生态环境学报 ›› 2025, Vol. 34 ›› Issue (5): 763-772.DOI: 10.16258/j.cnki.1674-5906.2025.05.010
潘璇1(), 罗竣潇2, 唐炳然1, 郭翔宇3, 何强1, 李宏1,*(
)
收稿日期:
2024-09-13
出版日期:
2025-05-18
发布日期:
2025-05-16
通讯作者:
*李宏。E-mail: 作者简介:
潘璇(1998年生),女,硕士研究生,研究方向为污染物生态环境效应及污染控制相关研究。E-mail: 949850487@qq.com
基金资助:
PAN Xuan1(), LUO Junxiao2, TANG Bingran1, GUO Xiangyu3, HE Qiang1, LI Hong1,*(
)
Received:
2024-09-13
Online:
2025-05-18
Published:
2025-05-16
摘要: 以粉煤灰基载氧沸石为覆盖材料,通过构建沉积物柱试验体系,探究了在水丝蚓(Limnodrilus Claparède)的影响下覆盖粉煤灰基载氧沸石后厌氧沉积物-水体系氮的去除效果与潜在机制。结果表明,覆盖20 d后,粉煤灰基载氧沸石覆盖显著提升了上覆水中溶解氧(DO)浓度,较对照升高2.78倍。但水丝蚓的存在促进了粉煤灰基载氧沸石中的氧气向深层沉积物的扩散,导致上覆水DO浓度较对照降低了56.73%,且表层沉积物剖面中DO浓度显著高于粉煤灰基载氧沸石组(3.77-0.47 mg∙L−1);同时,表层沉积物中Comamonadaceae和覆盖层中的Novosphingobium、Proteiniclasticum等反硝化菌的丰度明显提升。因此,20 d后各处理组上覆水中的总氮含量为9.89 mg∙L−1(粉煤灰基载氧沸石组)、10.40 mg∙L−1(粉煤灰基载氧沸石+水丝蚓组)、11.60 mg∙L−1(粉煤灰基不载氧沸石组)、12.49 mg∙L−1(粉煤灰基不载氧沸石+水丝蚓组)、18.59 mg∙L−1(对照组)、20.99 mg∙L−1(水丝蚓组),但实验结束时,水丝蚓的存在并未增加粉煤灰基载氧沸石覆盖下氧化亚氮释放通量(均显著低于其他处理组,p<0.05)。沉积物中水丝蚓向下运动能够使粉煤灰基载氧沸石作用到更深处的沉积物中,从而提高沉积物中的溶解氧含量,同时改变了微生物群落结构,进而促进了深层沉积物脱氮。
潘璇, 罗竣潇, 唐炳然, 郭翔宇, 何强, 李宏. 载氧沸石与水丝蚓对沉积物-水剖面氮迁移转化的影响[J]. 生态环境学报, 2025, 34(5): 763-772.
PAN Xuan, LUO Junxiao, TANG Bingran, GUO Xiangyu, HE Qiang, LI Hong. The Influence of Oxygen-carrying Zeolite and Tubificid Worm on Nitrogen Migration and Transformation in the Sediment-water Core[J]. Ecology and Environmental Sciences, 2025, 34(5): 763-772.
图6 微生物相对丰度 各名称对应的样本为:S_C:对照组0-2 cm深度的沉积物;S_T:水丝蚓组0-2 cm深度的沉积物;S_N:粉煤灰基不载氧沸石组0-2 cm深度的沉积物;S_N_T:粉煤灰基不载氧沸石+水丝蚓组0-2 cm深度的沉积物;S_O:粉煤灰基载氧沸石组0-2 cm深度的沉积物;S_O_T:粉煤灰基载氧沸石+水丝蚓组0-2 cm深度的沉积物;Z_N:粉煤灰基不载氧沸石组的覆盖层;Z_N_T:粉煤灰基不载氧沸石+水丝蚓组的覆盖层;Z_O:粉煤灰基载氧沸石组的覆盖层;Z_O_T:粉煤灰基载氧沸石+水丝蚓组的覆盖层
Figure 6 Relative abundance of microorganisms
处理组 | NZ | NZ+TW | OZ | OZ+TW |
---|---|---|---|---|
表层沉积物 | 22.5 | 20.1 | 21.9 | 15.0 |
覆盖层 | 40.6 | 65.8 | 53.7 | 35.7 |
表1 覆盖粉煤灰基沸石的处理组表层沉积物与覆盖层中变形菌门的丰度
Table 1 Abundance of Proteobacteria in the surface sediment and capping layer in the treatment group covered with fly ash-based zeolite %
处理组 | NZ | NZ+TW | OZ | OZ+TW |
---|---|---|---|---|
表层沉积物 | 22.5 | 20.1 | 21.9 | 15.0 |
覆盖层 | 40.6 | 65.8 | 53.7 | 35.7 |
[1] | ALI J, YANG Y S, PAN G, 2023. Oxygen micro-nanobubbles for mitigating eutrophication induced sediment pollution in freshwater bodies[J]. Journal of Environmental Management, 331: 117281. |
[2] | ALVARADO J N, HONG S H, LEE C G, et al., 2020. Comparison of capping and mixing of calcined dolomite and zeolite for interrupting the release of nutrients from contaminated lake sediment[J]. Environmental Science and Pollution Research, 27(13): 15045-15056. |
[3] |
BARKA E A, VATSA P, SANCHEZ L, et al., 2016. Taxonomy, physiology, and natural products of Actinobacteria[J]. Microbiology and Molecular Biology Reviews, 80(1): 1-43.
DOI PMID |
[4] | CAO X K, ZHENG H, LIAO Y, et al., 2022. Effects of iron-based substrate on coupling of nitrification, aerobic denitrification and Fe(II) autotrophic denitrification in tidal flow constructed wetlands[J]. Bioresource Technology, 361: 127657. |
[5] | GÉRINO M, STORA G, FRANÇOIS-CARCAILLET F, et al., 2003. Macro-invertebrate functional groups in freshwater and marine sediments: A common mechanistic classification[J]. Vie et Milieu/Life & Environment, 53(4): 221-230. |
[6] | KANG Y, ZHANG J, XIE H J, et al., 2017. Enhanced nutrient removal and mechanisms study in benthic fauna added surface-flow constructed wetlands: The role of Tubifex tubifex[J]. Bioresource Technology, 224: 157-165. |
[7] |
LAGAUZERE S, BOYER P, STORA G, et al., 2009. Effects of uranium-contaminated sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and Tubifex tubifex worms (Annelida, Tubificidae)[J]. Chemosphere, 76(3): 324-334.
DOI PMID |
[8] | VOPEL K, GIBBS M, HICKEY C, et al., 2008. Modification of sediment-watr solute exchange by sediment-capping materials: effects on O2 and pH[J]. Marine and Freshwater Research, 59(12): 1101-1110. |
[9] | WEI G N, XU J N, YANG B, et al., 2023. Controlling internal nutrients loading at low temperature using oxygen-loading zeolite and submerged macrophytes enhances environmental resilience to subsequent high temperature[J]. Environmental Research, 231(Part 1): 116101. |
[10] | XU H J, WANG X H, LI H, et al., 2014. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape[J]. Environmental Science & Technology, 48(16): 9391-9399. |
[11] |
XU J L, ZHANG H Y, ZHAO R, et al., 2017. Enhanced bacterial quorum aggregation on a zeolite capping layer for sustainable inhibition of ammonium release from contaminated sediment[J]. Water Science and Technology, 76(11-12): 3428-3440.
DOI PMID |
[12] | YANG C H, YANG P, YIN H B, 2021. In situ control of internal nutrient loading and fluxes in the confluence area of an eutrophic lake with combined P inactivation agents and modified zeolite[J]. Science of The Total Environment, 775: 145745. |
[13] | YIN H B, ZHU J C, TANG W Y, 2018. Management of nitrogen and phosphorus internal loading from polluted river sediment using Phoslock® and modified zeolite with intensive tubificid oligochaetes bioturbation[J]. Chemical Engineering Journal, 353: 46-55. |
[14] | ZHAN Y H, WU X L, LIN J W, 2020. Combined use of calcium nitrate, zeolite, and anion exchange resin for controlling phosphorus and nitrogen release from sediment and for overcoming disadvantage of calcium nitrate addition technology[J]. Environmental Science and Pollution Research, 27: 24863-24878. |
[15] |
ZHU J, WANG Q, YUAN M D, et al., 2016. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review[J]. Water Research, 90: 203-215.
DOI PMID |
[16] | ZIELIŃSKA M, RUSANOWSKA P, JARZĄBEK J, et al., 2016. Community dynamics of denitrifying bacteria in full-scale wastewater treatment plants[J]. Environmental Technology, 37(18): 2358-2367. |
[17] | 陈振楼, 刘杰, 许世远, 等, 2005. 大型底栖动物对长江口潮滩沉积物-水界面无机氮交换的影响[J]. 环境科学, 26(6): 43-51. |
CHEN Z L, LIU J, XU S Y, et al., 2005. Impact of macrofaunal activities on the DIN exchange at the sediment-water interface along the tidal flat of Yangtze River Estuary[J]. Environmental Science, 26(6): 43-51. | |
[18] | 高杰, 黄屿玥, 韦冰, 等, 2022. 底栖动物 (苏氏尾鳃蚓Branchiura sowerbyi和椭圆萝卜螺Radix swinhoei) 对不同氮负荷程度沉积物脱氮的影响[J]. 环境科学学报, 42(11): 202-210. |
GAO J, HUANG Y Y, WEI B, et al., 2022. Effect of macroinvertebrates (Branchiura sowerbyi and Radix swinhoei) on nitrogen removal of sediment with varying nitrogen load levels[J]. Acta Scientiae Circumstantiae, 42(11): 202-210. | |
[19] | 龚志军, 谢平, 唐汇涓, 等, 2001. 水体富营养化对大型底栖动物群落结构及多样性的影响[J]. 水生生物学报, 25(3): 210-216. |
GONG Z J, XIE P, TANG H J, et al., 2001. The influence of eutrophycation upon community structure and biodiversity of macrozoobenthos[J]. Acta Hydrobiologica Sinica, 25(3): 210-216. | |
[20] | 国家环境保护总局,2007. 危险废物鉴别标准浸出毒性鉴别: GB 5083—2007[S]. 北京: 中国环境科学出版社: 5. |
State Environment Protection Agency,2007. Identification standards for hazardous wastes-Identification for extraction toxicity: GB 5083—2007[S]. Beijing: China Environmental Science Press: 5. | |
[21] | 郭佩茹, 汪素芳, 郑杰蓉, 等, 2022. 生物阳极型MFC对磺胺喹噁啉的降解性能研究[J]. 环境科学学报, 42(7): 170-181. |
GUO P R, WANG S F, ZHENG J R, et al., 2022. The degradation of Sulfaquinoxaline in microbial fuel cells[J]. Acta Scientiae Circumstantiae, 42(7): 170-181. | |
[22] | 魏复盛, 2002. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社: 200-284. |
WEI F S, 2002. Monitoring and Analysis Methods for Water and Wastewater[M]. The Fourth Edition. Beijing: China Environmental Press: 200-284. | |
[23] | 李亚男, 闫冰, 郑蕊, 等, 2022. 一体式部分亚硝化-厌氧氨氧化工艺污泥膨胀发生和恢复过程中微生物群落演替及PICRUSt2功能预测分析[J]. 环境科学, 43(7): 3708-3717. |
LI Y N, YAN B, ZHENG R, et al., 2022. Succession and PICRUSt2-based predicted functional analysis of microbial communities during the sludge bulking occurrence and restoration in one-stage combined partial nitritation and ANAMMOX process[J]. Environmental Science, 43(7): 3708-3717. | |
[24] | 刘明艳, 马嘉晗, 李瑜, 等, 2020. 16S rRNA基因高变区V4和V3-V4及测序深度对油藏细菌菌群分析的影响[J]. 微生物学通报, 47(2): 440-449. |
LIU M Y, MA J H, LI Y, et al., 2020. Influence of 16S rRNA gene V4 and V3-V4 sequencing and sequencing depth on unraveling bacterial communities inhabiting oil reservoirs[J]. Microbiology China, 47(2): 440-449. | |
[25] | 骆其金, 朱满, 谌建宇, 等, 2014. 粉煤灰合成沸石应用风险评估研究[J]. 环境污染与防治, 36(7): 14-17, 21. |
LUO Q J, ZHU M, CHEN J Y, et al., 2014. Risk assessment of application of the synthetic zeolite from the coal ash[J]. Environmental Pollution & Control, 36 (7): 14-17, 21. | |
[26] | 缪润珠, 王建芳, 陈佳琦, 等, 2022. H2-MBfR反硝化效能及影响因素[J]. 环境工程学报, 16(7): 2425-2435. |
MIAO R Z, WANG J F, CHEN J Q, et al., 2022. Denitrification efficiency and impact factors of a hydrogen-based membrane biofilm reactor[J]. Chinese Journal of Environmental Engineering, 16(7): 2425-2435. | |
[27] |
聂毅磊, 贾纬, 曾艳兵, 等, 2017. 两株好氧反硝化聚磷菌的筛选、鉴定及水质净化研究[J]. 生物技术通报, 33(3): 116-121.
DOI |
NIE Y L, JIA W, ZENG Y B, et al., 2017. Screening and identification of two aerobic denitrifying phosphorusaccumulating strains, and denitrifying biological phosphorus removal[J]. Biotechnology Bulletin, 33(3): 116-212. | |
[28] | 潘丹, 黄巧云, 陈雯莉, 2011. 两株异养硝化细菌的分离鉴定及其脱氮特性[J]. 微生物学报, 51(10): 1382-1389. |
PAN D, HUANG Q Y, CHEN W L, 2011. Screening and identification of two heterotrophic nitrifying bacteria and characterization of their capacity for nitrogen removal[J]. Acta Microbiologica Sinica, 51(10): 1382-1389. | |
[29] | 孙家君, 李乾岗, 魏婷, 等, 2021. 三角帆蚌生物扰动对白洋淀湿地水环境影响探究[J]. 环境科技, 34(1): 8-13. |
SUN J J, LI Q G, WEI T, et al., 2021. Effect of Hyriopsis cumingii on water environment of Baiyangdian Wetland[J]. Environmental Science and Technology, 34(1): 8-13. | |
[30] | 孙培荣, 李大鹏, 徐楚天, 等, 2023. 水丝蚓排泄物—蚓粪对沉积物微环境及氮磷吸附特性的影响[J]. 环境工程, 41(8): 8-17. |
SUN P R, LI D P, XU C T, et al., 2023. Effects of tubificid worms excretion-fecal pellets on sediment microenvironment and adsorption characteristics of nitrogen and phosphorus[J]. Environmental Engineering, 41(8): 8-17. | |
[31] | 王思宇, 李军, 王秀杰, 等, 2017. 添加芽孢杆菌污泥反硝化特性及菌群结构分析[J]. 中国环境科学, 37(12): 4649-4656. |
WANG S Y, LI J, WANG X J, et al., 2017. Denitrification characteristics of Bacillus subtilis sludge and analysis of microbial community structure[J]. China Environmental Science, 37(12): 4649-4656. | |
[32] | 吴方同, 陈锦绣, 闫艳红, 等, 2011. 水丝蚓生物扰动对东洞庭湖沉积物氮释放的影响[J]. 湖泊科学, 23(5) : 731-737. |
WU F T, CHEN J X, YAN Y H, et al., 2011. The influence of Limnodrilus hoffmeisteri bioturbation on nitrogen release from sediments in the East Lake Dongting[J]. Journal of Lake Sciences, 23(5): 731-737. | |
[33] | 杨兵, 罗竣潇, 唐炳然, 等, 2024. 载氧沸石对沉积物-水剖面氮去除的机制[J]. 中国环境科学, 44(7): 3786-3799. |
YANG B, LUO J X, TANG B R, et al., 2024. The mechanism of nitrogen migration aceoss sediment-water core manipulated by oxygen-loaded zeolite[J]. China Environmental Science, 44(7): 3786-3799. | |
[34] | 杨建鹏, 张健, 田晴, 等, 2019. 内源碳PHA的贮存对混合菌群耐低温特性的影响[J]. 环境科学, 40(4): 1914-1921. |
YANG J P, ZHANG J, TIAN Q, et al., 2019. Effect of Intracellular Carbon Source (PHA) Storage on the Mixed Growth Microbial Community Resistance to Low Temperature[J]. Environmental Science, 40(4): 1914-1921. | |
[35] | 赵宝刚, 张夏彬, 昝逢宇, 等, 2021. 不同湖泊表层沉积物氮形态的分布特征与影响因素[J]. 中国环境科学, 41(2): 837-847. |
ZHAO B G, ZHANG X B, ZAN F Y, et al., 2021. Distribution characteristics and influencing factors of nitrogen forms in surface sediments of different lakes[J]. China Environmental Science, 41(2): 837-847. |
[1] | 黄邓铃尧, 唐炳然, 马媛媛, 何强, 李宏. 水稻土中砷对氮素转化的影响:以紫色土为例[J]. 生态环境学报, 2025, 34(5): 784-795. |
[2] | 梁祝, 潘树林, 郭芳成. 向家坝蓄水前后长江上游干流四川段氮磷的时空分布变化[J]. 生态环境学报, 2025, 34(4): 581-592. |
[3] | 梅耀萍, 吴本丽, 黄龙, 吴仓仓, 陈静, 陈夏君, 何吉祥. 不同水生植物对水产养殖尾水氮磷去除效果研究[J]. 生态环境学报, 2025, 34(3): 442-450. |
[4] | 孙煜佳, 陆梅, 赵旭燕, 冯峻, 刘国庆, 郭础鸟, 王明柳, 黄敏超, 陈志明. 纳帕海高寒退化草甸土壤细菌群落结构对氮添加的响应[J]. 生态环境学报, 2025, 34(2): 233-246. |
[5] | 李荔, 赵秋月, 韩军赞, 李慧鹏. 盐城市2013—2021年农业源氨排放清单及特征[J]. 生态环境学报, 2025, 34(1): 67-76. |
[6] | 朱先胜, 唐玉朝, 伍昌年, 黄显怀, 王坤. UV185联合高碘酸盐高效降解有机染料酸性红G[J]. 生态环境学报, 2025, 34(1): 108-117. |
[7] | 李彦林, 陈杨洋, 杨霜溶, 刘菊梅. 植物根系分泌的有机酸对土壤碳氮矿化的影响[J]. 生态环境学报, 2024, 33(9): 1362-1371. |
[8] | 朱乐洋, 张西哲, 陶江, 王秀, 韩艳英, 叶彦辉. 氮添加对色季拉山急尖长苞冷杉林土壤呼吸的影响[J]. 生态环境学报, 2024, 33(9): 1384-1396. |
[9] | 吴馨俣, 康嘉慧, 杜晓芸, 申其昆, 冯思捷, 孟凡磊, 潘月鹏, 刘学军, 许稳. 高原湖泊典型小流域农田氨挥发与近源沉降特征研究[J]. 生态环境学报, 2024, 33(8): 1236-1244. |
[10] | 夏凡, 韩怡蒙, 周剑兴, 谢丹妮. 氮和硫在人为扰动的青藏高原高寒森林中的分布特征[J]. 生态环境学报, 2024, 33(5): 689-698. |
[11] | 何杰, 李宗明, 杨正宇, 沈健林, 刘国平, 吴金水. 牛粪化肥配施对双季稻田CH4和N2O排放的影响[J]. 生态环境学报, 2024, 33(4): 573-584. |
[12] | 刘楚天, 郭栋栋, 侯磊, 梁启斌, 王艳霞, 施艳婷, 戚艳娥. 营养调控影响滇杨幼苗镉积累的效应模型分析[J]. 生态环境学报, 2024, 33(3): 460-468. |
[13] | 梁燕, 刘家齐, 肖凡, 潘民萍, 韦凯文, 张楚雯, 段敏. 氮沉降形态对西南岩溶区森林土壤有效磷来源的影响[J]. 生态环境学报, 2024, 33(2): 192-201. |
[14] | 何紫琪, 方晰, 洪瑜. 农田排水沟植物配置对底泥粒度特征及碳氮磷去除效果的影响[J]. 生态环境学报, 2024, 33(11): 1727-1736. |
[15] | 李天, 苗淑杰, 余洁, 赵玉蝶, 乔云发. 凋落物C/N对土壤有机碳矿化的影响[J]. 生态环境学报, 2024, 33(11): 1686-1695. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||