |
[19] |
GUIZANI C, VALIN S, BILLAUD J, et al., 2017. Biomass fast pyrolysis in a drop tube reactor for bio oil production: Experiments and modeling[J]. Fuel, 207: 71-84.
DOI URL |
[20] |
HANIFEHPOUR Y, HAMNABARD N, KHOMAMI B, et al., 2016. A novel visible-light Nd-doped CdTe photocatalyst for degradation of Reactive Red 43: synthesis, characterization, and photocatalytic properties[J]. Journal of Rare Earths, 34(1): 45-54.
DOI URL |
[21] | INAYAT A, AHMED A, TARIQ R, et al., 2022. Techno-economical evaluation of bio-oil production via biomass fast pyrolysis process: A review[J]. Frontiers in Energy Research, 9: 2296 |
[22] |
JIANG L J, WANG Y J, FENG C G, 2012. Application of photocatalytic technology in environmental safety[J]. Procedia Engineering, 45: 993-997.
DOI URL |
[23] |
JIN X Y, TANG X L, LI H, et al., 2022. Visible-light driven efficient elimination of organic hazardous and Cr(VI) over BiOCl modified by Chinese Baijiu distillers’ grain-based biochar[J]. Journal of Industrial and Engineering Chemistry, 107: 472-482.
DOI URL |
[24] |
JONGPRATEEP O, MEESOMBAD K, TECHAPIESANCHAROENKIJ R, et al., 2018. Chemical composition, microstructure, bandgap energy and electrocatalytic activities of TiO2 and Ag-doped TiO2 powder synthesized by solution combustion technique[J]. Ceramics International, 44: S228-S232.
DOI URL |
[25] |
KAMAL A, SALEEM M H, ALSHAYA H, et al., 2022. Ball-milled synthesis of maize biochar-ZnO nanocomposite (MB-ZnO) and estimation of its photocatalytic ability against different organic and inorganic pollutants[J]. Journal of Saudi Chemical Society, 26(3): 101445.
DOI URL |
[26] |
KAN T, STREZOV V, EVANS T, et al., 2020. Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure[J]. Renewable and Sustainable Energy Reviews, 134: 110305.
DOI URL |
[27] | KAVIL J, ALSHAHRIE A, PERIYAT P, 2018. CdS sensitized TiO2nano heterostructures as sunlight driven photocatalyst[J]. Nano-Structures & Nano-Objects, 16: 24-30. |
[28] |
KHATAEE A, KALDERIS D, GHOLAMI P, et al., 2019. Cu2O-CuO@biochar composite: Synthesis, characterization and its efficient photocatalytic performance[J]. Applied Surface Science, 498: 143846.
DOI URL |
[29] |
KIM J R, KAN E, 2016. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst[J]. Journal of Environmental Management, 180: 94-101.
DOI URL |
[30] |
KUMAR A, SAINI K, BHASKAR T, 2020b. Advances in design strategies for preparation of biochar based catalytic system for production of high value chemicals[J]. Bioresource Technology, 299: 122564.
DOI URL |
[31] |
KUMAR A, SHALINI, SHARMA G, et al., 2017. Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil[J]. Journal of Photochemistry and Photobiology A: Chemistry, 337: 118-131.
DOI URL |
[32] |
KUMAR M, XIONG X, SUN Y, et al., 2020a. Critical review on biochar-supported catalysts for pollutant degradation and sustainable biorefinery[J]. Advanced Sustainable Systems, 4(10): 1900149.
DOI URL |
[33] |
LE P T, LE D N, NGUYEN T H, et al., 2021. On the degradation of glyphosate by photocatalysis using TiO2/biochar composite obtained from the pyrolysis of rice husk[J]. Water, 13(23): 3326.
DOI URL |
[34] |
LI H Q, HU J T, ZHOU X, et al., 2018. An investigation of the biochar-based visible-light photocatalyst via a self-assembly strategy[J]. Journal of Environmental Management, 217: 175-182.
DOI PMID |
[35] |
LI M, HUANG H W, YU S X, et al., 2016. Simultaneously promoting charge separation and photoabsorption of BiOX (X=Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar[J]. Applied Surface Science, 386: 285-295.
DOI URL |
[36] |
LI M X, LI P, ZHANG L, et al., 2022. Facile fabrication of ZnO decorated ZnFe-layered double hydroxides @biochar nanocomposites for synergistic photodegradation of tetracycline under visible light[J]. Chemical Engineering Journal, 434: 134772.
DOI URL |
[37] |
LI S, WANG Z W, ZHAO X T, et al., 2019a. Insight into enhanced carbamazepine photodegradation over biochar-based magnetic photocatalyst Fe3O4/BiOBr/BC under visible LED light irradiation[J]. Chemical Engineering Journal, 360: 600-611.
DOI URL |
[38] |
LI X, QIAN X R, AN X H, et al., 2019b. Preparation of a novel composite comprising biochar skeleton and “chrysanthemum” g-C3N4 for enhanced visible light photocatalytic degradation of formaldehyde[J]. Applied Surface Science, 487: 1262-1270.
DOI URL |
[39] |
LI X P, WANG C B, ZHANG J G, et al., 2020. Preparation and application of magnetic biochar in water treatment: A critical review[J]. Science of The Total Environment, 711: 134847.
DOI URL |
[40] |
LI Y J, ZHANG S Y, YU Q M, et al., 2007. The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol-gel method[J]. Applied Surface Science, 253(23): 9254-9258.
DOI URL |
[41] |
LIN M X, LI F Y, CHENG W Y, et al., 2022. Facile preparation of a novel modified biochar-based supramolecular self-assembled g-C3N4for enhanced visible light photocatalytic degradation of phenanthrene[J]. Chemosphere, 288(Part 3): 132620.
DOI URL |
[42] | LISOWSKI P, COLMENARES J C, MAŠEK O, et al., 2017. Dual functionality of TiO2/biochar hybrid materials: photocatalytic phenol degradation in the liquid phase and selective oxidation of methanol in the gas phase[J]. ACS Sustainable Chemistry & Engineering, 5(7): 6274-6287. |
[43] |
LIU W J, JIANG H, YU H Q, 2015. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chemical Reviews, 115(22): 12251-85.
DOI URL |
[44] |
LU L L, SHAN R, SHI Y Y, et al., 2019. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange[J]. Chemosphere, 222: 391-398.
DOI URL |
[45] |
LUO H, YU S, ZHONG M, et al., 2022. Waste biomass-assisted synthesis of TiO2and N/O-contained graphene-like biochar composites for enhanced adsorptive and photocatalytic performances[J]. Journal of Alloys and Compounds, 899: 163287.
DOI URL |
[46] |
LYU H H, ZHANG Q R, SHEN B X, 2020. Application of biochar and its composites in catalysis[J]. Chemosphere, 240: 124842.
DOI URL |
[47] |
MAKRIGIANNI V, GIANNAKAS A, DAIKOPOULOS C, et al., 2015. Preparation, characterization and photocatalytic performance of pyrolytic-tire-char/TiO2 composites, toward phenol oxidation in aqueous solutions[J]. Applied Catalysis B: Environmental, 174-175: 244-252.
DOI URL |
[48] |
MEN Q Y, WANG T, MA C C, et al., 2019. In-suit preparation of CdSe quantum dots/porous channel biochar for improving photocatalytic activity for degradation of tetracycline[J]. Journal of the Taiwan Institute of Chemical Engineers, 99: 180-192.
DOI URL |
[49] |
MENG L R, YIN W H, WANG S S, et al., 2020. Photocatalytic behavior of biochar-modified carbon nitride with enriched visible-light reactivity[J]. Chemosphere, 239: 124713.
DOI URL |
[50] |
MULLEN C A, BOATENG A A, GOLDBERG N M, et al., 2010. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis[J]. Biomass and Bioenergy, 34(1): 67-74.
DOI URL |
[51] |
NIDHEESH P V, GOPINATH A, RANJITH N, et al., 2021. Potential role of biochar in advanced oxidation processes: A sustainable approach[J]. Chemical Engineering Journal, 405: 126582.
DOI URL |
[52] |
NOROUZI O, KHERADMAND A, JIANG Y, et al., 2019. Superior activity of metal oxide biochar composite in hydrogen evolution under artificial solar irradiation: A promising alternative to conventional metal-based photocatalysts[J]. International Journal of Hydrogen Energy, 44(54): 28698-28708.
DOI URL |
[53] |
NUNOURA T, WADE S R, BOURKE J P, et al., 2006. Studies of the flash carbonization process. 1. Propagation of the flaming pyrolysis reaction and performance of a catalytic afterburner[J]. Industrial & Engineering Chemistry Research, 45(2): 585-599.
DOI URL |
[54] |
PAN Y, WEN M, 2018. Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 43(49): 22055-22063.
DOI URL |
[55] |
PELAEZ M, BARUWATI B, VARMA R S, et al., 2013. Microcystin-LR removal from aqueous solutions using a magnetically separable N-doped TiO2 nanocomposite under visible light irradiation[J]. Chemical Communications, 49(86): 10118-20.
DOI URL |
[56] |
PI L, JIANG R, ZHOU W C, et al., 2015. g-C3N4 Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants[J]. Applied Surface Science, 358: 231-239.
DOI URL |
[57] |
PINNA M, BINDA G, ALTOMARE M, et al., 2021. Biochar nanoparticles over TiO2 nanotube arrays: A green co-catalyst to boost the photocatalytic degradation of organic pollutants[J]. Catalysts, 11(9): 1048.
DOI URL |
[58] |
PRAKASH J, SUN S H, SWART H C, et al., 2018. Noble metals-TiO2 nanocomposites: From fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications[J]. Applied Materials Today, 11: 82-135.
DOI URL |
[59] |
QIAN K Z, KUMAR A, ZHANG H L, et al., 2015. Recent advances in utilization of biochar[J]. Renewable and Sustainable Energy Reviews, 42: 1055-1064.
DOI URL |
[60] |
QIN X Y, CHENG H F, WANG W J, et al., 2013. Three dimensional BiOX (X=Cl, Br and I) hierarchical architectures: facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation[J]. Materials Letters, 100: 285-288.
DOI URL |
[61] |
RANGARAJAN G, JAYASEELAN A, FARNOOD R, 2022. Photocatalytic reactive oxygen species generation and their mechanisms of action in pollutant removal with biochar supported photocatalysts: A review[J]. Journal of Cleaner Production, 346: 131155.
DOI URL |
[62] |
SADRIEYEH S, MALEKFAR R, 2018. Photocatalytic performance of plasmonic Au/Ag-TiO2 aerogel nanocomposites[J]. Journal of Non-Crystalline Solids, 489: 33-39.
DOI URL |
[63] |
SCARIA J, GOPINATH A, RANJITH N, et al., 2022. Carbonaceous materials as effective adsorbents and catalysts for the removal of emerging contaminants from water[J]. Journal of Cleaner Production, 350: 131319.
DOI URL |
[64] |
SHAN R, HAN J, GU J, et al., 2020a. A review of recent developments in catalytic applications of biochar-based materials[J]. Resources, Conservation and Recycling, 162: 105036.
DOI URL |
[65] |
SHAN R, LU L L, GU J, et al., 2020b. Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions[J]. Materials Science in Semiconductor Processing, 114: 105088.
DOI URL |
[66] |
SHEN Y F, 2015. Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification[J]. Renewable and Sustainable Energy Reviews, 43: 281-295.
DOI URL |
[67] |
SILVESTRI S, GONçALVES M G, DA SILVA VEIGA P A, et al., 2019. TiO2 supported on Salvinia molesta biochar for heterogeneous photocatalytic degradation of Acid Orange 7 dye[J]. Journal of Environmental Chemical Engineering, 7(1): 102879.
DOI URL |
[68] | SONG B, LIN R C, LAM C H, et al., 2021. Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques[J]. Renewable and Sustainable Energy Reviews, 135: 1364-0321. |
[69] |
SU J, SHANG Q K, GUO T T, et al., 2018. Construction of heterojunction ZnFe2O4/ZnO/Ag by using ZnO and Ag nanoparticles to modify ZnFe2O4 and its photocatalytic properties under visible light[J]. Materials Chemistry and Physics, 219: 22-29.
DOI URL |
[70] |
SUN K, KANG M J, ZHANG Z Y, et al., 2013. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene[J]. Environmental Science & Technology, 47(20): 11473-81.
DOI URL |
[71] |
TAN X F, LIU S B, LIU Y G, et al., 2017. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage[J]. Bioresource Technology, 227: 359-372.
DOI URL |
[72] |
THIRUPPATHI M, LEELADEVI K, RAMALINGAN C, et al., 2020. Construction of novel biochar supported copper tungstate nanocomposites: a fruitful divergent catalyst for photocatalysis and electrocatalysis[J]. Materials Science in Semiconductor Processing, 106: 104766.
DOI URL |
[73] | VARMA R S, 2019. Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications[J]. ACS Sustainable Chemistry & Engineering, 7(7): 6458-6470. |
[74] |
WANG D K, ELMA M, MOTUZAS J, et al., 2016. Physicochemical and photocatalytic properties of carbonaceous char and titania composite hollow fibers for wastewater treatment[J]. Carbon, 109: 182-191.
DOI URL |
[75] |
WANG F J, GU Y Y, YANG Z Y, et al., 2018. The effect of halogen on BiOX (X=Cl, Br, I)/Bi2WO6 heterojunction for visible-light-driven photocatalytic benzyl alcohol selective oxidation[J]. Applied Catalysis A: General, 567: 65-72.
DOI URL |
[76] | WANG X L, LIU Y Y, ZHU L J, et al., 2019. Biomass derived N-doped biochar as efficient catalyst supports for CO2 methanation[J]. Journal of CO2 Utilization, 34: 733-741. |
[77] | WEI X Q, WANG X, PU Y, et al., 2021a. Facile ball-milling synthesis of CeO2/g-C3N4 Z-scheme heterojunction for synergistic adsorption and photodegradation of methylene blue: Characteristics, kinetics, models, and mechanisms[J]. Chemical Engineering Journal, 420(Part 2): 1385-8947. |
[78] |
WEI X Q, YU F, JI J W, et al., 2021b. Porous biochar supported Ag3PO4 photocatalyst for “two-in-one” synergistic adsorptive-photocatalytic removal of methylene blue under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 9(6): 106753.
DOI URL |
[79] |
WURZER C, MASEK O, 2021. Feedstock doping using iron rich waste increases the pyrolysis gas yield and adsorption performance of magnetic biochar for emerging contaminants[J]. Bioresource Technology, 321: 124473.
DOI URL |
[80] |
XIAO R, AWASTHI M K, LI R H, et al., 2017. Recent developments in biochar utilization as an additive in organic solid waste composting: A review[J]. Bioresource Technology, 246: 203-213.
DOI PMID |
[81] |
XIAO X, CHEN B L, ZHU L Z, 2014. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures[J]. Environmental Science & Technology, 48(6): 3411-9.
DOI URL |
[82] |
XIE X Y, LI S, ZHANG H Y, et al., 2019. Promoting charge separation of biochar-based Zn-TiO2/pBC in the presence of ZnO for efficient sulfamethoxazole photodegradation under visible light irradiation[J]. Science of The Total Environment, 659: 529-539.
DOI URL |
[83] |
YAN Y, TANG X, MA C C, et al., 2020. A 2D mesoporous photocatalyst constructed by the modification of biochar on BiOCl ultrathin nanosheets for enhancing the TC-HCl degradation activity[J]. New Journal of Chemistry, 44(1): 79-86.
DOI URL |
[84] |
YANG H L, YE S J, ZENG Z T, et al., 2020. Utilization of biochar for resource recovery from water: A review[J]. Chemical Engineering Journal, 397: 125502.
DOI URL |
[85] |
YE S J, YAN M, TAN X F, et al., 2019. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light[J]. Applied Catalysis B: Environmental, 250: 78-88.
DOI URL |
[86] |
YOU S M, OK Y S, CHEN S S, et al., 2017. A critical review on sustainable biochar system through gasification: Energy and environmental applications[J]. Bioresource Technology, 246: 242-253.
DOI PMID |
[87] |
ZHAI Y L, DAI Y Z, GUO J, et al., 2020. Novel biochar@CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation[J]. Journal of Colloid and Interface Science, 560: 111-121.
DOI URL |
[88] |
ZHANG H Y, WANG Z W, LI R N, et al., 2017. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices[J]. Chemosphere, 185: 351-360.
DOI URL |
[89] |
ZHANG J J, ZHAO X, WANG Y B, et al., 2018. Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4[J]. Applied Catalysis B: Environmental, 237: 976-985.
DOI URL |
[90] |
ZHANG Z Z, LUO Z S, YANG Z P, et al., 2013. Band-gap tuning of N-doped TiO2 photocatalysts for visible-light-driven selective oxidation of alcohols to aldehydes in water[J]. RSC Advances, 3(20): 7215-7218.
DOI URL |
[91] |
ZHU N Y, LI C Q, BU L J, et al., 2020. Bismuth impregnated biochar for efficient estrone degradation: The synergistic effect between biochar and Bi/Bi2O3for a high photocatalytic performance[J]. Journal of Hazardous Materials, 384: 121258.
DOI URL |
[92] | ZHU Z W, CAI H H, SUN D W, 2018a. Titanium dioxide (TiO2) photocatalysis technology for nonthermal inactivation of microorganisms in foods[J]. Trends in Food Science & Technology, 75: 23-35. |
[93] |
ZHU Z, FAN W Q, LIU Z, et al., 2018b. Fabrication of the metal-free biochar-based graphitic carbon nitride for improved 2-Mercaptobenzothiazole degradation activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 358: 284-293.
DOI URL |
[94] | 吝美霞, 李法云, 王玮, 等, 2021. 生物炭负载P掺杂g-C3N4 复合光催化剂制备及其对萘光催化降解机制[J]. 环境科学学报, 41(8): 3200-3210. |
LIN M X, LI F Y, Wang W, et al., 2021. Synthesis of biochar-supported P-doped g-C3N4 photocatalyst and its photocatalytic degradation mechanism to naphthalene[J]. Acta Scientiae Circumstantiae, 41(8): 3200-3210. | |
[95] | 朱满, 谌建宇, 李小明, 等, 2013. 粉煤灰沸石负载Ce3+/TiO2光催化降解水中的菲和荧蒽[J]. 环境工程学报, 7(12): 4829-4834. |
ZHU M, CHEN J Y, LI X M, et al., 2013. Photocatalytic degradation of phenanthrene and fluoranthene solution by Ce3+ modified TiO2 loaded on zeolite from coal ash[J]. Chinese Journal of Environmental Engineering, 7(12): 4829-4834. |
[1] | 闫菊平, 王小萍, 龚平, 高少鹏. 尼泊尔一次源含碳气溶胶的排放特征研究[J]. 生态环境学报, 2023, 32(8): 1449-1456. |
[2] | 赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686. |
[3] | 苏丹, 罗桥冰, 董昱杉, 杨彩霞, 王鑫. 混合型生物炭对寒冷地区PAHs污染土壤微生物修复的强化作用[J]. 生态环境学报, 2023, 32(11): 1942-1951. |
[4] | 侯冬梅, 张兰, 李春成, 陈露童, 王盼盼, 邹建平. 壳聚糖-生物铁锰氧化物去除水体中锑的性能及机理研究[J]. 生态环境学报, 2023, 32(10): 1842-1853. |
[5] | 陈桂红. 硫和硅掺杂生物炭对镉污染土壤的修复研究[J]. 生态环境学报, 2023, 32(10): 1854-1860. |
[6] | 王洁, 单燕, 马兰, 宋延静, 王向誉. 秸秆/生物质炭协同还田措施对黄河三角洲盐碱土壤的改良效果研究[J]. 生态环境学报, 2023, 32(1): 90-98. |
[7] | 游宏建, 张文文, 兰正芳, 马兰, 张宝娣, 穆晓坤, 李文慧, 曹云娥. 蚯蚓原位堆肥与生物炭对黄瓜根结线虫及根际微生物的影响[J]. 生态环境学报, 2023, 32(1): 99-109. |
[8] | 李晓晖, 艾仙斌, 李亮, 王玺洋, 辛在军, 孙小艳. 新型改性稻壳生物炭材料对镉污染土壤钝化效果的研究[J]. 生态环境学报, 2022, 31(9): 1901-1908. |
[9] | 陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646. |
[10] | 房献宝, 张智钧, 赖阳晴, 叶脉, 刁增辉. 新型污泥生物炭对土壤重金属Cr和Cd的修复研究[J]. 生态环境学报, 2022, 31(8): 1647-1656. |
[11] | 钱莲文, 余甜甜, 梁旭军, 王义祥, 陈永山. 茶园土壤酸化改良中生物炭应用5 a后的稳定性研究[J]. 生态环境学报, 2022, 31(7): 1442-1447. |
[12] | 张慧琦, 李子忠, 秦艳. 玉米秸秆生物炭用量对砂土孔隙和持水性的影响[J]. 生态环境学报, 2022, 31(6): 1272-1277. |
[13] | 邓晓, 武春媛, 杨桂生, 李怡, 李勤奋. 椰壳生物炭对海南滨海土壤的改良效果[J]. 生态环境学报, 2022, 31(4): 723-731. |
[14] | 魏岚, 黄连喜, 李翔, 王泽煌, 陈伟盛, 黄庆, 黄玉芬, 刘忠珍. 生物炭基质可显著地促进香蕉幼苗生长[J]. 生态环境学报, 2022, 31(4): 732-739. |
[15] | 赵超凡, 周丹丹, 孙建财, 钱坤鹏, 李芳芳. 生物炭中可溶性组分对其吸附镉的影响[J]. 生态环境学报, 2022, 31(4): 814-823. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||