生态环境学报 ›› 2023, Vol. 32 ›› Issue (2): 264-273.DOI: 10.16258/j.cnki.1674-5906.2023.02.006
张鐥文1(), 杨冉1, 侯文星1, 王丽丽1, 刘爽1, 宋汉扬1, 赵文吉1,*(
), 李令军2,*(
)
收稿日期:
2022-11-11
出版日期:
2023-02-18
发布日期:
2023-05-11
通讯作者:
李令军,教授级高级工程师,E-mail: lilj2000@126.com作者简介:
张鐥文(1999年生),女,硕士研究生,研究方向为遥感数据处理和地学应用。E-mail: 2210902140@cnu.edu.cn
基金资助:
ZHANG Shanwen1(), YANG Ran1, HOU Wenxing1, WANG Lili1, LIU Shuang1, SONG Hanyang1, ZHAO Wenji1,*(
), LI Lingjun2,*(
)
Received:
2022-11-11
Online:
2023-02-18
Published:
2023-05-11
摘要:
植被是生态系统的重要组成部分,在能量交换、水土保持、防风固沙等方面具有重要作用。为了研究生态补水对永定河两岸植被覆盖度的变化的影响,基于Landsat-8卫星影像数据,利用影像图差值比较法、皮尔逊相关系数、残差分析等方法对永定河生态补水前后植被覆盖度时空变化及其驱动力进行分析。结果表明,(1)2014-2020年永定河两岸植被覆盖度总体上呈现西北高、东南低的分布格局,植被覆盖度变化呈现优化趋势,改善区域面积大于退化区域面积。(3)植被覆盖度与年气温的平均相关系数为-0.17,与年降水量的平均相关系数为0.15。植被覆盖度总体上与气温呈负相关,与降水量呈正相关,但具有显著性(P<0.05)的面积分别仅占23.03%和16.26%。(4)生态补水前,人类活动对植被覆盖度的影响主要是负面影响,而在生态补水后,人类活动对植被覆盖度的影响逐渐向好,发挥正面影响的面积占比63.04%。2014-2020年期间人类活动变化的趋势向促进植被覆盖度增长的方向发展。(5)气候变化和人类活动对于植被覆盖度改善和轻改善区域相对贡献在60%以上的面积占比分别为16.98%和68.09%,人类活动对于植被覆盖度变化的影响更大,整体上对于植被覆盖度的增长具有积极作用。(6)永定河区域水面面积七年增长约100.07%,与植被覆盖度均值变化趋势一致,呈现“升-降-升”的变化规律,且它们之间的相关系数可达0.83(P<0.05),呈显著正相关。综上所述,2014-2020年永定河两岸植被覆盖度整体呈现改善趋势,气象因素对其影响较不显著,生态补水对植被覆盖度的增长具有显著相关关系。
中图分类号:
张鐥文, 杨冉, 侯文星, 王丽丽, 刘爽, 宋汉扬, 赵文吉, 李令军. 生态补水前后永定河两岸植被覆盖度变化及驱动力分析[J]. 生态环境学报, 2023, 32(2): 264-273.
ZHANG Shanwen, YANG Ran, HOU Wenxing, WANG Lili, LIU Shuang, SONG Hanyang, ZHAO Wenji, LI Lingjun. Analysis of Fractional Vegetation Cover Changes and Driving Forces on Both Banks of Yongding River Before and After Ecological Water Replenishment[J]. Ecology and Environment, 2023, 32(2): 264-273.
等级 | 阈值划分 | 植被盖度变化情况 |
---|---|---|
1 | [-1, -0.6] | 退化 |
2 | [-0.6, -0.2] | 轻退化 |
3 | [-0.2, 0.2] | 稳定 |
4 | [0.2, 0.6] | 轻改善 |
5 | [0.6, 1] | 改善 |
表1 植被覆盖度变化量阈值划分表
Table 1 Classification of threshold values of vegetation coverage change
等级 | 阈值划分 | 植被盖度变化情况 |
---|---|---|
1 | [-1, -0.6] | 退化 |
2 | [-0.6, -0.2] | 轻退化 |
3 | [-0.2, 0.2] | 稳定 |
4 | [0.2, 0.6] | 轻改善 |
5 | [0.6, 1] | 改善 |
植被覆盖度变化 | 情景 | Slope (FVCobs) | Slope (FVCpre) | Slope (FVCHA) | 气候变化的相对贡献率/% | 人类活动的相对贡献率/% |
---|---|---|---|---|---|---|
植被覆盖度改善 | S1 | >0 | <0 | >0 | 0 | 100 |
S2 | >0 | >0 | <0 | 100 | 0 | |
S3 | >0 | >0 | >0 | |||
植被覆盖度退化 | S4 | <0 | <0 | >0 | 100 | 0 |
S5 | <0 | >0 | <0 | 0 | 100 | |
S6 | <0 | <0 | <0 |
表2 气候变化和人类活动对于植被覆盖度的相对贡献
Table 2 Relative contributions of climate change and human activities to vegetation coverage
植被覆盖度变化 | 情景 | Slope (FVCobs) | Slope (FVCpre) | Slope (FVCHA) | 气候变化的相对贡献率/% | 人类活动的相对贡献率/% |
---|---|---|---|---|---|---|
植被覆盖度改善 | S1 | >0 | <0 | >0 | 0 | 100 |
S2 | >0 | >0 | <0 | 100 | 0 | |
S3 | >0 | >0 | >0 | |||
植被覆盖度退化 | S4 | <0 | <0 | >0 | 100 | 0 |
S5 | <0 | >0 | <0 | 0 | 100 | |
S6 | <0 | <0 | <0 |
等级 | 年份 | ||||||
---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
低植被覆盖度 | 13.11 | 12.82 | 13.14 | 11.72 | 12.62 | 11.08 | 11.43 |
较低植被覆盖度 | 8.95 | 8.68 | 8.48 | 8.15 | 10.47 | 7.84 | 7.46 |
中植被覆盖度 | 11.58 | 9.84 | 9.41 | 9.42 | 11.90 | 9.32 | 9.04 |
较高植被覆盖度 | 21.79 | 17.33 | 16.41 | 17.98 | 15.61 | 16.62 | 15.58 |
高植被覆盖度 | 44.57 | 51.33 | 52.56 | 52.73 | 49.40 | 55.14 | 56.49 |
表3 2014—2020年永定河区域内不同等级植被覆盖度面积比例
Table 3 Vegetation coverage of different levels in Yongding River region from 2014 to 2020 %
等级 | 年份 | ||||||
---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
低植被覆盖度 | 13.11 | 12.82 | 13.14 | 11.72 | 12.62 | 11.08 | 11.43 |
较低植被覆盖度 | 8.95 | 8.68 | 8.48 | 8.15 | 10.47 | 7.84 | 7.46 |
中植被覆盖度 | 11.58 | 9.84 | 9.41 | 9.42 | 11.90 | 9.32 | 9.04 |
较高植被覆盖度 | 21.79 | 17.33 | 16.41 | 17.98 | 15.61 | 16.62 | 15.58 |
高植被覆盖度 | 44.57 | 51.33 | 52.56 | 52.73 | 49.40 | 55.14 | 56.49 |
变化情况 | 年份 | ||||||
---|---|---|---|---|---|---|---|
2014—2015 | 2015—2016 | 2016—2017 | 2017—2018 | 2018—2019 | 2019—2020 | 2014—2020 | |
退化 | 0.37 | 0.65 | 0.51 | 0.73 | 0.26 | 0.63 | 1.62 |
轻退化 | 4.75 | 5.31 | 4.59 | 10.45 | 4.07 | 4.13 | 6.79 |
稳定 | 86.36 | 87.97 | 89.00 | 83.99 | 82.99 | 90.62 | 76.32 |
轻改善 | 7.99 | 5.87 | 5.71 | 4.62 | 12.05 | 4.43 | 13.90 |
改善 | 0.53 | 0.20 | 0.18 | 0.20 | 0.62 | 0.19 | 1.37 |
表4 植被覆盖度图差值不同年份面积占比动态变化
Table 4 Dynamic changes of FVC difference in different years %
变化情况 | 年份 | ||||||
---|---|---|---|---|---|---|---|
2014—2015 | 2015—2016 | 2016—2017 | 2017—2018 | 2018—2019 | 2019—2020 | 2014—2020 | |
退化 | 0.37 | 0.65 | 0.51 | 0.73 | 0.26 | 0.63 | 1.62 |
轻退化 | 4.75 | 5.31 | 4.59 | 10.45 | 4.07 | 4.13 | 6.79 |
稳定 | 86.36 | 87.97 | 89.00 | 83.99 | 82.99 | 90.62 | 76.32 |
轻改善 | 7.99 | 5.87 | 5.71 | 4.62 | 12.05 | 4.43 | 13.90 |
改善 | 0.53 | 0.20 | 0.18 | 0.20 | 0.62 | 0.19 | 1.37 |
图8 2014—2020年研究区内水体分布(a)及永定河区域水面面积与植被覆盖度均值变化趋势(b)
Figure 8 Water distribution in the study area from 2014 to 2020 (a) and mean variation trend of water surface area and vegetation coverage in Yongding River region (b)
[1] |
CHEN D S, ZHANG F, ZHANG M R, et al., 2022. Landscape and vegetation traits of urban green space can predict local surface temperature[J]. Science of The Total Environment, 825: 154006.
DOI URL |
[2] |
CAI Y F, ZHANG F, DUAN P, et al., 2022. Vegetation cover changes in China induced by ecological restoration-protection projects and land-use changes from 2000 to 2020[J]. CATENA, 217: 106530.
DOI URL |
[3] |
LI J, WANG J L, ZHANG J, et al., 2022. Growing-season vegetation coverage patterns and driving factors in the China-Myanmar Economic Corridor based on Google Earth Engine and geographic detector[J]. Ecological Indicators, 136: 108620.
DOI URL |
[4] | 崔文彦, 刘得银, 梁舒汀, 等, 2020. 永定河流域水生态环境质量综合评价[J]. 水生态学杂志, 41(2): 23-28. |
CUI W Y, LIU D Y, LIANG S T, et al., 2020. Comprehensive evaluation of aquatic ecological quality in the Yongding River basin[J]. Journal of Hydroecology, 41(2): 23-28. | |
[5] |
邓晨晖, 白红英, 高山, 等, 2018. 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应[J]. 自然资源学报, 33(3): 425-438.
DOI |
DENG C H, BAI H Y, GAO S, et al., 2018. Spatial-temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities[J]. Journal of Natural Resources, 33(3): 425-438. | |
[6] | 丁海勇, 丁昕玮, 2020. 基于SPOT_NDVI的甘肃省植被覆盖变化及其与气候、地形因子的关系[J]. 长江流域资源与环境, 29(12): 2665-2678. |
DING H Y, DING X W, 2020. Vegetation cover change and its responses to climate and topography in Gansu province based on SPOT NDVI[J]. Resources and Environment in the Yangtze Basin, 29(12): 2665-2678. | |
[7] | 杜勇, 李建柱, 牛凯杰, 等, 2021. 1982—2015年永定河山区植被变化及对天然径流的影响[J]. 水利学报, 52(11): 1309-1323. |
DU Y, LI J Z, NIU K J, et al., 2021. Analysis of vegetation change and its impact on natural runoff in the mountain area of the Yongding River Basin from 1982 to 2015[J]. Journal of Hydraulic Engineering, 52(11): 1309-1323. | |
[8] | 付意成, 2013. 流域治理修复型水生态补偿研究[D]. 北京: 中国水利水电科学研究院. |
FU Y C, 2013. Study on Watershed Water related Eco-compensation of Restoration-type[D]. Beijing: China Water Resources & Hydropower Science Research Institute. | |
[9] | 顾斌杰, 2016. 永定河 (北京段) 生态修复及其效果评价[D]. 北京: 清华大学. |
GU B J, 2016. Analysis and effect evaluation of the Yongding River (Beijing section) ecosystem restoration[D]. Beijing: Tsinghua University. | |
[10] | 顾羊羊, 邹长新, 乔旭宁, 等, 2021. 2000—2015年黔西南州植被覆盖时空变化及影响因素分析[J]. 生态与农村环境学报, 37(11): 1413-1422. |
GU Y Y, ZOU C X, QIAO X N, et al., 2021. Spatio-temporal variations of fractional vegetation coverage and influencing factors in Qianxi’nan prefecture from 2000 to 2015[J]. Journal of Ecology and Rural Environment, 37(11): 1413-1422. | |
[11] | 胡承江, 李雄, 2015. 1979—2013年北京市永定河流域平原城市段核心区域植被盖度演变分析[J]. 中国园林, 31(9): 12-16. |
HU C J, LI X, 2015. An analysis on the vegetation coverage evolution from 1979 to 2013 in the urban core area of the Yongding River basin plain of Beijing[J]. Chinese Landscape Architecture, 31(9): 12-16. | |
[12] | 胡立堂, 郭建丽, 张寿全, 等, 2020. 永定河生态补水的地下水位动态响应[J]. 水文地质工程地质, 47(5): 5-11. |
HU L T, GUO J L, ZHANG S Q, et al., 2020. Response of groundwater regime to ecological water replenishment of the Yongding River[J]. Hydro Geology, Engineering geology, 47(5): 5-11. | |
[13] |
金凯, 王飞, 韩剑桥, 等, 2020. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 75(5): 961-974.
DOI |
JIN K, WANG F, HAN J Q, et al., 2020. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015[J]. Acta Geographica Sinica, 75(5): 961-974.
DOI |
|
[14] | 李文忠, 李述, 王涛, 等, 2020. 永定河 (北京段) 植物多样性及覆盖度变化研究[J]. 北京水务 (5): 5-9. |
LI W Z, LI S, WANG T, et al., 2020. Research on changes of plant diversity and coverage along Yongding River of Beiing section[J]. Beijing Water (5): 5-9. | |
[15] | 刘泽, 陈建平, 2022. 基于Landsat-8影像数据的北京植被覆盖度时空特征与地形因子的关系[J]. 成都理工大学学报 (自然科学版), 49(1): 119-128. |
LIU Z, CHEN J P, 2022. Relationship between temporal and spatial characteristics of vegetation coverage and topographic factors in Beijjing based on Landsat-8 image data[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 49(1): 119-128. | |
[16] | 马玉蕾, 王德, 刘俊民, 等, 2013. 地下水与植被关系的研究进展[J]. 水资源与水工程学报, 24(5): 36-40, 44. |
MA Y L, WANG D, LIU J M, et al., 2013. Research progress on relation between groundwater and vegetation[J]. Journal of Water Resources and Water Engineering, 24(5): 36-40, 44. | |
[17] | 潘虹, 顾海敏, 史建桥, 等, 2016. 基于RS和GIS的青海湖流域植被覆盖度变化与驱动因子研究[J]. 资源开发与市场, 32(7): 827-831, 768. |
PAN H, GU H M, SHI J Q, et al., 2016. Study on changes of vegetation fraction and its driving factors in Qinghai Lake basin based on RS and GIS[J]. Resource Development & Market, 32(7): 827-831, 768. | |
[18] | 彭凯锋, 蒋卫国, 侯鹏, 等, 2020. 三江源国家公园植被时空变化及其影响因子[J]. 生态学杂志, 39(10): 3388-3396. |
PENG K F, JIANG W G, HOU P, et al., 2020. Spatiotemporal variation of vegetation coverage and its affecting factors in the Three-river-source National Park[J]. Chinese Journal of Ecology, 39(10): 3388-3396. | |
[19] | 孙冉, 潘兴瑶, 王俊文, 等, 2021. 永定河 (北京段) 河道生态补水效益分析与方案评估[J]. 中国农村水利水电 (6): 19-24. |
SUN R, PAN X Y, WANG J W, et al., 2021. An analysis and evaluation of ecological water replenishment benefit of Yongding River (Beijing Section)[J]. China Rural Water and Hydropower (6): 19-24. | |
[20] | 孙与襄, 麦麦提吐逊·麦麦提, 马合木江·艾合买提, 等, 2022. 1995—2020年喀什市植被覆盖度时空动态变化研究[J]. 中国农村水利水电 (1): 71-78, 92. |
SUN Y X, MMT M, AIHEMAITI M, et al., 2022. Research on the temporal and spatial dynamic changes of vegetation coverage in Kashgar city from 1995 to 2020[J]. China Rural Water and Hydropower (1): 71-78, 92. | |
[21] | 王彪, 姚旭初, 魏红, 等, 2021. 永定河平原南段生态补水对地下水位的影响分析[J]. 北京水务 (3): 14-17. |
WANG B, YAO X C, WEI H, et al., 2021. Influence of ecological water supplement on groundwater level in the south section of Yongding River plain[J]. Beijing Water (3): 14-17. | |
[22] | 邢著荣, 冯幼贵, 杨贵军, 等, 2009. 基于遥感的植被覆盖度估算方法述评[J]. 遥感技术与应用, 24(6): 849-854. |
XING Z R, FENG Y G, YANG G J, et al., 2009. Method of estimating vegetation coverage based on remote sensing[J]. Remote Sensing Technology and Applications, 24(6): 849-854. | |
[23] | 肖强, 陶建平, 肖洋, 2016. 黄土高原近10年植被覆盖的动态变化及驱动力[J]. 生态学报, 36(23): 7594-7602. |
XIAO Q, TAO J P, XIAO Y, 2016. Dynamic vegetation cover change over the past 10 years on the Loess Plateau, China[J]. Acta Ecologica Sinica, 36(23): 7594-7602. | |
[24] | 修晨, 欧阳志云, 郑华, 2014. 北京永定河-海河干流河岸带植物的区系分析[J]. 生态学报, 34(6): 1535-1547. |
XIU C, OUYANG Z Y, ZHENG H, 2014. Flora analysis of riparian vegetation in Yongding-Haihe river system, China[J]. Acta Ecologica Sinica, 34(6): 1535-1547. | |
[25] | 杨少康, 刘冀, 魏榕, 等, 2022. 长江上游流域生长季植被覆盖度时空变化特征及其成因[J]. 长江流域资源与环境, 31(7): 1523-1533. |
YANG S K, LIU J, WEI R, et al., 2022. Spatio-temporal variation characteristics and causes of vegetation coverage in growing season in the upper reaches of the Yangtze River Basin[J]. Journal of Resources and Environment in the Yangtze River Valley, 31(7): 1523-1533. | |
[26] | 张成才, 娄洋, 李颖, 等, 2020. 基于像元二分模型的伏牛山地区植被覆盖度变化[J]. 水土保持研究, 27(3): 301-307. |
ZHANG C C, LOU Y, LI Y, et al., 2020. Change of vegetation coverage in funiu mountain regions based on the dimidiate pixel model[J]. Research of Soil and Water Conservation, 27(3): 301-307. | |
[27] | 张家政, 李崇贵, 王涛, 2022. 黄土高原植被覆盖时空变化及原因[J]. 水土保持研究, 29(1): 224-230, 241. |
ZHANG J Z, LI C G, WANG T, 2022. Dynamic changes of vegetation coverage on the loess plateau and its factors[J]. Research of Soil and Water Conservation, 29(1): 224-230, 241. | |
[28] | 张艳娇, 李巧, 宿彦鹏, 等, 2022. 基于遥感监测的2000—2020年三屯河流域植被覆盖时空演化分析[EB/OL]. 长江科学院院报:1-9. [2023-03-29]. http://kns.cnki.net/kcms/detail/42.1171.TV.20220902.1812.005.html。 |
ZHANG Y J, LI Q, XIU Y P, et al., 2022. Spatial-temporal evolution of vegetation cover in Sandun River Basin from 2000 to 2020 based on remote sensing monitoring[J/OL]. Journal of Yangtze River Scientific Research Institute: 1-9. [2023-03-29]. http://kns.cnki.net/kcms/detail/42.1171.TV.20220902.1812.005.html. | |
[29] |
张一然, 文小航, 罗斯琼, 等, 2022. 近20年若尔盖湿地植被覆盖变化与气候因子关系研究[J]. 高原气象, 41(2): 317-327.
DOI |
ZHANG Y R, WEN X H, LUO S Q, et al., 2022. Study on the relationship between vegetation cover change and climate factors in Zoige wetland in recent 20 years[J]. Plateau Meteorology, 41(2): 317-327.
DOI |
|
[30] | 赵子娟, 范蓓蕾, 王玉庭, 等, 2021. 2000—2018年西辽河流域植被覆盖度时空变化特征及影响因素研究[J]. 中国农业资源与区划, 42(12): 75-88. |
ZHAO Z J, FAN B L, WANG Y T, et al., 2021. Analysis on the characteristics of spatial-temporal changes and influencing factors of vegetation coverage in the Xiliao river basin from 2000 to 2018[J]. Agricultural Resources and Regionalization in China, 42(12): 75-88. | |
[31] | 祝聪, 彭文甫, 张丽芳, 等, 2019. 2006—2016年岷江上游植被覆盖度时空变化及驱动力[J]. 生态学报, 39(5): 1583-1594. |
ZHU C, PENG W P, ZHANG L F, et al., 2019. Study of temporal and spatial variation and driving force of fractional vegetation cover in upper reaches of Minjiang River from 2006 to 2016[J]. Acta Ecologica Sinica, 39(5): 1583-1594. | |
[32] | 朱林富, 谢世友, 杨华, 等, 2022. 气候变化与人类活动在四川植被覆盖度变化中的相对作用[J]. 西部林业科学, 51(6): 8-16. |
ZHU L F, XIE S Y, YANG H, et al., 2022. Relative effects of climate change and human activities on vegetation coverage change in Sichuan[J]. Western Forestry Science, 51(6): 8-16. |
[1] | 贾志峰, 刘鹏程, 刘宇, 吴博博, 陈丹姿, 张向飞. 气候变化和人类活动对松辽流域植被覆盖的影响[J]. 生态环境学报, 2023, 32(1): 1-10. |
[2] | 苏泳松, 宋松, 陈叶, 叶子强, 钟润菲, 王昭尧. 珠江三角洲人类活动净氮输入时空特征及其影响因素[J]. 生态环境学报, 2022, 31(8): 1599-1609. |
[3] | 李梦华, 韩颖娟, 赵慧, 王云霞. 基于地理探测器的宁夏植被覆盖度时空变化特征及其驱动因子分析[J]. 生态环境学报, 2022, 31(7): 1317-1325. |
[4] | 李登科, 王钊. 气候变化和人类活动对陕西省植被NPP影响的定量分析[J]. 生态环境学报, 2022, 31(6): 1071-1079. |
[5] | 郝永佩, 宋晓伟, 赵文珺, 向发敏. 汾渭平原大气污染时空分布及相关因子分析[J]. 生态环境学报, 2022, 31(3): 512-523. |
[6] | 石智宇, 王雅婷, 赵清, 张连蓬, 朱长明. 2001-2020年中国植被净初级生产力时空变化及其驱动机制分析[J]. 生态环境学报, 2022, 31(11): 2111-2123. |
[7] | 张静, 杜加强, 盛芝露, 张杨成思, 吴金华, 刘博. 1982—2015年黄河流域植被NDVI时空变化及影响因素分析[J]. 生态环境学报, 2021, 30(5): 929-937. |
[8] | 王瑞璠, 魏倪彬, 张仓皓, 鲍甜甜, 刘健, 余坤勇, 王帆. 南方丘陵区林下植被覆盖度无人机多角度遥感测量[J]. 生态环境学报, 2021, 30(12): 2294-2302. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||