生态环境学报 ›› 2023, Vol. 32 ›› Issue (8): 1449-1456.DOI: 10.16258/j.cnki.1674-5906.2023.08.010
收稿日期:
2022-11-04
出版日期:
2023-08-18
发布日期:
2023-11-08
通讯作者:
*王小萍。E-mail: wangxp@itpcas.ac.cn作者简介:
闫菊平(1989年生),女,博士研究生,主要从事大气环境污染研究。E-mail: yanjuping1989@163.com
基金资助:
YAN Juping(), WANG Xiaoping(
), GONG Ping, GAO Shaopeng
Received:
2022-11-04
Online:
2023-08-18
Published:
2023-11-08
摘要:
含碳气溶胶是大气气溶胶中的污染物,包括黑碳(EC)和有机碳(OC)。根据OC的溶解性,可将其分为水溶性有机碳(WSOC)和甲醇溶解有机碳(MSOC)。尼泊尔是南亚的发展中国家,该地区的含碳气溶胶可以长距离传输进入青藏高原,进而影响喜马拉雅大气组分和气候。因此,研究尼泊尔地区的一次源含碳气溶胶对保护喜马拉雅的环境具有重要的意义。另外,准确获知含碳气溶胶化学组分的排放因子(EF),明确污染物排放因子的影响因素,可为污染物减排提供理论依据。然而,目前对于尼泊尔一次源排放的含碳气溶胶研究有限,尤其是WSOC和MSOC的排放特征报道仍为空白。基于此,在尼泊尔的首都加德满都,实地测定生物质燃烧和机动车尾气排放的含碳气溶胶排放因子,分析了排放因子的影响因素。结果表明,泥炉排放的EFOC (53±7.8) g?kg-1和EFWSOC (46±9.8) g?kg-1高于铁炉和砖炉的排放因子1-2个数量级。此外,泥炉排放的EFEC (5.5±0.4) g?kg-1也高于铁炉和砖炉的排放因子5倍,因此,建议将尼泊尔地区普遍使用的泥炉改造为铁炉,可以降低生物质燃烧排放的污染物。对于机动车尾气排放源而言,相比于低速(10 km?h-1)和高速(70 km?h-1)状态,机动车在匀速(40 km?h-1)状态下,含碳气溶胶的排放因子最低。因此,建议尼泊尔当地增加公交车和摩托车专用道,避免交通堵塞,以达到减排的目的。该研究为当地的大气污染物减排提供了可靠的科学依据。
中图分类号:
闫菊平, 王小萍, 龚平, 高少鹏. 尼泊尔一次源含碳气溶胶的排放特征研究[J]. 生态环境学报, 2023, 32(8): 1449-1456.
YAN Juping, WANG Xiaoping, GONG Ping, GAO Shaopeng. The Emission Characteristic of Carbonaceous Aerosols from Primary Sources in Nepal[J]. Ecology and Environment, 2023, 32(8): 1449-1456.
燃料类型 | 红松 | 桤木 | 水稻秸秆 | 针叶 | 玉米秸秆 |
---|---|---|---|---|---|
桤木 | 0.025* | ||||
水稻秸秆 | 0.296 | 0.219 | |||
针叶 | 0.358 | 0.239 | 0.057 | ||
玉米秸秆 | 0.138 | 0.105 | 0.665 | 0.103 | |
森林凋落物 | 0.042* | 0.013* | 0.473 | 0.731 | 0.161 |
表1 不同生物质燃烧产生的EFWSOC的t检验
Table 1 Significance (P) of t-test for the EFs of WSOC emitted from various biomass combustion
燃料类型 | 红松 | 桤木 | 水稻秸秆 | 针叶 | 玉米秸秆 |
---|---|---|---|---|---|
桤木 | 0.025* | ||||
水稻秸秆 | 0.296 | 0.219 | |||
针叶 | 0.358 | 0.239 | 0.057 | ||
玉米秸秆 | 0.138 | 0.105 | 0.665 | 0.103 | |
森林凋落物 | 0.042* | 0.013* | 0.473 | 0.731 | 0.161 |
排放 因子 | 行驶速度 v/(km∙h-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
10 | 40 | 70 | |||||||||
摩托车与汽车 | 摩托车与公交车 | 公交车与汽车 | 摩托车与汽车 | 摩托车与公交车 | 公交车与汽车 | 摩托车与汽车 | 摩托车与公交车 | 公交车与汽车 | |||
EFOC | 0.020* | 0.020* | 0.024* | 0.020* | 0.020* | 0.019* | 0.070 | 0.056 | 0.000* | ||
EFMSOC | 0.540 | 0.452 | 0.004* | 0.071 | 0.049* | 0.400 | 0.040* | 0.122 | 0.232 | ||
EFWSOC | 0.020* | 0.020* | 0.024* | 0.020* | 0.020 * | 0.019* | 0.070 | 0.560 | 0.000* | ||
EFEC | 0.958 | 0.053* | 0.176 | 0.049* | 0.049* | 0.049* | 0.020* | 0.127 | 0.003* |
表2 不同机动车尾气排放的EFOC、EFMSOC、EFWSOC和EFEC的t检验
Table 2 Significance (P) of t-test for EFOC, EFMSOC, EFWSOC and EFEC emitted from various vehicles
排放 因子 | 行驶速度 v/(km∙h-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
10 | 40 | 70 | |||||||||
摩托车与汽车 | 摩托车与公交车 | 公交车与汽车 | 摩托车与汽车 | 摩托车与公交车 | 公交车与汽车 | 摩托车与汽车 | 摩托车与公交车 | 公交车与汽车 | |||
EFOC | 0.020* | 0.020* | 0.024* | 0.020* | 0.020* | 0.019* | 0.070 | 0.056 | 0.000* | ||
EFMSOC | 0.540 | 0.452 | 0.004* | 0.071 | 0.049* | 0.400 | 0.040* | 0.122 | 0.232 | ||
EFWSOC | 0.020* | 0.020* | 0.024* | 0.020* | 0.020 * | 0.019* | 0.070 | 0.560 | 0.000* | ||
EFEC | 0.958 | 0.053* | 0.176 | 0.049* | 0.049* | 0.049* | 0.020* | 0.127 | 0.003* |
排放 因子 | 摩托车 | 公交车 | 汽车 | ||||||
---|---|---|---|---|---|---|---|---|---|
10与40 | 10与70 | 40与70 | 10与40 | 10与70 | 40与70 | 10与40 | 10与70 | 40与70 | |
EFOC | 0.032* | 0.051 | 0.200 | 0.049* | 0.092 | 0.348 | 0.035* | 0.050* | 0.020* |
EFMSOC | 0.032* | 0.051 | 0.200 | 0.049* | 0.092 | 0.348 | 0.035* | 0.050* | 0.020* |
EFWSOC | 0.082 | 0.027* | 0.217 | 0.062 | 0.079 | 0.365 | 0.185 | 0.095 | 0.030* |
EFEC | 0.276 | 0.464 | 0.068 | 0.158 | 0.036* | 0.343 | 0.040* | 0.259 | 0.203 |
表3 不同行驶状态下,机动车尾气排放的EFOC、EFMSOC、EFWSOC和EFEC的t检验
Table 3 Significance (P) of t-test for EFOC, EFMSOC, EFWSOC and EFEC emitted from various vehicles under different traveling speed
排放 因子 | 摩托车 | 公交车 | 汽车 | ||||||
---|---|---|---|---|---|---|---|---|---|
10与40 | 10与70 | 40与70 | 10与40 | 10与70 | 40与70 | 10与40 | 10与70 | 40与70 | |
EFOC | 0.032* | 0.051 | 0.200 | 0.049* | 0.092 | 0.348 | 0.035* | 0.050* | 0.020* |
EFMSOC | 0.032* | 0.051 | 0.200 | 0.049* | 0.092 | 0.348 | 0.035* | 0.050* | 0.020* |
EFWSOC | 0.082 | 0.027* | 0.217 | 0.062 | 0.079 | 0.365 | 0.185 | 0.095 | 0.030* |
EFEC | 0.276 | 0.464 | 0.068 | 0.158 | 0.036* | 0.343 | 0.040* | 0.259 | 0.203 |
燃烧方式 | 野外实测或实验室模拟 | OC和EC分析方法 | OC的排放因子/(g∙kg-1) | EC的排放因子/(g∙kg-1) | 参考文献 |
---|---|---|---|---|---|
泥炉 | 野外实测 | 热/光透射法 | 53±7.8 | 5.5±0.4 | 本研究 |
秸秆 | 野外实测 | 热/光透射法 | 9.7±3.0 | 0.9±0.6 | 本研究 |
泥炉 | 野外实测 | 热/光反射法 | 2.2-3.6 | 0.91-1.6 | Shen et al., |
砖炉 | 野外实测 | 1.14±0.40 | 1.49±0.69 | Li et al., | |
改进后的炉灶 | 野外实测 | 热/光透射法 | 0.41-1.43 | 1.03-3.26 | Li et al., |
砖炉/炕 | 野外实测 | 0.98±0.32 | 1.32±0.39 | Li et al., | |
砖炉/炕 | 实验室燃烧 | 热/光反射法 | 0.60±0.35 | 0.94±0.40 | Shen et al., |
秸秆 | 野外实测 | — | 2.30 | 0.75 | Akagi et al., |
秸秆 | 实验室模拟燃烧 | 热/光透射法 | 0.57±0.3 | 0.24±0.13 | Sen et al., |
秸秆 | 实验室模拟燃烧 | 热/光透射法 | 1.6±0.73 | 0.37±0.14 | Saud et al., |
表4 生物质燃烧产生的OC和EC的排放因子与其他研究的对比
Table 4 EFs of OC and EC obtained from biomass burning in this study and compared with earlier results
燃烧方式 | 野外实测或实验室模拟 | OC和EC分析方法 | OC的排放因子/(g∙kg-1) | EC的排放因子/(g∙kg-1) | 参考文献 |
---|---|---|---|---|---|
泥炉 | 野外实测 | 热/光透射法 | 53±7.8 | 5.5±0.4 | 本研究 |
秸秆 | 野外实测 | 热/光透射法 | 9.7±3.0 | 0.9±0.6 | 本研究 |
泥炉 | 野外实测 | 热/光反射法 | 2.2-3.6 | 0.91-1.6 | Shen et al., |
砖炉 | 野外实测 | 1.14±0.40 | 1.49±0.69 | Li et al., | |
改进后的炉灶 | 野外实测 | 热/光透射法 | 0.41-1.43 | 1.03-3.26 | Li et al., |
砖炉/炕 | 野外实测 | 0.98±0.32 | 1.32±0.39 | Li et al., | |
砖炉/炕 | 实验室燃烧 | 热/光反射法 | 0.60±0.35 | 0.94±0.40 | Shen et al., |
秸秆 | 野外实测 | — | 2.30 | 0.75 | Akagi et al., |
秸秆 | 实验室模拟燃烧 | 热/光透射法 | 0.57±0.3 | 0.24±0.13 | Sen et al., |
秸秆 | 实验室模拟燃烧 | 热/光透射法 | 1.6±0.73 | 0.37±0.14 | Saud et al., |
机动车 类型 | 里程总数/ km | 机动车 总数量 | 年排放量/(Gg∙a-1) | |||
---|---|---|---|---|---|---|
OC | MSOC | WSOC | EC | |||
摩托车 | 3600 | 2530722 | 54±3.2 | 46±2.7 | 0.64±0.06 | 1.2±0.36 |
公交车 | 12775 | 49318 | 1.8±0.1 | 1.5±0.1 | 0.68±0.07 | 0.33±0.04 |
汽车 | 18250 | 237658 | 0.18±0.01 | 0.16±0.01 | 0.11±0.01 | 0.01±0.00 |
合计 | 34625 | 2817698 | 56±3.4 | 48±2.8 | 1.4±0.14 | 1.5±0.41 |
表5 尼泊尔机动车尾气相关的含碳气溶胶年排放量估算
Table 5 Annual estimation of OC, MSOC, WSOC and EC emitted from various vehicles in Nepal
机动车 类型 | 里程总数/ km | 机动车 总数量 | 年排放量/(Gg∙a-1) | |||
---|---|---|---|---|---|---|
OC | MSOC | WSOC | EC | |||
摩托车 | 3600 | 2530722 | 54±3.2 | 46±2.7 | 0.64±0.06 | 1.2±0.36 |
公交车 | 12775 | 49318 | 1.8±0.1 | 1.5±0.1 | 0.68±0.07 | 0.33±0.04 |
汽车 | 18250 | 237658 | 0.18±0.01 | 0.16±0.01 | 0.11±0.01 | 0.01±0.00 |
合计 | 34625 | 2817698 | 56±3.4 | 48±2.8 | 1.4±0.14 | 1.5±0.41 |
[1] |
ADHIKARI S, MAHAPATRA P S, POKHEAR C P, et al., 2020. Cookstove smoke impact on ambient air quality and probable consequences for human health in rural locations of Southern Nepal[J]. International Journal of Environmental Research and Public Health, 17(2): 550.
DOI URL |
[2] |
AGARWAL A K, MUSTAFI N N, 2021. Real-world automotive emissions: Monitoring methodologies, and control measures[J]. Renewable and Sustainable Energy Reviews, 137: 110624.
DOI URL |
[3] | AKAGI S K, YOKELSON R J, WIEDINMYER C, et al., 2011. Emission factors for open and domestic biomass burning for use in atmospheric models[J]. Atmospheric Chemistry and Physics, 11(9): 4039-4072. |
[4] |
ALVES C A, LOPES D J, CALVO A I, et al., 2015. Emissions from light-duty diesel and gasoline in-use vehicles measured on chassis dynamometer test cycles[J]. Aerosol and Air Quality Research, 15(1): 99-116.
DOI URL |
[5] | AURELL J, GULLETT B K. 2013. Emission factors from aerial and ground measurements of field and laboratory forest burns in the Southeastern US: PM2.5, black and brown carbon, VOC, and PCDD/PCDF[J]. Environmental Science & Technology, 47(15): 8443-8452. |
[6] |
CHEN P F, KANG S C, TRIPATHEE L, et al., 2020. Light absorption properties of elemental carbon (EC) and water-soluble brown carbon (WS-BrC) in the Kathmandu Valley, Nepal: A 5-year study[J]. Environmental Pollution, 261: 114239.
DOI URL |
[7] |
CHUNG C E, RAMANATHAN V, DECREMER D, 2012. Observationally constrained estimates of carbonaceous aerosol radiative forcing[J]. Proceedings of the National Academy of Sciences of the United States of America, 109: 11624-11629.
DOI PMID |
[8] |
CONG Z Y, KAWAMURA K, KANG S C, et al., 2015. Penetration of biomass-burning emissions from South Asia through the Himalayas: New insights from atmospheric organic acids[J]. Scientific Reports, 5: 9580.
DOI PMID |
[9] |
DENG T T, NELSON J D, 2013. Bus Rapid Transit implementation in Beijing: An evaluation of performance and impacts[J]. Research in Transportation Economics, 39(1): 108-113.
DOI URL |
[10] |
DHAMMAPALA R, CLAIBORN C, SIMPSON C, et al., 2007. Emission factors from wheat and Kentucky bluegrass stubble burning: Comparison of field and simulated burn experiments[J]. Atmospheric Environment, 41(7): 1512-1520.
DOI URL |
[11] | DOTM, 2019. Details of registration of transport up to fiscal year 1989/90-2017/18[R]. Nepal Government, Ministry of Physical Infrastructure &Transport. |
[12] | FENG Y, RAMANATHAN V, KOTAMARTHI V R, 2013. Brown carbon: A significant atmospheric absorber of solar radiation?[J]. Atmospheric Chemistry and Physics, 13(17): 8607-8621. |
[13] |
FORESTIERI S D, COLLIER S, KUWAYAMA T, et al., 2013. Real-time black carbon emission factor measurements from light duty vehicles[J]. Environmental Science and Technology, 47(22): 13104-13112.
DOI PMID |
[14] |
HUANG Y, SHEN H Z, CHEN Y L, et al., 2015. Global organic carbon emissions from primary sources from 1960 to 2009[J]. Atmospheric Environment, 122: 505-512.
DOI URL |
[15] |
INOMATA S, TANIMOTO H, PAN X L, et al., 2015. Laboratory measurements of emission factors of nonmethane volatile organic compounds from burning of Chinese crop residues[J]. Journal of Geophysical Research-Atmospheres, 120(10): 5237-5252.
DOI URL |
[16] |
JAIPRAKASH H G, 2017. Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city[J]. Science of the Total Environment, 586: 900-916.
DOI URL |
[17] |
LI C L, BOSCH C, KANG S C, et al., 2016. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers[J]. Nature Communications, 7: 12574.
DOI PMID |
[18] |
LI X H, WANG S X, DUAN L, et al., 2009. Carbonaceous aerosol emissions from household biofuel combustion in China[J]. Environmental Science & Technology, 43(15): 6076-6081.
DOI URL |
[19] | PANDEY A, PATEL S, PERVEZ S, et al., 2017. Aerosol emissions factors from traditional biomass cookstoves in India: Insights from field measurements[J]. Atmospheric Chemistry and Physics, 17(22): 13721-13729. |
[20] |
PERRONE M G, CARBONE C, FAEDO D, et al., 2014. Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes[J]. Atmospheric Environment, 82: 391-400.
DOI URL |
[21] |
RODEN C A, BOND T C, CONWAY S, BENJAMIN A, et al., 2006. Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves[J]. Environmental Science & Technology, 40(21): 6750-6757.
DOI URL |
[22] |
RODEN C A, BOND T C, CONWAY S, et al., 2009. Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves[J]. Atmospheric Environment, 43(6): 1170-1181.
DOI URL |
[23] |
RUPAKHETI D, OANH N T K, RUPAKHETI M, et al., 2019. Indoor levels of black carbon and particulate matters in relation to cooking activities using different cook stove-fuels in rural Nepal[J]. Energy for Sustainable Development, 48: 25-33.
DOI URL |
[24] | SADAVARTE P, RUPAKHETI M, BHAVE P, et al., 2019. Nepal emission inventory - Part I: Technologies and combustion sources (NEEMI-Tech) for 2001-2016[J]. Atmospheric Chemistry and Physics, 19(20): 12953-12973. |
[25] |
SAUD T, GAUTAM R, MANDAL T K, et al., 2012. Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India[J]. Atmospheric Environment, 61: 212-220.
DOI URL |
[26] |
SEN A, MANDAL T K, SHARMA S K, SAXENA M, et al., 2014. Chemical properties of emission from biomass fuels used in the rural sector of the western region of India[J]. Atmospheric Environment, 99: 411-424.
DOI URL |
[27] |
SHEN G F, TAO S, WEI S Y, et al., 2013a. Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China[J]. Environmental Science & Technology, 47(6): 2998-3005.
DOI URL |
[28] |
SHEN G F, TAO S, WEI S Y, et al., 2012. Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China[J]. Environmental Science & Technology, 46(15): 8123-8130.
DOI URL |
[29] |
SHEN G F, TAO S, WEI S Y, et al., 2013b. Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and Wood in Rural Shanxi, China[J]. Environmental Science & Technology, 47(6): 2998-3005.
DOI URL |
[30] |
SHIVANI, GADI R, SHARMA S K, et al., 2019. Seasonal variation, source apportionment and source attributed health risk of fine carbonaceous aerosols over National Capital Region, India[J]. Chemosphere, 237: 124500.
DOI URL |
[31] | STOCKWELL C E, CHRISTIAN T J, GOETZ J D, et al., 2016. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources[J]. Atmospheric Chemistry and Physics, 16(17): 11043-11081. |
[32] |
TANG S D, FRANK B P, LANNI T, et al., 2007. Unregulated emissions from a heavy-duty diesel engine with various fuels and emission control systems[J]. Environmental Science & Technology, 41(14): 5037-5043.
DOI URL |
[33] |
UPADHYAY A, DEY S, GOYAL P, 2020. A comparative assessment of regional representativeness of EDGAR and ECLIPSE emission inventories for air quality studies in India[J]. Atmospheric Environment, 223: 117182
DOI URL |
[34] |
VENKATARAMAN C, HABIB G, EIGUREN-FERNANDEZ A, et al., 2005. Residential biofuels in south Asia: Carbonaceous aerosol emissions and climate impacts[J]. Science, 307(5714): 1454-1456.
PMID |
[35] | WANG M, XU B, CAO J, et al., 2015. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing[J]. Atmospheric Chemistry and Physics, 15(3): 1191-1204. |
[36] | WECS. 2010. Water and Energy Commission Secretariat. Energy sector synopsis report 2010[R]. Kathmandu, Nepal: 95-111. |
[37] |
WU G M, RAM K, FU P Q, et al., 2019. Water-soluble brown carbon in atmospheric aerosols from Godavari (Nepal), a regional representative of South Asia[J]. Environmental Science and Technology, 53(7): 3471-3479.
DOI PMID |
[38] |
WU G M, WAN X, GAO S P, et al., 2018. Humic-Like Substances (HULIS) in aerosols of central Tibetan Plateau (Nam Co, 4730 m asl): abundance, light absorption properties, and resources[J]. Environmental science & technology, 52(13): 7203-7211.
DOI URL |
[39] |
WU Y, CHENG T H, ZHENG L J, et al., 2016. Black carbon radiative forcing at TOA decreased during aging[J]. Scientific Reports, 6(1): 1-10.
DOI |
[40] |
YAN J P, WANG X P, GAO S P, et al., 2022. Diagnostic ratio of nitrated phenols as a new method for the identification of pollution emission sources[J]. Environmental Pollution, 316: 120509.
DOI URL |
[41] |
ZHAO S F, MA H J, WANG M, et al., 2010. Study on the mechanism of photo-degradation of p-nitrophenol exposed to 254 nm UV light[J]. Journal of Hazardous Materials, 180(1-3): 86-90.
DOI PMID |
[42] | ZHAO Y, NIELSEN C P, LEI Y, et al., 2011. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China[J]. Atmospheric Chemistry and Physics, 11(5): 2295-2308. |
[43] |
ZHENG X, WU Y, JIANG J K, et al., 2015. Characteristics of on-road diesel vehicles: black carbon emissions in Chinese cities based on portable emissions measurement[J]. Environmental Science and Technology, 49(22): 13492-500.
DOI PMID |
[44] |
ZHOU Y, WU Y, YANG L, et al., 2010. The impact of transportation control measures on emission reductions during the 2008 Olympic Games in Beijing, China[J]. Atmospheric Environment, 44(3): 285-293.
DOI URL |
[45] | 董书伟, 2020. 烟气与大气棕色碳的光学特性与硝基苯酚类化合物的吸收贡献[D]. 济南: 山东大学. |
DONG S W, 2020, Absorption properties of brown carbons in flumes and atmospheres and contribution of nitrated phenols[D]. Ji’nan: Shandong University. | |
[46] | 郑轩, 2016. 基于车载测试的重型柴油车黑碳与多环芳烃排放特征研究[D]. 北京: 清华大学. |
ZHENG X, 2016, Emission characteristic of black carbon and polycylics aromatic hydrocarbon form heavy duty diesel vehicles based on PEMS method[D]. Beijing: Tsinghua University. |
[1] | 宋灯辉, 付迪, 黎建强, 付钇珊, 邢学霞, 田原. 云南松林计划烧除地表碳损失量及碳排放量估算[J]. 生态环境学报, 2023, 32(8): 1376-1383. |
[2] | 闫学军, 郝赛梅, 张荣荣, 秦华, 高素莲, 王锋, 靳宪忠, 孙友敏, 张桂芹. 家居市场挥发性有机物排放成分谱及排放估算[J]. 生态环境学报, 2023, 32(6): 1070-1077. |
[3] | 蒋斌, 陈多宏, 张涛, 袁鸾, 周炎, 沈劲, 张春林, 王伯光. 华南水稻秸秆焚烧期碳质气溶胶组分特征及源贡献评估[J]. 生态环境学报, 2022, 31(12): 2358-2366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||