生态环境学报 ›› 2022, Vol. 31 ›› Issue (8): 1647-1656.DOI: 10.16258/j.cnki.1674-5906.2022.08.017
房献宝1(), 张智钧1, 赖阳晴1, 叶脉1, 刁增辉2,*(
)
收稿日期:
2022-06-30
出版日期:
2022-08-18
发布日期:
2022-10-10
通讯作者:
* 刁增辉(1986年生),男,教授,博士,研究方向为环境污染修复。E-mail: zenghuid86@163.com作者简介:
房献宝(1982年生),男,工程师,硕士,研究方向为环境污染监测。E-mail: 99778122@qq.com
基金资助:
FANG Xianbao1(), ZHANG Zhijun1, LAI Yangqing1, YE Mai1, DIAO Zenghui2,*(
)
Received:
2022-06-30
Online:
2022-08-18
Published:
2022-10-10
摘要:
采取适宜的措施对土壤重金属污染进行修复是当前的研究热点。该研究采用缺氧高温热解法成功制备出一种新型污泥生物炭(SC),并用于土壤重金属铬(Cr)和镉(Cd)的修复。试验结果表明,所制备的污泥生物炭呈多孔结构且有丰富的含氧官能团和多种矿物质组分,污泥生物炭的施加不仅能有效地改善土壤的理化性质和提升土壤肥力,还能增强土壤酶活性和土壤微生物丰度。在40 d内,污泥生物炭对土壤重金属Cr和Cd的修复固定效率分别能达到69.2%和93.2%,Cr和Cd的形态是以残渣态为主。在盆栽试验中,污泥生物炭通过固定土壤重金属Cr和Cd,有效阻控Cr和Cd在青菜中各部位的积累,降低了重金属的生物可利用性。基于批实验结果和XPS分析结果,提出污泥生物炭修复土壤重金属Cr和Cd的可能反应机制,Cr的修复主要通过吸附、还原、络合和沉淀的作用,形成较稳定态的物质如Cr2O3、Cr(OH)3和FeCr2O4等,而Cd的修复主要是通过吸附和沉淀的作用形成如Cd(OH)2和CdO等稳定态物质。该研究不但为污泥生物炭在土壤重金属Cr和Cd修复提供理论基础和技术支撑,也实现了市政污泥的“以废治废”。
中图分类号:
房献宝, 张智钧, 赖阳晴, 叶脉, 刁增辉. 新型污泥生物炭对土壤重金属Cr和Cd的修复研究[J]. 生态环境学报, 2022, 31(8): 1647-1656.
FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar[J]. Ecology and Environment, 2022, 31(8): 1647-1656.
指标 Index | 处理Treatment | |||
---|---|---|---|---|
空白 | 1.0% SC | 2.5% SC | 4.0% SC | |
pH | 5.81±0.23b | 6.04±.0.11c | 6.37±0.20b | 6.72±0.32a |
CEC/(cmol∙kg-1) | 9.54±0.30b | 10.29±0.19c | 11.57±1.09a | 12.95±0.25b |
w(AN)/(mg∙kg-1) | 97.25±0.1.41c | 99.17±2.63a | 103.26±2.01b | 109.18±1.98b |
w(AP)/ (mg∙kg-1) | 12.41±0.85b | 13.87±0.41c | 15.66±0.52c | 17.41±1.98a |
w(AK)/(mg∙kg-1) | 198.63±6.15b | 207.11±4.15c | 219.2±2.32d | 231.13±8.19a |
w(SOC)/(mg∙kg-1) | 9.87±0.54c | 11.34±0.96b | 14.45±1.24a | 17.52±0.85b |
表1 SC对土壤理化性质的影响
Table 1 Effects of SC on soil physical and chemical properties
指标 Index | 处理Treatment | |||
---|---|---|---|---|
空白 | 1.0% SC | 2.5% SC | 4.0% SC | |
pH | 5.81±0.23b | 6.04±.0.11c | 6.37±0.20b | 6.72±0.32a |
CEC/(cmol∙kg-1) | 9.54±0.30b | 10.29±0.19c | 11.57±1.09a | 12.95±0.25b |
w(AN)/(mg∙kg-1) | 97.25±0.1.41c | 99.17±2.63a | 103.26±2.01b | 109.18±1.98b |
w(AP)/ (mg∙kg-1) | 12.41±0.85b | 13.87±0.41c | 15.66±0.52c | 17.41±1.98a |
w(AK)/(mg∙kg-1) | 198.63±6.15b | 207.11±4.15c | 219.2±2.32d | 231.13±8.19a |
w(SOC)/(mg∙kg-1) | 9.87±0.54c | 11.34±0.96b | 14.45±1.24a | 17.52±0.85b |
指标 Index | 处理Treatment | |||
---|---|---|---|---|
空白 | 1.0% SC | 2.5% SC | 4.0%SC | |
β-葡萄糖苷酶β-glucosidase/ (μg∙g-1∙h-1) | 18.95±0.91c | 23.58±1.04c | 27.64±1.65b | 30.81±2.36a |
脲酶 Urease/(mg∙g-1) | 4.02±0.35c | 4.35±0.74b | 4.83±0.91a | 5.12±0.36c |
碱性磷酸酶 Alkaline phosphatases/ (μg∙g-1∙h-1) | 2.65±1.05a | 2.92±0.52c | 3.75±0.68b | 4.20±0.22d |
酸性磷酸酶 Acid phosphatase/ (μg∙g-1∙h-1) | 10.51±0.13d | 10.20±0.39b | 9.59±0.24c | 8.94±0.79a |
表2 SC对土壤酶活性的影响
Table 2 Effects of SC on soil enzyme activities
指标 Index | 处理Treatment | |||
---|---|---|---|---|
空白 | 1.0% SC | 2.5% SC | 4.0%SC | |
β-葡萄糖苷酶β-glucosidase/ (μg∙g-1∙h-1) | 18.95±0.91c | 23.58±1.04c | 27.64±1.65b | 30.81±2.36a |
脲酶 Urease/(mg∙g-1) | 4.02±0.35c | 4.35±0.74b | 4.83±0.91a | 5.12±0.36c |
碱性磷酸酶 Alkaline phosphatases/ (μg∙g-1∙h-1) | 2.65±1.05a | 2.92±0.52c | 3.75±0.68b | 4.20±0.22d |
酸性磷酸酶 Acid phosphatase/ (μg∙g-1∙h-1) | 10.51±0.13d | 10.20±0.39b | 9.59±0.24c | 8.94±0.79a |
指标 Index | 处理Treatment | |||
---|---|---|---|---|
空白 | 1.0% SC | 2.5% SC | 4.0% SC | |
w(MBC)/(mg∙kg-1) | 41.25±1.22c | 44.17±2.32b | 50.12±1.25c | 56.62±3.29a |
w(MBN)/(mg∙kg-1) | 22.31±0.97c | 24.14±1.28b | 27.45±1.91a | 30.42±1.14b |
平均吸光值 AWCD | 0.32±0.03c | 0.34±0.05b | 0.39±0.02c | 0.43±0.08a |
表3 SC对土壤微生物量碳氮和微生物丰度的影响
Table 3 Effects of SC on soil MBC, MBN and microbial abundance
指标 Index | 处理Treatment | |||
---|---|---|---|---|
空白 | 1.0% SC | 2.5% SC | 4.0% SC | |
w(MBC)/(mg∙kg-1) | 41.25±1.22c | 44.17±2.32b | 50.12±1.25c | 56.62±3.29a |
w(MBN)/(mg∙kg-1) | 22.31±0.97c | 24.14±1.28b | 27.45±1.91a | 30.42±1.14b |
平均吸光值 AWCD | 0.32±0.03c | 0.34±0.05b | 0.39±0.02c | 0.43±0.08a |
[1] |
AHMAD M, RAJAPAKSHA A U, LIM J E, et al., 2014. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 99: 19-33.
DOI PMID |
[2] |
CHAGAS J K M, FIGUEIREDO C Cd, DA SILVA J, et al., 2021. The residual effect of sewage sludge biochar on soil availability and bioaccumulation of heavy metals: evidence from a three-year field experiment[J]. Journal of Environmental Management, 279: 111824.
DOI URL |
[3] |
DIAO Z H, QIAN W, ZHANG Z W, et al., 2020a. Removals of Cr(VI) and Cd(II) by a novel nanoscale zero valent iron/peroxydisulfate process and its Fenton-like oxidation of pesticide atrazine: coexisting effect, products and mechanism[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2020.125382.
DOI |
[4] |
DIAO Z H, YAN L, DONG F X, et al., 2020b. Degradation of 2, 4-dichlorophenol by a novel iron based system and its synergism with Cd(II) immobilization in a contaminated soil[J]. Chemical Engineering Journal, 379: 122313.
DOI URL |
[5] |
DIAO Z H, DONG F X, YAN L, et al., 2020c. Synergistic oxidation of Bisphenol A in a heterogeneous ultrasound enhanced sludge biochar catalyst/persulfate process: reactivity and mechanism[J]. Journal of Hazardous Materials, 384:121385.
DOI URL |
[6] |
DIAO Z H, XU X R, CHEN H, et al., 2016. Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: reactivity and mechanism[J]. Journal of Hazardous Materials, 316: 186-193.
DOI URL |
[7] |
DAIO Z H, DU J J, JIANG D, et al., 2018. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge derived biochar immobilized nanoscale zero valent iron: coexistence effects and mechanism[J]. Science of the Total Environment, 642: 505-515.
DOI URL |
[8] |
DIAO Z H, YAN L, DONG F X, et al., 2021. Ultrasound-assisted catalytic reduction of Cr(VI) by an acid mine drainage based nZVI coupling with FeS2 system from aqueous solutions: performance and mechanism[J]. Journal of Environmental Management, 278:111518.
DOI URL |
[9] |
DONG F X, YAN L, ZHOU X H, et al., 2021. Simultaneous adsorption of Cr(Ⅵ) and phenol by biochar-based iron oxide composites in water: performance, kinetics and mechanism[J]. Journal of Hazardous Materials, 416: 125930.
DOI URL |
[10] |
DELE-AFOLABI, AZMAH H M A, NORKHAIRUNNISA M, et al., 2017. Research trend in the development of macroporous ceramic components by pore forming additives from natural organic matters: A short review[J]. Ceramics International, 43(2): 1633-1649.
DOI URL |
[11] |
GU Y L, TAN X F, CAI X X, et al., 2022. Remediation of As and Cd contaminated sediment by biochars: Accompanied with the change of microbial community[J]. Journal of Environmental Chemical Engineering, 10: 106912.
DOI URL |
[12] |
GUO F Y, DING C F, ZHOU Z G, et al., 2018. Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation[J]. Ecotoxicology and Environmental Safety, 148: 303-310.
DOI PMID |
[13] |
JIA R, QU Z, YOU P, et al., 2018. Effect of biochar on photosynthetic microorganism growth and iron cycling in paddy soil under different phosphate levels[J]. Science of the Total Environment, 612: 223-230.
DOI URL |
[14] |
KLUPFEL L, KEILUWEIT M, KLEBER M, et al., 2014. Redox properties of plant biomass derived black carbon (biochar)[J]. Environmental Science & Technology, 48(10): 5601-5611.
DOI URL |
[15] | KHAN S, CHAO C, WAQAS M, et al., 2013. Sewage sludge biochar influence upon rice (Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil[J]. Environmental Science&Technology, 47(15): 8624-8632. |
[16] |
LEHMANN J, RILIG M C, THIES J, et al., 2011. Biochar effects on soil biota: A review[J]. Soil Biology and Biochemistry, 43(9): 1812-1836.
DOI URL |
[17] |
LIU J J, DIAO Z H, LIU C M, et al., 2018. Synergistic reduction of copper (II) and oxidation of norfloxacin over a novel sewage sludge-derived char-based catalyst: Performance, fate and mechanism[J]. Journal of Cleaner Production, 182: 794-804.
DOI URL |
[18] |
LIU X Y, YANG L, ZHAO H T, et al., 2020. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils[J]. Science of the Total Environment, 708: 134479.
DOI URL |
[19] |
NISHIJIMA H, SUZUKI Y, 2014. Microstructural control of porous Al2TiO5 by using various starches as pore-forming agents[J]. Journal of the ceramic society of Japan, 122(7): 565-569.
DOI URL |
[20] |
PUGA A P, ABREU C A, MELO L C A, et al., 2015. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium[J]. Journal of Environmental Management, 159: 86-93.
DOI PMID |
[21] |
QI F J, DONG Z M, LAMB D, et al., 2017. Effects of acidic and neutral biochars on properties and cadmium retention of soils[J]. Chemosphere, 180: 564-573.
DOI PMID |
[22] |
QIU Z, TANG J W, CHEN J H, et al., 2020. Remediation of cadmium- contaminated soil with biochar simultaneously improves biochar’s recalcitrance[J]. Environmental Pollution, 256: 113436.
DOI URL |
[23] |
QIAN W, LIANG J Y, ZHANG W X, et al., 2022. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil[J]. Journal of Environmental Sciences, 113: 231-241.
DOI URL |
[24] |
QIAO J T, LIU T X, WANG X Q, et al., 2018. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zerovalent iron and biochar to contaminated paddy soils[J]. Chemosphere, 195: 260-271.
DOI URL |
[25] |
SUN Y B, SUN G H, XU Y M, et al., 2016. Evaluation of the ectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium contaminated soils[J]. Journal of Environmental Management, 166: 204-210.
DOI URL |
[26] |
SU Y M, SUN X Y, ZHOU X F, et al., 2015. Zero-valent iron doped carbons readily developed from sewage sludge for lead removal from aqueous solution[J]. Journal of Environmental Sciences, 36: 1-8.
DOI URL |
[27] | TABATABA M A, 1994. Soil enzymes[C]// Weaver R W, Angle J S, Bottomley P S. Methods of soil analysis. Part 2. Microbiological and biochemical properties. Madison: SSSA Book Series No.5. Soil Science Society of America, 775-833. |
[28] |
VITHANAGE M, BANDARA T, Al-WABEL M I, et al., 2018. Soil enzyme activities in waste biochar amended multi-metal contaminated soil; effect of different pyrolysis temperatures and application rates[J]. Communications in Soil Science and Plant Analysis, 49(5): 635-643.
DOI URL |
[29] |
WANG X J, XU X M, LIANG X, et al., 2011. Adsorption of copper (II) onto sewage sludge-derived materials via microwave irradiation[J]. Journal of Hazardous Materials, 192(3):1226-1233.
DOI URL |
[30] | XU Q, XU Q Y, ZHU H, et al., 2022. Does biochar application in heavy metal-contaminated soils affect soil micronutrient dynamics?[J]. Chemosphere, 290: 133349. |
[31] |
YAN L, DONG F X, LI Y, et al., 2022. Synchronous removal of Cr(VI) and phosphates by a novel crayfish shell biochar-Fe composite from aqueous solution: Reactivity and mechanism[J]. Journal of Environmental Chemical Engineering, 10: 107396.
DOI URL |
[32] |
ZHU X M, CHEN B L, ZHU L Z, et al., 2017. Effects and mechanisms of biocharmicrobe interactions in soil improvement and pollution remediation: A review[J]. Environmental Pollution, 227: 98-115.
DOI URL |
[33] | ZHANG D, WU X X, DING A F, et al., 2019. Effects of hydrated lime and biochar on the bioavailability of Cd and Pb and microbial activity in a contaminated soil[J]. Environmental Chemistry, 38: 2526-2534. |
[34] |
ZHANG X, ZHONG T, LIU L, et al., 2016. Chromium occurrences in arable soil and its influence on food production in China[J]. Environmental Earth Sciences, 75(3): 257.
DOI URL |
[35] | 鲍士旦, 2000. 土壤农化分析[M]. 3版. 北京: 中国农业出版社. |
BAO S D, 2000. Soil and agricultural chemistry analysis[M]. 3rd Edition. Beijing: China Agricultural Press. | |
[36] | 国家食品药品监督管理局, 2017. 食品安全国家标准食品中污染物限量: GB 2762-2017[S]. 北京: 中国标准质检出版社. |
State Food and Drug Administration, 2017. National Food Safety Standard Limits of Contaminants in Food: GB 2762-2017[S]. Beijing: China Standard and Quality Inspection Press. | |
[37] | 刘娟, 张乃明, 袁启慧, 等, 2021. 不同钝化剂对铅镉复合污染土壤钝化效果及影响因素研究[J]. 生态环境学报, 30(8): 1732-1741. |
LIU J, ZHANG N M, YUAN Q H, et al., 2021. Passivation effect and influencing factors of different passivators on lead-cadmium compound contaminated soils[J]. Ecology and Environmental Sciences, 30(8): 1732-1741. | |
[38] | 秦坤, 王志康, 王章鸿, 等, 2022. 木质素-聚乙烯共热解生物炭对Cd(II)的吸附性能[J]. 生态环境学报, 31(2): 344-353. |
QIN K, WANG Z K, WANG Z H, et al., 2022. Cd(II) adsorption capability of the biochar derived from co-pyrolysis of lignin and polyethylene[J]. Ecology and Environmental Sciences, 31(2): 344-353. | |
[39] | 梅闯, 蔡昆争, 黎紫珊, 等, 2022. 稻秆生物炭对稻田土壤Cd形态转化和微生物群落的影响[J]. 生态环境学报, 31(2): 380-390. |
MEI C, CAI K Z, LI Z S, et al., 2022. Effects of rice-straw biochar on the transformation of cadmium fractions and microbial community in paddy soils[J]. Ecology and Environmental Sciences, 31(2): 380-390. | |
[40] | 王志朴, 热则耶, 张大旺, 等, 2021. 污泥基生物炭用于土壤中Cr的钝化及作用机制分析[J]. 环境工程, 39(5): 178-183. |
WANG Z P, REZEYE R L, ZHANG D W, et al., 2021. Effect and possible mechanism of immobilization of chromium in the soil amended by biochar derived from sewage sludge[J]. Environmental Engineering, 39(5): 178-183. | |
[41] | 王玉婷, 王紫玥, 刘田田, 等, 2020. 钝化剂对镉污染土壤修复效果及青菜生理效应影响[J]. 环境化学, 39(9): 2395-2403. |
WANG Y T, WANG Z Y, LIU T T, et al., 2020. Effects of amendments on remediation of cadmium-contaminated soil and physiological characteristics of pakchoi[J]. Environmental Chemistry, 39(9): 2395-2403. | |
[42] | 张迪, 吴晓霞, 丁爱芳, 等, 2019. 生物炭和熟石灰对土壤镉铅生物有效性和微生物活性的影响[J]. 环境化学, 38(11): 2526-2534. |
ZHANG D, WU X X. DING A F, et al., 2019. Effects of hydrated lime and biochar on the bioavailability of Cd and Pb and microbial activity in a contaminated soil[J]. Environmental Chemistry, 38(11): 2526-2534. | |
[43] | 中华人民共和国生态环境部. 2018. 土壤环境质量-农用地土壤污染风险管控标准 (试行): GB 15618-2018[S]. 北京: 中国环境出版集团. |
Ministry of Ecology and Environment of the People’s Republic of China, 2018. Soil Environmental Quality-Risk Control Standard for Soil Contamination of Agricultural land (Trial): GB 15618-2018[S]. Beijing: China Environment Publishing Group. |
[1] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[2] | 刘抗旱, 郑刘根, 张理群, 丁丹, 单士锋. 复合型植物源活化剂强化蜈蚣草修复砷污染土壤的效应研究[J]. 生态环境学报, 2023, 32(3): 635-642. |
[3] | 花莉, 成涛之, 梁智勇. 固定化混合菌对陕北黄土地区石油污染土壤的修复效果[J]. 生态环境学报, 2022, 31(8): 1610-1615. |
[4] | 高鹏, 高品, 孙蔚旻, 孔天乐, 黄端仪, 刘华清, 孙晓旭. 蜈蚣草根际及内生微生物群落对砷污染胁迫的响应机制研究[J]. 生态环境学报, 2022, 31(6): 1225-1234. |
[5] | 黄敏, 赵晓峰, 梁荣祥, 王鹏忠, 戴安然, 何晓曼. 3种螯合剂对Cd、Cu复合污染土壤淋洗修复的对比研究[J]. 生态环境学报, 2022, 31(6): 1244-1252. |
[6] | 秦秦, 段海芹, 宋科, 孙丽娟, 孙雅菲, 周斌, 薛永. 常规施肥对土壤水稳性团聚体镉吸附解吸特性及化学形态的影响研究[J]. 生态环境学报, 2022, 31(12): 2403-2413. |
[7] | 程俊伟, 蔡深文, 黄明琴. 贵州湘江锰矿区优势植物重金属富集特征研究[J]. 生态环境学报, 2021, 30(8): 1742-1750. |
[8] | 丛超, 杨宁柯, 王海娟, 王宏镔. 吲哚乙酸和激动素配合施用提高蜈蚣草和龙葵对砷、镉富集的田间试验[J]. 生态环境学报, 2021, 30(6): 1299-1309. |
[9] | 童辉, 乔江涛, 周继梅, 雷琴凯, 陈曼佳, 刘承帅. 硫酸盐还原菌介导针铁矿表面硫的转化及镉固定脱毒效应[J]. 生态环境学报, 2021, 30(5): 1069-1075. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||