生态环境学报 ›› 2025, Vol. 34 ›› Issue (4): 593-607.DOI: 10.16258/j.cnki.1674-5906.2025.04.009
收稿日期:
2024-10-18
出版日期:
2025-04-18
发布日期:
2025-04-24
通讯作者:
*作者简介:
张亚平(1978年生),教授,博士,主要从事环境科学与工程技术研究。E-mail: ypzhang@jmu.edu.cn
基金资助:
ZHANG Yaping1,*(), MO Cuiling1, LI Yingpeng2, XU Ke1
Received:
2024-10-18
Online:
2025-04-18
Published:
2025-04-24
摘要: 左氧氟沙星作为一种抗生素类药物,在水产养殖、畜牧兽医、人类健康等方面应用广泛,属于药物与个人护理用品(PPCPs)的一种典型代表物。随着肠道微生物相关研究的开展与不断深入,越来越多的证据表明,PPCPs可以通过干扰肠道微生物稳态来造成各种疾病。为了探索左氧氟沙星对斑马鱼肠道微生物的影响及由此产生的毒性作用,采用环境浓度下的左氧氟沙星(0、0.01、0.1、1、10、100 mg·L−1)浸泡成年斑马鱼10 d,然后采用石蜡切片与HE染色、16S rDNA高通量测序等方法分析斑马鱼肠道组织形态,以及肠道菌群组成的变化。结果表明,斑马鱼肠道组织切片显示肠腺体结构紊乱、黏膜层糜烂,绒毛脱落,炎症细胞数量增多,随着左氧氟沙星浓度的升高,损伤作用越强。16S rDNA高通量测序显示斑马鱼肠道细菌中放线菌门(Actinomycetota)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidota)、变形菌门(Proteobacteria)丰度下降至对照组的70%,微生物多样性指数相较于对照组有明显下降。综上,左氧氟沙星会对斑马鱼造成显著的肠道损伤,导致肠道菌群丰度和多样性下降,进而使其免疫和代谢功能弱化。该研究为深入了解左氧氟沙星引起的肠道毒性相关机制提供了线索,并将为左氧氟沙星的合理使用提供理论参考。
中图分类号:
张亚平, 莫璀玲, 李迎鹏, 徐棵. 左氧氟沙星暴露对斑马鱼肠道微生物的影响[J]. 生态环境学报, 2025, 34(4): 593-607.
ZHANG Yaping, MO Cuiling, LI Yingpeng, XU Ke. Effects of Levofloxacin Exposure on Intestinal Microbes of Zebrafish[J]. Ecology and Environment, 2025, 34(4): 593-607.
图8 基于LEFSe分析的不同组肠道微生物LDA和多级物种差异判别表 由内至外辐射的圆圈代表了由界(单个圆圈)至属(或种)的分类级别,不同分类级别上的每一个小圆圈代表该水平下的一个分类,小圆圈直径大小与物种相对丰度大小成正比;无显著差异的物种统一着色为黄色,差异显著的物种跟随组别进行着色,不同颜色表示在各自组别中起到重要作用的微生物类群。生物标志物对应的物种名展示在右侧,字母编号与图中对应
Figure 8 LDA and multi-level species differentiation table for different groups of gut microbiota based on LEFSe analysis
[1] | ALMEIDA A, MITCHELL A L, BOLAND M, et al., 2019, A new genomic blueprint of the human gut microbiota[J]. Nature, 568: 499-504. |
[2] | AVISHEK B, JAWAHAR T A, GADADHAR D, et al., 2024. Intestinal Histopathological Aberrations in Oreochromis niloticus Juveniles upon Dietary Florfenicol Administration[J]. Bulletin of Environmental Contamination and Toxicology, 112(4): 50-50. |
[3] | BELL A G, MCMURTRIE J, BOLAÑOS L M, et al., 2024. Influence of host phylogeny and water physicochemistry on microbial assemblages of the fish skin microbiome[J]. FEMS Microbiology Ecology, 100(3): fiae021. |
[4] | CHEN J Y, LI Q Y, TAN C Y, et al., 2023. Effects of enrofloxacin’s exposure on the gut microbiota of Tilapia fish (Oreochromis niloticus)[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 46(2): 101077. |
[5] | CHOUHAN U, GAMAD U, CHOUDHARI J, 2023. Metagenomic analysis of soybean endosphere microbiome to reveal signatures of microbes for health and disease[J]. Journal of Genetic Engineering and Biotechnology, 21(1): 84. |
[6] | COPPER J E, BUDGEON LR, FOUTZ C A, et al., 2018. Comparative analysis of fixation and embedding techniques for optimized histological preparation of zebrafish[J]. Comparative Biochemistry & Physiology Part C: Toxicology & Pharmacology, 208: 38-46. |
[7] | CRUMEYROLLE-ARIAS M, JAGLIN M, BRUNEAU A, et al., 2014. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats[J]. Psychoneuroendocrinology, 42: 207-217. |
[8] | FEI L, SONG K G, CHEN W C, et al., 2023. Longitudinal analysis of changes in the gut microbiota of zebrafish following acute spring viremia of carp virus infection[J]. Aquaculture, 572: 739499. |
[9] | FEI S Z, KANG J M, OU M, et al., 2024. Effects of essential amino acids supplementation in a low-protein diet on growth performance, intestinal health and microbiota of juvenile blotched snakehead (Channa maculata)[J]. Fish and Shellfish Immunology, 149: 109555. |
[10] | GHANBARI M, KNEIFEL W, DOMIG, K J, 2015. A new view of the fish gut microbiome: Advances from next-generation sequencing[J]. Aquaculture, 448: 464-475. |
[11] |
GHOSH S, PRAMANIK S, 2021. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome[J]. Archives of microbiology, 203(9): 5281-5308.
DOI PMID |
[12] | GRENNI P, ANCONA V, CARACCIOLO A B, 2017. Ecological effects of antibiotics on natural ecosystems: A review[J]. Microchemical Journal, 136: 25-39. |
[13] | GUI M B, WANG Y N, XUE Y T, et al., 2023. TCM syndrome differentiation in colorectal cancer patients assisted by differences in gut microbiota: An exploratory study[J]. Heliyon, 9(11): e21057. |
[14] | GUO H H, XUE S H, NASIR M, et al., 2021. Impacts of cadmium addition on the alteration of microbial community and transport of antibiotic resistance genes in oxytetracycline contaminated soil[J]. Journal of Environmental Science, 99: 51-58. |
[15] | GUPTA S, FERNANDES J, KIRON V, 2019. Antibiotic-induced perturbations are manifested in the dominant intestinal bacterial phyla of Atlantic salmon[J]. Microorganisms, 7(8): 233. |
[16] | HE R C, ZHAO L M, XU X J, et al., 2020. Aryl hydrocarbon receptor is required for immune response in Epinephelus coioides and Danio rerio infected by Pseudomonas plecoglossicida[J]. Fish & Shellfish Immunology, 97: 564-570. |
[17] | HOU J Y, ZHANG L L, XU W H, et al., 2024. Glycometabolic disorder induced by chronic exposure to low-concentration imidacloprid in zebrafish[J]. Science of the Total Environment, 937: 173421. |
[18] | HU J M, ZUO J N, LI J B, et al., 2022. Effects of secondary polyethylene microplastic exposure on crucian (Carassius carassius) growth, liver damage, and gut microbiome composition[J]. Science of the Total Environment, 802: 149736. |
[19] | HUANG M Y, LIU Y, DUAN R Y, et al., 2024. Effects of continuous and pulse lead exposure on the swimming behavior of tadpoles revealed by brain-gut axis analysis[J]. Journal of Hazardous Materials, 465: 133267. |
[20] | HUO X M, XU Y, HUANG F, et al., 2023. Watershed land-use heterogeneity affecting spatial patterns of fish community structure in Han River basin, China[J]. Journal of Cleaner Production, 423: 138884. |
[21] | IMAI K, KODANA M, OMACHI R, et al., 2024. A fatal case of peritonitis caused by Dysgonomonas capnocytophagoides harboring the novel metallo-beta-lactamase gene blaDYB-1[J]. International Journal of Infectious Diseases, 147: 107174. |
[22] | JIA J, CHENG M Q, XUE X, et al., 2020. Characterization of tetracycline effects on microbial community, antibiotic resistance genes and antibiotic resistance of Aeromonas spp. in gut of goldfish Carassius auratus Linnaeus[J]. Ecotoxicology and Environmental Safety, 191: 110182. |
[23] | JIAO X, GUO Z Y, LIU B L, et al., 2023. Toxic effects of perfluorocaproic acid (PFHxA) on crucian carp (Carassius auratus) and the response of the intestinal microbial community[J]. Comparative Biochemistry and Physiology, Part C, 271: 109683. |
[24] | JIN Y X, XIA J Z, PAN Z H, et al., 2018. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 235: 322-329. |
[25] | KIM A, KIM N, ROH H J, et al., 2019. Administration of antibiotics can cause dysbiosis in fish gut[J]. Aquaculture, 512: 734330. |
[26] | KOHL K D, ETAN D C, JOSÉ G B, et al., 2022. Gut microbial ecology of five species of sympatric desert rodents in relation to herbivorous and insectivorous feeding strategies[J]. Integrative & Comparative Biology, 62(2): 237-251. |
[27] | LEE H, YOON S, HWANG P Y, et al., 2023. Microbiota dysbiosis associated with type 2 diabetes-like effects caused by chronic exposure to a mixture of chlorinated persistent organic pollutants in zebrafish[J]. Environmental Pollution, 334: 122108. |
[28] | LI G X, LÜ M, YU H T, et al., 2025. Integration of physiology, microbiota and metabolomics reveals toxic response of zebrafish gut to co-exposure to polystyrene nanoplastics and arsenic[J]. Aquatic Toxicology, 278: 107172. |
[29] | LI M X, CHEN X, SONG C, et al., 2024a. Sub-chronically exposing zebrafish to environmental levels of methomyl induces dysbiosis and dysfunction of the gut microbiota[J]. Environmental Research, 261: 119674. |
[30] | LI M, LIANG H, YANG H W, et al., 2024b. Deciphering the gut microbiome of grass carp through multi-omics approach[J]. Microbiome, 12(1): 2. |
[31] | LIN W T, QIN Y J, REN Y, 2024. Fluntrazepam and its metabolites compromise zebrafish nervous system functionality: An integrated microbiome, metabolome, and geomic analysis[J]. Environmental Pollution, 341: 122949. |
[32] | LIU C R, PAN K Q, XU H Z, et al., 2024a. The effects of enrofloxacin exposure on responses to oxidative stress, intestinal structure and intestinal microbiome community of largemouth bass (Micropterus salmoides)[J]. Chemosphere, 348: 140751. |
[33] | LIU Y Q, LI X H, LI Y F, et al., 2022a. Gut microbiomes of cyprinid fish exhibit host-species symbiosis along gut trait and diet[J]. Frontiers in Microbiology, 13: 936601. |
[34] | LIU Y, HUANG H J, FAN J T, et al., 2022b. Effects of dietary non-starch polysaccharides level on the growth, intestinal flora and intestinal health of juvenile largemouth bass Micropterus salmoides[J]. Aquaculture, 557: 738343. |
[35] | LIU Y, WANG J Q, DING J, et al., 2024b. Effects of hypoxia stress on oxidative stress, apoptosis and microorganisms in the intestine of large yellow croaker (Larimichthys crocea)[J]. Aquaculture, 581: 740444. |
[36] | MASELLI K M, GEE K, ISANI M, et al., 2020. Broad-spectrum antibiotics alter the microbiome, increase intestinal fxr, and decrease hepatic steatosis in zebrafish short bowel syndrome[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 319(2): G212-G226. |
[37] | MEDINA-FELIX D, VARGAS-ALBORES F, GARIBAY-VALDEZ E, et al., 2024. Gastrointestinal dysbiosis induced by Nocardia sp. Infection in tilapia[J]. Comparative Biochemistry and Physiology Part D: Genomics & Proteomics, 49: 101154. |
[38] | MING J C, FU Z Y, MA Z H, et al., 2020. The effect of sulfamonomethoxine treatment on the gut microbiota of Nile tilapia (Oreochromis niloticus)[J]. Microbiology Open, 9(11): e1116. |
[39] | MUKHERJEE S, BHATTACHARYA R, SARKAR O, et al., 2024. Gut microbiota perturbation and subsequent oxidative stress in gut and kidney tissues of zebrafish after individual and combined exposure to inorganic arsenic and fluoride[J]. Science of the Total Environment, 957: 177519. |
[40] |
NAVARRETE P, MARDONES P, OPAZO R, et al., 2008. Oxytetracycline treatment reduces bacterial diversity of intestinal microbiota of Atlantic salmon[J]. Journal of Aquatic Animal Health, 20(3): 177-183.
DOI PMID |
[41] | PAMANJI R, KUMARESHAN T N, PRIYA S L, et al., 2024. Exploring the impact of antibiotics, microplastics, nanoparticles, and pesticides on zebrafish gut microbiomes: Insights into composition, interactions, and health implications[J]. Chemosphere, 349: 140867. |
[42] | QI M Y, MA X D, LIANG B, et al., 2022. Complete genome sequences of the antibiotic sulfamethoxazole-mineralizing bacteria Paenarthrobacter sp. P27 and Norcardiodes sp. N27[J]. Environmental Research, 204(Part B): 112013. |
[43] | QI X Y, XU H Z, LONG J F, et al., 2024. The effect of Astragalus polysacchaides on the repair of adverse effects in largemouth bass (Micropterus salmoides) under enrofloxacin stress[J]. Aquaculture, 592: 741216. |
[44] | QIAN M R, WANG J M, JI X F, et al., 2021. Sub-chronic exposure to antibiotics doxycycline, oxytetracycline or florfenicol impacts gut barrier and induces gut microbiota dysbiosis in adult zebrafish (Daino rerio)[J]. Ecotoxicology and Environmental Safety, 221: 112464. |
[45] | QIU W H, LIU T, LIU X J, et al., 2022. Enrofloxacin induces intestinal microbiotamediated immunosuppression in zebrafish[J]. Environmental Science & Technology, 56(12): 8428-8437. |
[46] | SHI F, HUANG Y, YANG M X, et al., 2022. Antibiotic-induced alternations in gut microflora are associated with the suppression of immune-related pathways in grass carp (Ctenopharyngodon idellus)[J]. Frontiers in Immunology, 13: 970125. |
[47] | SHI Y H, CHEN C, HAN Z M, et al., 2023. Combined exposure to microplastics and amitriptyline caused intestinal damage, oxidative stress and gut microbiota dysbiosis in zebrafish (Danio rerio)[J]. Aquatic Toxicology, 260: 106589. |
[48] | SHI Y H, CHEN C, WU X Y, et al., 2022. Exposure to amitriptyline induces persistent gut damages and dysbiosis of the gut microbiota in zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 260: 109417. |
[49] |
SONG Z W, FENG S, ZHOU X C, et al., 2023. Taxonomic identification of bile salt hydrolase-encoding lactobacilli: Modulation of the enterohepatic bile acid profile[J]. iMeta, 2(3): e128.
DOI PMID |
[50] | SULLIVAN-BROWN J, BISHER ME, BURDINE R D, 2011. Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin[J]. Nature Protocols, 6(1): 46-55. |
[51] | TAN S, XU X W, CHENG H, et al., 2022. The alteration of gut microbiome community play an important role in mercury biotransformation in largemouth bass[J]. Environmental Research, 204(Part A): 112026. |
[52] | TANG J L, WANG W Q, JIANG Y H, et al., 2021. Diazinon exposure produces histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in crucian carp (Carassius auratus gibelio)[J]. Environmental Pollution, 269: 116129. |
[53] | TIAN D D, ZHANG W X, LU L Z, et al., 2024. Enrofloxacin exposure undermines gut health and disrupts neurotransmitters along the microbiota-gut-brain axis in zebrafish[J]. Chemosphere, 356: 141971. |
[54] | USMAN S, ABDULL RAZIS A F, SHAARI K, 2022. Polystyrene microplastics induce gut microbiome and metabolome changes in Javanese medaka fish (Oryzias javanicus Bleeker, 1854)[J]. Toxicology Reports, 9: 1369-1379. |
[55] | WANG F, LU Y S, CAO J M, 2022. Dynamics impacts of oxytetracycline on growth performance, intestinal health and antibiotic residue of grouper in exposure and withdrawal treatment[J]. Ecotoxicology and Environmental Safety, 247: 114203. |
[56] | WANG X W, LU T, YANG B, et al., 2024. Exposure to resorcinol bis (diphenyl phosphate) induces colonization of alien microorganisms with potential impacts on the gut microbiota and metabolic disruption in male zebrafish[J]. Science of the Total Environment, 932: 172892. |
[57] |
WONG J H S, HUONG K H, SHAFIE N A H, et al., 2021. Genetic incorporation of oil-utilizing ability in Cupriavidus malaysiensis USMAA2-4 for sustainable polyhydroxyalkanoates production from palm olein and 1-pentanol[J]. Journal of Biotechnology, 337: 71-79.
DOI PMID |
[58] | WU D N, ZHOU H L, HU Z X, et al., 2023. Multiple effects of ZnO nanoparticles on goldfish (Carassius auratus): Skin mucus, gut microbiota and stable isotope composition[J]. Environmental Pollution, 329: 121651. |
[59] |
XIAO C Q, HAN Y, LIU Y, et al., 2018. Relationship between fluoroquinolone structure and neurotoxicity revealed by zebrafish neurobehavior[J]. Chemical Research in Toxicology, 31(4): 238-250.
DOI PMID |
[60] | YAN B, SUN Y M, FU K Y, et al., 2023. Effects of glyphosate exposure on gut-liver axis: Metabolomic and mechanistic analysis in grass carp (Ctenopharyngodon idellus)[J]. Science of the Total Environment, 902: 166062. |
[61] | YANG J M, CAO Z H, TANG H B, et al., 2024a. Exposure to high concentrations of triphenyl phosphate altered functional performance, liver metabolism and intestinal bacterial composition of aquatic turtles[J]. Ecotoxicology and Environmental Safety, 279: 116488. |
[62] | YANG Y M, YAN C, LI A F, et al., 2024b. Effects of the plastic additive 2,4-di-tert-butylphenol on intestinal microbiota of zebrafish[J]. Journal of Hazardous Materials, 469: 133987. |
[63] | YUAN Y, SEPÚLVEDA M S, BI B L, et al., 2023. Acute polyethylene microplastic (PE-MPs) exposure activates the intestinal mucosal immune network pathway in adult zebrafish (Danio rerio)[J]. Chemosphere, 311(Part 1): 137048. |
[64] | YUN X, ZHOU J, WANG J T, et al., 2023. Biological toxicity effects of florfenicol on antioxidant, immunity and intestinal flora of zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 265: 115520. |
[65] | ZHAI W Y, WANG Q, ZHU X P, et al., 2023. Pathogenic infection and microbial composition of yellow catfish (Pelteobagrus fulvidraco) challenged by Aeromonas veronii and Proteus mirabilis[J]. Aquaculture and Fisheries, 8(2): 166-173. |
[66] | ZHANG B J, HAO B Z, HAN M L, et al., 2024a. Impacts of pyraclostrobin on intestinal health and the intestinal microbiota in common carp (Cyprinus carpio L.)[J]. Pesticide Biochemistry and Physiology, 199: 105762. |
[67] | ZHANG X L, CHEN J J, WANG G D, et al., 2022. Interactive effects of fluoride and and seleno-L-methionine at environmental related concentrations on zebrafish (Danio rerio) liver via the gut-liver axis[J]. Fish and shellfish Immunology, 127: 690-702. |
[68] | ZHANG Z Y, WANG T, XU M, et al., 2024b. Deciphering the pancreatic cancer microbiome in Mainland China: Impact of Exiguobacterium/ Bacillus ratio on tumor progression and prognostic significance[J]. Pharmacological Research, 204: 107197. |
[69] | ZHAO H J, ZHANG Y, HOU L L, et al., 2023. Effects of environmentally relevant cypermethrin and sulfamethoxazole on intestinal health, microbiome, and liver metabolism in grass carp[J]. Aquatic Toxicology, 265: 106760. |
[70] | ZHAO N, LIU Y T, GUO J M, et al., 2024. Glucose dependent resistance associated with intestinal microbiota facilitate teleost to survive bacterial infection[J]. Aquaculture, 587: 740865. |
[71] | ZHAO X L, LI P, ZHANG S Q, et al., 2021. Effects of environmental norfloxacin concentrations on the intestinal health and function of juvenile common carp and potential risk to humans[J]. Environmental Pollution, 287: 117612. |
[72] | ZHENG Y, WANG Y F, ZHENG Y F, et al., 2022. Exposed to Sulfamethoxazole induced hepatic lipid metabolism disorder and intestinal microbiota changes on zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 253: 109245. |
[73] |
ZHOU L, LIMBU S M, SHEN M L, et al., 2018. Environmental concentrations of antibiotics impair zebrafish gut health[J]. Environmental Pollution, 235: 245-254.
DOI PMID |
[74] | ZHOU S H, LIN H J, LIU Z Y, et al., 2024. The impact of co-exposure to polystyrene microplastics and norethindrone on gill histology, antioxidant capacity, reproductive system, and gut microbiota in zebrafish (Danio rerio)[J]. Aquatic Toxicology, 273: 107018. |
[75] | 陈美群, 潘瑛子, 牟振波, 等, 2019. 西藏3种冷水鱼皮肤病灶中潜在病原微生物分析[J]. 西南农业学报, 32(9): 2245-2252. |
CHEN M Q, PAN Y Z, MOU Z B, et al., 2019. Analysis of potential pathogenic microorganisms in skin lesions of three cold-water fish species in Tibet[J]. Southwest Journal of Agricultural Sciences, 32(9): 2245-2252. | |
[76] | 冯宇希, 冯乃宪, 陈昕, 等, 2020. 环境污染物与肠道菌群互作关系的研究进展[J]. 生态毒理学报, 15(4): 99-111. |
FENG Y X, FENG N X, CHEN X, et al., 2020. Interaction between environmental pollutants and gut microbiota: A review[J]. Asian Journal of Ecotoxicology, 15(4): 99-111. | |
[77] | 李晓华, 2018. 规模化猪场粪污中典型抗生素归趋行为及抗性基因扩散特征研究[D]. 北京: 中国农业科学院. |
LI X H, 2018. Migration characteristics of the typical antibiotics and spread of antibiotic resistance genes in the environment of large-scale swine feedlots[D]. Beijing: Chinese Academy of Agricultural Sciences. | |
[78] | 马阳光, 赵可欣, 董武, 等, 2024. 环境浓度多西环素对斑马鱼焦虑行为、认知记忆能力的影响与肠道菌群变化的关联[J]. 水生生物学报, 48(5): 762-771. |
MA Y G, HAO K X, DONG W, et al., 2024. Association between the effects of environmental concentration doxycycline on anxiety behavior, cognitive memory and changes in gut microbiota in zebrafish[J]. Journal of Hydrobiology, 48(5): 762-771. | |
[79] | 梅敏华, 2023. 海口市北部河湖水体抗生素污染特征及生态风险评价[D]. 海口: 海南师范大学. |
MEI M H, 2023. Pollution characteristics and ecological risk assessment of antibiotics in rivers and lakes in northern Haikou City[D]. Haikou: Hainan Normal University. | |
[80] | 覃一书, 保欣晨, 汪洁, 等, 2021. 不同饮食习惯下镉摄入对肠道菌群结构的影响[J]. 中国环境科学, 41(8): 3896-3905. |
QIN Y S, BAO X C, WANG J, et al., 2021. Effect of cadmium intake on the structure of gut microbiota under different dietary habits[J]. China Environmental Science, 41(8): 3896-3905. | |
[81] |
宋超, 陈家长, 胡庚东, 等, 2017. 除草剂氟乐灵及其降解过程对斑马鱼氧化应激状况的影响[J]. 生态环境学报, 26(3): 468-472.
DOI |
SONG C, CHEN J C, HU G D, et al., 2017. Effects of herbicidetrifluralin and its degradation on the oxidative stress of zebrafish[J]. Ecology and Environmental Sciences, 26(3): 468-472. | |
[82] | 王春玲, 冯广达, 姚青, 等, 2019. 粘细菌基因组学研究进展[J]. 微生物学通报, 46(9): 2394-2403. |
WANG C L, FENG G D, YAO Q, et al., 2019. Research progress in genomics of myxobacteria[J]. Microbiology China, 46(9): 2394-2403. | |
[83] | 王嘉琪, 2022. 艾叶对斑马鱼肝损伤的缓解效果研究[D]. 晋中: 山西农业大学: 33-36. |
WANG J Q, 2022. Study on the alleviating effect of Artemisia mugwort leaves on zebrafish liver injury[D]. Jinzhong: Shanxi Agricultural University: 33-36. | |
[84] | 熊小波, 孙博琳, 秦静婷, 等, 2020. 磺胺甲恶唑对赤子爱胜蚓肠道微生物群落的影响[J]. 环境科学学报, 40(11): 4207-4214. |
XIONG X B, SUN B L, QIN J T, et al., 2020. Effects of sulfamethoxazole on Eisenia fetida gut microbiota[J]. Acta Scientiae Circumstantiae, 40(11): 4207-4214. | |
[85] | 张冉冉, 郭晓霞, 2023. 低脂饮食对糖尿病大鼠肠道菌群结构的影响[J]. 生物医学转化, 4(2): 78-87. |
ZHANG R R, GUO X X, 2023. Effect of low-fat diet on intestinal microbiota structure in diabetic rats[J]. Biomedical Translation, 4(2): 78-87. | |
[86] | 张钊, 2023. 体表菌群在三代虫感染中的作用研究[D]. 咸阳西北农林科技大学: 37-40. |
ZHAO Z, 2023. Study of the role of body surface microbiota in third-generation infection[D]. Xianyang: Northwest A & F University: 37-40. |
[1] | 宁静, 王淳, 卢莞玲, 韦露. 斑马鱼暴露于镉和褪黑素引起肠道组织、氧化损伤及微生物多样性变化[J]. 生态环境学报, 2025, 34(1): 77-88. |
[2] | 林于蓝, 陈厚朴, 于文豪, 王宝英, 张杨, 张金波, 蔡祖聪, 赵军. 强还原处理对土壤中常见抗生素及其抗性基因的影响研究[J]. 生态环境学报, 2024, 33(7): 1107-1116. |
[3] | 张德嵩, 陈振东, 孔德锦, 李柏林, 何晓曼, 杨列. 碳源补充型高级氧化法工艺净化水中磺胺类抗生素研究进展与趋势[J]. 生态环境学报, 2024, 33(2): 321-332. |
[4] | 李丹怡, 黄显婷, 李继超, 李颖洁, 闫家普, 林慰. 氧化石墨烯及其复合材料去除水体抗生素的研究进展[J]. 生态环境学报, 2024, 33(1): 144-155. |
[5] | 李桂英, 刘建莹, 安太成. 水体消毒过程中活的不可培养细菌的形成与复苏机制研究进展[J]. 生态环境学报, 2023, 32(7): 1333-1343. |
[6] | 周永康, 余圣品, 李佳乐, 董一慧, 王萌, 赵齐灵, 李烨余. 土壤中抗生素的吸附行为与机理研究进展[J]. 生态环境学报, 2023, 32(11): 2072-2082. |
[7] | 彭双, 宋丹, 王一明, 林先贵. 土壤环境中四环素抗性基因向病原菌的转移研究[J]. 生态环境学报, 2023, 32(11): 1978-1987. |
[8] | 高晓宇, 王磊. 抗生素抗性基因在土壤中积累、转移与消减的研究进展[J]. 生态环境学报, 2023, 32(11): 2062-2071. |
[9] | 丛鑫, 王宇, 李瑶, 何洋洋. 生物炭及氧化石墨烯/生物炭复合材料对水中抗生素吸附性能研究[J]. 生态环境学报, 2022, 31(2): 326-334. |
[10] | 解旭东, 侯智昊, 李楠, 岳翠霞, 李雅, 杨方社. 中国胡焕庸线下方四区域沉积物和土壤中抗生素污染特征及生态风险评价[J]. 生态环境学报, 2021, 30(5): 1023-1033. |
[11] | 张凯, 郭紫微, 王倩, 韩雅, 李贶家, 张中帅. 华中地区水库型水源地抗生素抗性细菌的赋存特征研究[J]. 生态环境学报, 2021, 30(5): 1017-1022. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||