生态环境学报 ›› 2023, Vol. 32 ›› Issue (2): 283-291.DOI: 10.16258/j.cnki.1674-5906.2023.02.008
收稿日期:
2022-10-27
出版日期:
2023-02-18
发布日期:
2023-05-11
通讯作者:
*王艳玲,教授,博士。E-mail: ylwang@nuist.edu.cn作者简介:
樊慧琳(2000年生),女,硕士研究生,主要从事土壤碳磷循环及其环境效应研究。E-mail: 973671953@qq.com
基金资助:
FAN Huilin(), ZHANG Jiamin, LI Huan, WANG Yanling*(
)
Received:
2022-10-27
Online:
2023-02-18
Published:
2023-05-11
摘要:
土壤磷储量及空间分布特征直接影响磷素的农业利用效率与生态环境安全,明确不同坡位稻田磷在各发生层及大小粒级团聚体内的储存格局及流失潜能,可为稻田土壤磷高效利用与流失风险管控提供科学依据。以江西鹰潭孙家典型红壤小流域内不同坡位的稻田剖面土壤为研究对象,分析了不同发生层土壤全磷储量(CTPs)、速效磷储量(CBray-P)、磷储存容量储量(CSPSC)及团聚体全磷储量(CTPa)的变化差异,评估了不同坡位稻田剖面磷的流失风险及影响因素。结果表明:不同坡位稻田剖面CTPs、CBray-P及CTPa均随发生层深度的增加先降低后增加,坡下稻田剖面CTPs及CBray-P均显著高于坡上及坡中剖面。各剖面中2-0.25 mm水稳定性团聚体的CTP2-0.25 mm及贡献率(RC)均显著高于其他粒级(22.8-1120.9 kg·hm-2,4.97%-67.8%)。不同坡位稻田水耕表层(Ap1)的CSPSC为-209.5- -650.9 kg·hm-2,均存在磷流失风险;且随发生层深度的加深逐渐增加至418.5-1001.0 kg·hm-2,不存在磷流失风险;坡上稻田各发生层CSPSC的均值为390.9 kg·hm-2,显著高于坡中(145.6 kg·hm-2)及坡下(192.6 kg·hm-2)稻田各发生层的均值。通径分析表明,土壤有机碳对坡耕地稻田各发生层CSPSC起最直接的负向作用(直接通径系数为-0.903),而土层厚度、pH、游离铁氧化物与非晶质铁氧化物则起显著且直接的正向作用。
中图分类号:
樊慧琳, 张佳敏, 李欢, 王艳玲. 坡耕地稻田剖面磷的储存格局与流失风险研究[J]. 生态环境学报, 2023, 32(2): 283-291.
FAN Huilin, ZHANG Jiamin, LI Huan, WANG Yanling. Study on the Profile Storage Pattern and Loss Risk of Phosphorus in Sloping Paddy Red Soil[J]. Ecology and Environment, 2023, 32(2): 283-291.
坡位 | 种植年限/a | 剖面代码 | 深度/cm | 发生层 | 描述 |
---|---|---|---|---|---|
坡上 | 50-60 | MP-T | 0-20 | 水耕表层 (Ap1) | 团粒 |
20-25 | 犁底层 (Ap2) | 块状 | |||
25-32 | 淀积层1 (Bw1) | 弱块状 | |||
32-46 | 淀积层2 (Bw2) | 块状 | |||
46-62 | 潜育层1 (Br1) | 块状 | |||
62-90 | 潜育层2 (Br2) | 块状 | |||
90-110 | 母质层 (Cr) | 无结构 | |||
坡中 | 50-60 | MP-M | 0-18 | 水耕表层 (Ap1) | 团粒 |
18-23 | 犁底层 (Ap2) | 块状 | |||
23-38 | 潜育层1 (Br1) | 块状 | |||
38-50 | 潜育层2 (Br2) | 块状 | |||
50-60 | 潜育层3 (Br3) | 块状 | |||
60-85 | 混合层 (BC) | 弱块状 | |||
85-110 | 母质层 (C) | 无结构 | |||
坡下 | 50-60 | MP-B | 0-18 | 水耕表层 (Ap1) | 团粒 |
18-23 | 犁底层 (Ap2) | 块状 | |||
23-40 | 潜育层1 (Br1) | 块状 | |||
40-58 | 潜育层2 (Br2) | 块状 | |||
58-63 | 淀积层 (Bw) | 弱块状 | |||
63-80 | 混合层 (BC) | 无结构 | |||
80-100 | 母质层1 (Cr1) | 无结构 | |||
100-110 | 母质层1 (Cr2) | 无结构 |
表1 坡耕地稻田发生层划分与描述
Table 1 Division and description of pedogenic horizon of sloping paddy
坡位 | 种植年限/a | 剖面代码 | 深度/cm | 发生层 | 描述 |
---|---|---|---|---|---|
坡上 | 50-60 | MP-T | 0-20 | 水耕表层 (Ap1) | 团粒 |
20-25 | 犁底层 (Ap2) | 块状 | |||
25-32 | 淀积层1 (Bw1) | 弱块状 | |||
32-46 | 淀积层2 (Bw2) | 块状 | |||
46-62 | 潜育层1 (Br1) | 块状 | |||
62-90 | 潜育层2 (Br2) | 块状 | |||
90-110 | 母质层 (Cr) | 无结构 | |||
坡中 | 50-60 | MP-M | 0-18 | 水耕表层 (Ap1) | 团粒 |
18-23 | 犁底层 (Ap2) | 块状 | |||
23-38 | 潜育层1 (Br1) | 块状 | |||
38-50 | 潜育层2 (Br2) | 块状 | |||
50-60 | 潜育层3 (Br3) | 块状 | |||
60-85 | 混合层 (BC) | 弱块状 | |||
85-110 | 母质层 (C) | 无结构 | |||
坡下 | 50-60 | MP-B | 0-18 | 水耕表层 (Ap1) | 团粒 |
18-23 | 犁底层 (Ap2) | 块状 | |||
23-40 | 潜育层1 (Br1) | 块状 | |||
40-58 | 潜育层2 (Br2) | 块状 | |||
58-63 | 淀积层 (Bw) | 弱块状 | |||
63-80 | 混合层 (BC) | 无结构 | |||
80-100 | 母质层1 (Cr1) | 无结构 | |||
100-110 | 母质层1 (Cr2) | 无结构 |
剖面代码 | 发生层 | wB/ (g·cm-3) | pHKCl | w(SOC)/ (g·kg-1) | w(TP)/ (g·kg-1) | w(Bray-P)/ (mg·kg-1) | w(Alo)/ (g·kg-1) | w(Feo)/ (g·kg-1) | w(Fed)/ (g·kg-1) | w(Ald)/ (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
MP-T | Ap1 | 0.76d | 3.97d | 30.3a | 0.78a | 25.5a | 4.64b | 4.63c | 24.4f | 10.3d |
Ap2 | 1.66a | 4.20a | 4.39d | 0.16e | 3.41f | 2.31g | 1.86f | 37.9d | 8.90e | |
Bw1 | 1.65a | 4.23a | 3.85e | 0.18e | 2.37f | 2.50f | 2.75e | 36.0e | 8.87e | |
Bw2 | 1.33b | 4.20a | 4.57d | 0.24d | 2.18e | 3.61d | 4.60c | 40.7c | 11.9c | |
Br1 | 1.14c | 4.02c | 5.38c | 0.27d | 3.46d | 3.42e | 3.85d | 38.7d | 11.6c | |
Br2 | 1.30b | 4.13b | 6.01b | 0.36c | 2.92b | 4.09c | 5.69b | 50.1b | 15.0b | |
Cr | 1.20bc | 3.81e | 6.04b | 0.57b | 3.52c | 7.71a | 8.38a | 63.5a | 19.2a | |
MP-M | Ap1 | 0.82d | 4.03c | 28.1a | 0.71a | 20.4a | 4.51b | 2.96e | 22.8f | 10.1e |
Ap2 | 1.54a | 4.14b | 13.5b | 0.53c | 10.2c | 4.14c | 3.03d | 33.5d | 10.9d | |
Br1 | 1.52a | 4.19a | 6.60d | 0.33e | 3.32cd | 3.67d | 3.51c | 41.8c | 12.4c | |
Br2 | 1.37b | 4.03c | 7.20c | 0.41d | 4.12d | 2.91e | 2.78f | 28.4e | 8.18f | |
Br3 | 1.25c | 4.21a | 6.40d | 0.29f | 2.30f | 2.86e | 2.51g | 34.4d | 9.77e | |
BC | 1.17c | 4.21a | 5.97e | 0.65b | 2.35e | 4.42b | 3.76b | 55.0b | 16.8b | |
C | 1.27bc | 4.06c | 5.44f | 0.68ab | 3.43b | 7.36a | 7.37a | 58.2a | 18.9a | |
MP-B | Ap1 | 0.88e | 3.91f | 32.9a | 0.84a | 26.6a | 4.42d | 3.68e | 18.1g | 7.68f |
Ap2 | 1.32b | 3.92ef | 14.3b | 0.64bc | 20.3b | 3.94e | 3.56f | 31.1f | 9.56e | |
Br1 | 1.32b | 3.94e | 7.69c | 0.41e | 3.48c | 3.61f | 3.47g | 49.4d | 11.7d | |
Br2 | 1.43a | 4.08d | 5.89e | 0.22f | 2.44d | 3.32g | 4.26d | 39.1e | 10.1e | |
Bw | 1.23bc | 4.50a | 6.71d | 0.41e | 1.83g | 4.46d | 3.42g | 52.7c | 17.5c | |
BC | 1.13cd | 4.39b | 4.25f | 0.69b | 1.97e | 7.89a | 5.14b | 60.7a | 22.5a | |
Cr1 | 1.13c | 4.14c | 5.44e | 0.62d | 1.75e | 6.40c | 4.53c | 58.0b | 20.3b | |
Cr2 | 1.17cd | 4.10d | 4.66f | 0.56 | 2.40f | 7.68b | 5.98a | 60.4a | 21.0b |
表2 坡耕地稻田发生层基本理化性质
Table 2 Basic physicochemical properties of pedogenic horizon in sloping paddy
剖面代码 | 发生层 | wB/ (g·cm-3) | pHKCl | w(SOC)/ (g·kg-1) | w(TP)/ (g·kg-1) | w(Bray-P)/ (mg·kg-1) | w(Alo)/ (g·kg-1) | w(Feo)/ (g·kg-1) | w(Fed)/ (g·kg-1) | w(Ald)/ (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
MP-T | Ap1 | 0.76d | 3.97d | 30.3a | 0.78a | 25.5a | 4.64b | 4.63c | 24.4f | 10.3d |
Ap2 | 1.66a | 4.20a | 4.39d | 0.16e | 3.41f | 2.31g | 1.86f | 37.9d | 8.90e | |
Bw1 | 1.65a | 4.23a | 3.85e | 0.18e | 2.37f | 2.50f | 2.75e | 36.0e | 8.87e | |
Bw2 | 1.33b | 4.20a | 4.57d | 0.24d | 2.18e | 3.61d | 4.60c | 40.7c | 11.9c | |
Br1 | 1.14c | 4.02c | 5.38c | 0.27d | 3.46d | 3.42e | 3.85d | 38.7d | 11.6c | |
Br2 | 1.30b | 4.13b | 6.01b | 0.36c | 2.92b | 4.09c | 5.69b | 50.1b | 15.0b | |
Cr | 1.20bc | 3.81e | 6.04b | 0.57b | 3.52c | 7.71a | 8.38a | 63.5a | 19.2a | |
MP-M | Ap1 | 0.82d | 4.03c | 28.1a | 0.71a | 20.4a | 4.51b | 2.96e | 22.8f | 10.1e |
Ap2 | 1.54a | 4.14b | 13.5b | 0.53c | 10.2c | 4.14c | 3.03d | 33.5d | 10.9d | |
Br1 | 1.52a | 4.19a | 6.60d | 0.33e | 3.32cd | 3.67d | 3.51c | 41.8c | 12.4c | |
Br2 | 1.37b | 4.03c | 7.20c | 0.41d | 4.12d | 2.91e | 2.78f | 28.4e | 8.18f | |
Br3 | 1.25c | 4.21a | 6.40d | 0.29f | 2.30f | 2.86e | 2.51g | 34.4d | 9.77e | |
BC | 1.17c | 4.21a | 5.97e | 0.65b | 2.35e | 4.42b | 3.76b | 55.0b | 16.8b | |
C | 1.27bc | 4.06c | 5.44f | 0.68ab | 3.43b | 7.36a | 7.37a | 58.2a | 18.9a | |
MP-B | Ap1 | 0.88e | 3.91f | 32.9a | 0.84a | 26.6a | 4.42d | 3.68e | 18.1g | 7.68f |
Ap2 | 1.32b | 3.92ef | 14.3b | 0.64bc | 20.3b | 3.94e | 3.56f | 31.1f | 9.56e | |
Br1 | 1.32b | 3.94e | 7.69c | 0.41e | 3.48c | 3.61f | 3.47g | 49.4d | 11.7d | |
Br2 | 1.43a | 4.08d | 5.89e | 0.22f | 2.44d | 3.32g | 4.26d | 39.1e | 10.1e | |
Bw | 1.23bc | 4.50a | 6.71d | 0.41e | 1.83g | 4.46d | 3.42g | 52.7c | 17.5c | |
BC | 1.13cd | 4.39b | 4.25f | 0.69b | 1.97e | 7.89a | 5.14b | 60.7a | 22.5a | |
Cr1 | 1.13c | 4.14c | 5.44e | 0.62d | 1.75e | 6.40c | 4.53c | 58.0b | 20.3b | |
Cr2 | 1.17cd | 4.10d | 4.66f | 0.56 | 2.40f | 7.68b | 5.98a | 60.4a | 21.0b |
图1 坡耕地稻田发生层土壤全磷储量(CTPs)及团聚体全磷储量(CTPa)变化
Figure 1 Changes of soil total phosphorus storage (CTPs) and aggregate total phosphorus storage (CTPa) in sloping paddy
剖面 | 发生层 | Er | RC/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
10-5 mm | 5-2 mm | 2-0.25 mm | <0.25 mm | 10-5 mm | 5-2 mm | 2-0.25 mm | <0.25 mm | |||
MP-T | Ap1 | 1.07A | 1.02Ae | 1.11Abc | 0.79Bc | 76.3A | 5.94Cb | 11.8Be | 5.92Ce | |
Ap2 | 1.39B | 1.82Ab | 1.37Ba | 1.10Ca | 5.98C | 1.65Dcd | 33.9Bc | 58.5Ac | ||
Bw1 | — | 1.47Ac | 1.02Bcd | 1.09Ba | — | 1.83Ccd | 29.1Bd | 69.1Aa | ||
Bw2 | — | 1.29Ad | 1.14Bb | 1.05Ca | — | 0.74Cd | 41.1Bb | 57.9Ac | ||
Br1 | — | — | 1.12b | 0.92b | — | — | 34.0c | 66.0ab | ||
Br2 | — | 2.28Aa | 0.98Bd | 0.79Cc | — | 3.33Cc | 41.1Bb | 55.9Ac | ||
Cr | — | 1.00Ae | 0.86Be | 0.90Bb | — | 16.6Ba | 67.8Aa | 15.7Bd | ||
MP-M | Ap1 | 0.98Bc | 1.08Ac | 0.93Bb | 0.69Cb | 73.0Aa | 10.1Bb | 10.4Bd | 6.57Cd | |
Ap2 | 0.91Bcd | 0.96ABd | 1.01Aa | 0.73Cab | 73.7Aa | 6.80Cc | 13.5Bd | 5.97Cd | ||
Br1 | 0.76ABe | 0.79Ae | 0.73BCd | 0.70Cb | 7.93Cc | 3.62Dd | 54.1Ab | 34.4Bb | ||
Br2 | 0.85ABd | 0.88Ade | 0.80Bc | 0.60Cc | 3.73Cd | 1.18De | 38.1Bc | 57.0Aa | ||
Br3 | 1.31Ba | 1.77Aa | 0.91Cb | 0.60Dc | 0.82Dd | 2.03Ce | 37.5Bc | 59.7Aa | ||
BC | 1.14Bb | 1.40Ab | 0.88Cb | 0.77Ca | 1.06Dd | 8.16Cc | 61.6Aa | 29.2Bb | ||
C | 1.20Ab | 1.15Ac | 0.99Ba | 0.79Ca | 13.5Cb | 23.1Ba | 51.0Ab | 12.4Cc | ||
MP-B | Ap1 | 0.95Bd | 1.08Ad | 0.97Bde | 0.62Ce | 77.5Ab | 11.4Bbc | 8.52Ce | 2.53De | |
Ap2 | 1.11Acd | 1.03ABd | 0.96Bde | 0.79Ccd | 87.8Aa | 5.01Be | 4.97Bf | 2.21Ce | ||
Br1 | 1.18Bc | 1.13Bd | 1.47Aa | 0.70Cde | 19.1Bc | 5.57Ce | 57.0Aa | 18.4Bd | ||
Br2 | — | 1.94Aa | 1.09Bc | 1.09Ba | — | 5.16Ce | 34.5Bd | 60.4Aa | ||
Bw | 1.85Aa | 1.66Bb | 1.05Ccd | 0.89Cb | 4.10Dde | 8.08Ccd | 52.1Ab | 35.7Bb | ||
BC | 1.24Bbc | 1.32Ac | 0.89Ce | 0.74Dd | 6.39Dd | 13.1Cb | 50.7Ac | 29.8Bc | ||
Cr1 | 1.44Ab | 1.37Ac | 0.96Bde | 0.77Ccd | 2.35De | 7.54Cd | 62.0Aa | 28.2Bc | ||
Cr2 | 1.76Aa | 1.72Ab | 1.24Bb | 0.85Bbc | 21.4Bc | 21.5Ba | 42.7Ac | 14.5Cd |
表3 坡耕地稻田发生层水稳性团聚体磷的富集系数(Er)及其对总磷储量的贡献比例(RC)
Table 3 The enrichment coefficient of water-stable aggregate associated phosphorus and its contribution ratio to the total phosphorus storage capacity in sloping paddy
剖面 | 发生层 | Er | RC/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
10-5 mm | 5-2 mm | 2-0.25 mm | <0.25 mm | 10-5 mm | 5-2 mm | 2-0.25 mm | <0.25 mm | |||
MP-T | Ap1 | 1.07A | 1.02Ae | 1.11Abc | 0.79Bc | 76.3A | 5.94Cb | 11.8Be | 5.92Ce | |
Ap2 | 1.39B | 1.82Ab | 1.37Ba | 1.10Ca | 5.98C | 1.65Dcd | 33.9Bc | 58.5Ac | ||
Bw1 | — | 1.47Ac | 1.02Bcd | 1.09Ba | — | 1.83Ccd | 29.1Bd | 69.1Aa | ||
Bw2 | — | 1.29Ad | 1.14Bb | 1.05Ca | — | 0.74Cd | 41.1Bb | 57.9Ac | ||
Br1 | — | — | 1.12b | 0.92b | — | — | 34.0c | 66.0ab | ||
Br2 | — | 2.28Aa | 0.98Bd | 0.79Cc | — | 3.33Cc | 41.1Bb | 55.9Ac | ||
Cr | — | 1.00Ae | 0.86Be | 0.90Bb | — | 16.6Ba | 67.8Aa | 15.7Bd | ||
MP-M | Ap1 | 0.98Bc | 1.08Ac | 0.93Bb | 0.69Cb | 73.0Aa | 10.1Bb | 10.4Bd | 6.57Cd | |
Ap2 | 0.91Bcd | 0.96ABd | 1.01Aa | 0.73Cab | 73.7Aa | 6.80Cc | 13.5Bd | 5.97Cd | ||
Br1 | 0.76ABe | 0.79Ae | 0.73BCd | 0.70Cb | 7.93Cc | 3.62Dd | 54.1Ab | 34.4Bb | ||
Br2 | 0.85ABd | 0.88Ade | 0.80Bc | 0.60Cc | 3.73Cd | 1.18De | 38.1Bc | 57.0Aa | ||
Br3 | 1.31Ba | 1.77Aa | 0.91Cb | 0.60Dc | 0.82Dd | 2.03Ce | 37.5Bc | 59.7Aa | ||
BC | 1.14Bb | 1.40Ab | 0.88Cb | 0.77Ca | 1.06Dd | 8.16Cc | 61.6Aa | 29.2Bb | ||
C | 1.20Ab | 1.15Ac | 0.99Ba | 0.79Ca | 13.5Cb | 23.1Ba | 51.0Ab | 12.4Cc | ||
MP-B | Ap1 | 0.95Bd | 1.08Ad | 0.97Bde | 0.62Ce | 77.5Ab | 11.4Bbc | 8.52Ce | 2.53De | |
Ap2 | 1.11Acd | 1.03ABd | 0.96Bde | 0.79Ccd | 87.8Aa | 5.01Be | 4.97Bf | 2.21Ce | ||
Br1 | 1.18Bc | 1.13Bd | 1.47Aa | 0.70Cde | 19.1Bc | 5.57Ce | 57.0Aa | 18.4Bd | ||
Br2 | — | 1.94Aa | 1.09Bc | 1.09Ba | — | 5.16Ce | 34.5Bd | 60.4Aa | ||
Bw | 1.85Aa | 1.66Bb | 1.05Ccd | 0.89Cb | 4.10Dde | 8.08Ccd | 52.1Ab | 35.7Bb | ||
BC | 1.24Bbc | 1.32Ac | 0.89Ce | 0.74Dd | 6.39Dd | 13.1Cb | 50.7Ac | 29.8Bc | ||
Cr1 | 1.44Ab | 1.37Ac | 0.96Bde | 0.77Ccd | 2.35De | 7.54Cd | 62.0Aa | 28.2Bc | ||
Cr2 | 1.76Aa | 1.72Ab | 1.24Bb | 0.85Bbc | 21.4Bc | 21.5Ba | 42.7Ac | 14.5Cd |
剖面 | 发生层 | CBray-P/(kg·hm-2) | RPAC/% |
---|---|---|---|
MP-T | Ap1 | 38.7±0.32a | 3.28±0.14a |
Ap2 | 2.83±0.11f | 2.16±0.05b | |
Bw1 | 2.74±0.07f | 1.30±0.08c | |
Bw2 | 4.06±0.11e | 0.89±0.03d | |
Br1 | 6.31±0.17d | 1.28±0.04c | |
Br2 | 10.6±0.30b | 0.81±0.03d | |
Cr | 8.44±0.15c | 0.61±0.03e | |
MP-M | Ap1 | 30.2±1.18a | 2.87±0.21a |
Ap2 | 7.88±0.20c | 1.94±0.06b | |
Br1 | 7.57±0.13cd | 1.01±0.02c | |
Br2 | 6.78±0.17d | 1.02±0.03c | |
Br3 | 2.88±0.06f | 0.80±0.03d | |
BC | 4.12±0.15e | 0.36±0.01e | |
C | 10.9±0.31b | 0.50±0.02e | |
MP-B | Ap1 | 42.1±0.20a | 3.17±0.12a |
Ap2 | 13.4±0.25b | 3.19±0.10a | |
Br1 | 7.80±0.11c | 0.84±0.01c | |
Br2 | 6.29±0.16d | 1.12±0.07b | |
Bw | 1.13±0.01g | 0.45±0.02d | |
BC | 3.79±0.10e | 0.29±0.01e | |
Cr1 | 3.96±0.13e | 0.28±0.01e | |
Cr2 | 2.81±0.12f | 0.43±0.04d |
表4 坡耕地稻田发生层CBray-P变化
Table 4 Change of CBray-P in pedogenic horizon of sloping paddy
剖面 | 发生层 | CBray-P/(kg·hm-2) | RPAC/% |
---|---|---|---|
MP-T | Ap1 | 38.7±0.32a | 3.28±0.14a |
Ap2 | 2.83±0.11f | 2.16±0.05b | |
Bw1 | 2.74±0.07f | 1.30±0.08c | |
Bw2 | 4.06±0.11e | 0.89±0.03d | |
Br1 | 6.31±0.17d | 1.28±0.04c | |
Br2 | 10.6±0.30b | 0.81±0.03d | |
Cr | 8.44±0.15c | 0.61±0.03e | |
MP-M | Ap1 | 30.2±1.18a | 2.87±0.21a |
Ap2 | 7.88±0.20c | 1.94±0.06b | |
Br1 | 7.57±0.13cd | 1.01±0.02c | |
Br2 | 6.78±0.17d | 1.02±0.03c | |
Br3 | 2.88±0.06f | 0.80±0.03d | |
BC | 4.12±0.15e | 0.36±0.01e | |
C | 10.9±0.31b | 0.50±0.02e | |
MP-B | Ap1 | 42.1±0.20a | 3.17±0.12a |
Ap2 | 13.4±0.25b | 3.19±0.10a | |
Br1 | 7.80±0.11c | 0.84±0.01c | |
Br2 | 6.29±0.16d | 1.12±0.07b | |
Bw | 1.13±0.01g | 0.45±0.02d | |
BC | 3.79±0.10e | 0.29±0.01e | |
Cr1 | 3.96±0.13e | 0.28±0.01e | |
Cr2 | 2.81±0.12f | 0.43±0.04d |
Xi→Xj | X2 | X3 | X5 | X7 | X8 | X11 | X13 | riy | R2 |
---|---|---|---|---|---|---|---|---|---|
Xi→Y | |||||||||
X2 | 0.487** | -0.066 | 0.029 | 0.279 | -0.126 | -0.031 | -0.079 | 0.493** | 0.980 |
X3 | -0.166 | 0.195** | 0.035 | -0.130 | 0.394 | -0.105 | -0.080 | 0.143 | |
X5 | 0.118 | 0.056 | 0.122** | 0.287 | 0.628 | -0.150 | -0.251 | 0.808** | |
X7 | 0.303 | -0.057 | 0.078 | 0.448** | 0.143 | -0.043 | -0.146 | 0.726** | |
X8 | 0.068 | -0.085 | -0.085 | -0.071 | -0.903** | 0.205 | 0.196 | -0.676** | |
X11 | -0.064 | -0.086 | -0.076 | -0.082 | -0.773 | 0.239** | 0.221 | -0.622** | |
X13 | 0.136 | -0.080 | 0.108 | 0.230 | 0.622 | -0.185 | -0.285** | 0.680** |
表5 通径分析
Table 5 Path analysis
Xi→Xj | X2 | X3 | X5 | X7 | X8 | X11 | X13 | riy | R2 |
---|---|---|---|---|---|---|---|---|---|
Xi→Y | |||||||||
X2 | 0.487** | -0.066 | 0.029 | 0.279 | -0.126 | -0.031 | -0.079 | 0.493** | 0.980 |
X3 | -0.166 | 0.195** | 0.035 | -0.130 | 0.394 | -0.105 | -0.080 | 0.143 | |
X5 | 0.118 | 0.056 | 0.122** | 0.287 | 0.628 | -0.150 | -0.251 | 0.808** | |
X7 | 0.303 | -0.057 | 0.078 | 0.448** | 0.143 | -0.043 | -0.146 | 0.726** | |
X8 | 0.068 | -0.085 | -0.085 | -0.071 | -0.903** | 0.205 | 0.196 | -0.676** | |
X11 | -0.064 | -0.086 | -0.076 | -0.082 | -0.773 | 0.239** | 0.221 | -0.622** | |
X13 | 0.136 | -0.080 | 0.108 | 0.230 | 0.622 | -0.185 | -0.285** | 0.680** |
[1] | AHMED E H, ANJUM S I, ZHANG M K, 2017. Effects of fertilization on phosphorus distribution in water-stable aggregates of soils with different properties[J]. Toxicological & Environmental Chemistry, 99(1): 32-47. |
[2] | BAHMAN E, BINFORD G D, BAITENSPERGR D D, 1996. Phosphorus movement and adsorption in a soil receiving long-term manure and fertilizer application[J]. Journal of Environmental Quality, 25(6): 1339-1343. |
[3] |
CUI H, OU Y, WANG L, et al., 2019. Distribution and release of phosphorus fractions associated with soil aggregate structure in restored wetlands[J]. Chemosphere, 223: 319-329.
DOI PMID |
[4] |
DARI B, NAIR V D, HARRIS W G, 2017. Approaches for evaluating subsurface phosphorus loss potential from soil profiles[J]. Agriculture, Ecosystems & Environment, 245(1): 92-99.
DOI URL |
[5] |
GONG X F, QIN T L, WANG H L, et al., 2020. Research advances on driving mechanism of nitrogen and phosphorus loss in sloping fields[J]. IOP Conference Series: Earth and Environmental Science, 513(1): 012033.
DOI |
[6] | NAIR V D, CLARK M W, REDDY K R, 2015. Evaluation of legacy phosphorus storage and release from wetland soils[J]. Journal of Environmental Quality, 44(6): 2181-2190. |
[7] |
PELTOVUORI T, UUSITALO R, KAUPPILA T, 2002. Phosphorus reserves and apparent phosphorus saturation in four weakly developed cultivated pedons[J]. Geoderma, 110(1): 35-47.
DOI URL |
[8] | VANDEN BYGAART A J, GENG X, HE J, 2021. Spatial decoupling of legacy phosphorus in cropland: Soil erosion and deposition as a mechanism for storage[J]. Soil & Tillage Research, 211: 105050. |
[9] |
YAN X, WEI Z Q, HONG Q Q, et al., 2017. Phosphorus fractions and sorption characteristics in a subtropical paddy soil as influenced by fertilizer sources[J]. Geoderma, 295: 80-85.
DOI URL |
[10] |
ZHANG Z J, ZHAO Z, LIU C Q, et al., 2021. Vertical patterns of phosphorus concentration and speciation in three forest soil profiles of contrasting climate[J]. Geochimica et Cosmochimica Acta, 310: 1-18.
DOI URL |
[11] | 岑龙沛, 严友进, 戴全厚, 等, 2020. 喀斯特不同土地利用类型裂隙土壤有机碳及磷素赋存特征[J]. 生态学报, 40(21): 7567-7575. |
CEN L P, YAN Y J, DAI Q H, et al., 2020. Occurrence characteristics of organic carbon and phosphorus in fractured soil of different land use types in Karst[J]. Acta Ecologica Sinica, 40(21): 7567-7575. | |
[12] |
陈静蕊, 陈晓芬, 秦文婧, 等, 2020. 紫云英还田对江西早稻季田面水氮磷动态的影响[J]. 生态环境学报, 29(7): 1352-1358.
DOI |
CHEN J R, CHEN X F, QIN W J, et al., 2020. The effect of Chinese milk vetch application on dynamic changes of nitrogen and phosphorus concentrations in paddy field surface water[J]. Ecology and Environmental Sciences, 29(7): 1352-1358. | |
[13] | 陈晓安, 杨洁, 郑太辉, 等, 2015. 赣北第四纪红壤坡耕地水土及氮磷流失特征[J]. 农业工程学报, 31(17): 162-167. |
CHEN X A, YANG J, ZHENG T H, et al., 2015. Characteristics of water, soil and nitrogen and phosphorus loss in Quaternary red soil sloping farmland in northern Jiangxi[J]. Transactions of the Chinese Society of Agricultural Engineering, 31(17): 162-167. | |
[14] | 段永蕙, 刘娟, 刘惠见, 等, 2019. 红壤性水稻土磷素淋溶流失特征及环境阈值研究[J]. 云南农业大学学报: 自然科学版, 34(6): 1070-1075. |
DUAN Y H, LIU J, LIU H J, et al., 2019. Study on leaching loss characteristics and environmental threshold of phosphorus in red paddy soil[J]. Journal of Yunnan Agricultural University: Natural Science Edition, 34(6): 1070-1075. | |
[15] |
葛楠楠, 石芸, 杨宪龙, 等, 2017. 黄土高原不同土壤质地农田土壤碳、氮、磷及团聚体分布特征[J]. 应用生态学报, 28(5): 1626-1632.
DOI |
GE N N, SHI Y, YANG X L, et al., 2017. Distribution characteristics of soil carbon, nitrogen, phosphorus and aggregates in farmland with different soil textures on the Loess Plateau[J]. Chinese Journal of Applied Ecology, 28(5): 1626-1632.
DOI |
|
[16] | 郭万伟, 肖和艾, 吴金水, 等, 2009. 红壤旱土和水稻土团聚体中磷素的分布特点[J]. 土壤学报, 46(1): 85-92. |
GUO W W, XIAO H A, WU J S, et al., 2009. Distribution characteristics of phosphorus in aggregates of upland red soil and paddy soil[J]. Acta Pedologica Sinica, 46(1): 85-92. | |
[17] | 孔庆波, 白由路, 杨俐苹, 等, 2009. 黄淮海平原农田土壤磷素空间分布特征及影响因素研究[J]. 中国土壤与肥料 (5): 10-14. |
KONG Q B, BAI Y L, YANG L P, et al., 2009. Study on spatial distribution characteristics and influencing factors of soil phosphorus in the Yellow Huaihai Plain[J]. Soil and fertilizer in China (5): 10-14. | |
[18] |
李太魁, 张香凝, 寇长林, 等, 2021. 不同农艺措施对丹江口库区坡耕地茶园水土和磷素流失的影响[J]. 生态环境学报, 30(12): 2324-2330.
DOI |
LI T K, ZHANG X N, KOU C L, et al., 2021. Effects of different agronomic measures on runoff, water and phosphorous losses of tea garden located in sloping cropland in Danjiangkou reservoir area[J]. Ecology and Environmental Sciences, 30(12): 2324-2330. | |
[19] |
李新悦, 李冰, 莫太相, 等, 2021. 长期秸秆还田对水稻土团聚体及氮磷钾分配的影响[J]. 应用生态学报, 32(9): 3257-3266.
DOI |
LI X Y, LI B, MO T X, et al., 2021. Effects of long-term straw returning on aggregates and distribution of nitrogen, phosphorus and potassium in paddy soil[J]. Chinese Journal of Applied Ecology, 32(9): 3257-3266. | |
[20] | 刘娟, 张乃明, 徐红娇, 等, 2020. 不同土地利用方式下红壤磷素径流流失特征[J]. 水土保持学报, 34(5): 103-110. |
LIU J, ZHANG N M, XU H J, et al., 2020. The runoff loss characteristics of phosphorus in red soil under different land use patterns[J]. Journal of Soil and Water Conservation, 34(5): 103-110. | |
[21] | 柳开楼, 都江雪, 邬磊, 等, 2022. 长期施肥对不同深度稻田土壤团聚体磷素分配的影响[J]. 农业资源与环境学报, 39(6): 1-13. |
LIU K L, DU J X, WU L, et al., 2022. Effects of long-term fertilization on phosphorus distribution in paddy soil aggregates at different depths[J]. Journal of Agricultural Resources and Environment, 39(6): 1-13. | |
[22] | 刘晓利, 何园球, 李成亮, 等, 2009. 不同利用方式旱地红壤水稳性团聚体及其碳、氮、磷分布特征[J]. 土壤学报, 46(2): 255-262. |
LIU X L, HE Y Q, LI C L, et al., 2009. Water-stable aggregates and their distribution characteristics of carbon, nitrogen and phosphorus in dryland red soil under different utilization modes[J]. Acta Pedologica Sinica, 46(2): 255-262. | |
[23] | 刘艳, 马茂华, 吴胜军, 等, 2018. 干湿交替下土壤团聚体稳定性研究进展与展望[J]. 土壤, 50(5): 853-865. |
LIU Y, MA M H, WU S J, et al., 2018. Research progress and prospect of soil aggregate stability under dry-wet alternation[J]. Soils, 50(5): 853-865. | |
[24] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Analytical methods of soil and agro-chemistry[M]. Beijing: China Agriculture Science and Technology Press. | |
[25] | 吕玉娟, 彭新华, 高磊, 等, 2015. 红壤丘陵岗地区坡地地表径流氮磷流失特征研究[J]. 土壤, 47(2): 297-304. |
LÜ Y J, PENG X H, GAO L, et al., 2015. Research on the characteristics of nitrogen and phosphorus loss in surface runoff of slope land in hilly area of red soil[J]. Soils, 47(2): 297-304. | |
[26] | 王经纬, 王艳玲, 姚怡, 等, 2017. 长期施肥对旱地红壤团聚体磷素固持与释放能力的影响[J]. 土壤学报, 54(5): 1240-1250. |
WANG J W, WANG Y L, YAO Y, et al., 2017. Effects of long-term fertilization on phosphorus retention and release capacity of dryland red soil aggregates[J]. Acta Pedologica Sinica, 54(5): 1240-1250. | |
[27] | 王全九, 王力, 李世清, 2007. 坡地土壤养分迁移与流失影响因素研究进展[J]. 西北农林科技大学学报:自然科学版, 35(12): 109-114, 119. |
WANG Q J, WANG L, LI S Q, 2007. Research progress on influencing factors of soil nutrient migration and loss on sloping land[J]. Journal of Northwest A & F University: Natural Science Edition, 35(12): 109-114, 119. | |
[28] | 汪玉, 袁佳慧, 陈浩, 等, 2022. 太湖流域典型农田土壤磷库演变特征及环境风险预测[J/OL]. 土壤学报. |
WANG Y, YUAN J H, CHEN H, et al., 2022. Soil phosphorus pool evolution and environmental risk prediction of paddy soil in the Taihu Lake region[J/OL]. Acta Pedologica Sinica. | |
[29] | 夏建国, 仲雨猛, 曹晓霞, 2011. 干湿交替条件下土壤磷释放及其与土壤性质的关系[J]. 水土保持学报, 25(4): 237-242, 248. |
XIA J G, ZHONG Y M, CAO X X, 2011. Release of soil phosphorus and its relationship with soil properties under dry-wet alternation conditions[J]. Journal of Soil and Water Conservation, 25(4): 237-242, 248. | |
[30] | 肖作义, 马飞, 柳开楼, 等, 2021. 红壤区旱地和水田土壤磷素状况及其流失风险[J]. 中国土壤与肥料 (1): 282-288. |
XIAO Z Y, MA F, LIU K L, et al., 2021. Soil phosphorus status and its loss risk in dryland and paddy fields in red soil area[J]. Soil and fertilizer in China (1): 282-288. | |
[31] | 许杏红, 2020. 红壤旱地与稻田土壤剖面磷的储存容量变化及其环境风险评价[D]. 南京: 南京信息工程大学. |
XU X H, 2022. Phosphorus storage capacity changes and environmental risk assessment of soil profiles in dry red soil and paddy field[D]. Nanjing: Nanjing University of Information Science and Technology. | |
[32] | 许杏红, 王艳玲, 姚怡, 等, 2020. 长期施肥对红壤旱地团聚体磷素储存容量的影响[J]. 土壤学报, 57(3): 730-738. |
XU X H, WANG Y L, YAO Y, et al., 2020. Effects of long-term fertilization on phosphorus storage capacity of soil aggregates in red soil upland[J]. Acta Pedologica Sinica, 57(3): 730-738. | |
[33] | 薛晓辉, 熊劲松, 汪炎林, 2017. 黔西北不同利用类型土壤全磷及有效磷的分布与残留[J]. 河南农业科学, 46(7): 44-48. |
XUE X H, XIONG J S, WANG Y L, 2017. Distribution and residue of total phosphorus and available phosphorus in different soil utilization types in northwest Guizhou[J]. Journal of Henan Agricultural Sciences, 46(7): 44-48. | |
[34] | 依艳丽, 2009. 土壤物理研究法[M]. 北京: 北京大学出版社:55-62. |
YI Y L, 2009. Soil Physics Research Method[M]. Beijing: Peking University Press:55-62. | |
[35] | 颜晓, 卢志红, 魏宗强, 等, 2019. 几种典型酸性旱地土壤磷吸附的关键影响因素[J]. 中国土壤与肥料 (3): 1-7. |
YAN X, LU Z H, WEI Z Q, et al., 2019. Key influencing factors of phosphorus adsorption in several typical acid dryland soils[J]. Soil and fertilizer in China (3): 1-7. | |
[36] | 颜晓, 王德建, 张刚, 等, 2013. 长期施磷稻田土壤磷素累积及其潜在环境风险[J]. 中国生态农业学报, 21(4): 393-400. |
YAN X, WANG D J, ZHANG G, et al., 2013. Phosphorus accumulation and potential environmental risk in long-term phosphorus application paddy soil[J]. Chinese Journal of Eco-Agriculture, 21(4): 393-400. | |
[37] | 杨坤宇, 王美慧, 王毅, 等, 2019. 不同农艺管理措施下双季稻田氮磷径流流失特征及其主控因子研究[J]. 农业环境科学学报, 38(8): 1723-1734. |
YANG K Y, WANG M H, WANG Y, et al., 2019. Characteristics and determinants of nitrogen and phosphorus runoff losses under different agronomic measures in double cropping paddy fields[J]. Journal of Agro-Environment Science, 38(8): 1723-1734. | |
[38] | 姚怡, 王艳玲, 高振, 等, 2019. 不同利用方式红壤磷素有效性的深度变化——以江西省余江县孙家小流域为例[J]. 土壤通报, 50(2): 365-373. |
YAO Y, WANG Y L, GAO Z, et al., 2019. Changes in phosphorus availability with soil depths under different land use types in the Sunjia small watershed, Yujiang county of Jiangxi province[J]. Chinese Journal of Soil Science, 50(2): 365-373. | |
[39] | 叶会财, 李大明, 柳开楼, 等, 2019. 不同有机培肥方式对红壤性水稻土磷素的影响[J]. 土壤通报, 50(2): 374-380. |
YE H C, LI D M, LIU K L, et al., 2019. Impact of different organic fertilization on red paddy soil phosphorus[J]. Chinese Journal of Soil Science, 50(2): 374-380. | |
[40] | 张树金, 余海英, 李廷轩, 等, 2010. 温室土壤磷素迁移变化特征研究[J]. 农业环境科学学报, 29(8): 1534-1541. |
ZHANG S J, HAI Y, LI T X, et al., 2010. Study on the characteristics of phosphorus migration in greenhouse soil[J]. Journal of Agro-Environment Science, 29(8): 1534-1541. | |
[41] | 张铁钢, 李占斌, 李鹏, 等, 2016. 土石山区小流域土壤磷素的空间分布特征与有效性[J]. 环境科学学报, 36(5): 1810-1815. |
ZHANG T G, LI Z B, LI P, et al., 2016. Spatial distribution and effectiveness of soil phosphorus in the mountain watershed[J]. Acta Scientiae Circumstantiae, 36(5): 1810-1815. | |
[42] | 朱坚, 纪雄辉, 田发祥, 等, 2016. 秸秆还田对双季稻产量及氮磷径流损失的影响[J]. 环境科学研究, 29(11): 1626-1634. |
ZHU J, JI X H, TIAN F X, et al., 2016. Effects of straw-returning on double cropping rice yield and runoff loss of nitrogen and phosphorus in paddy fields[J]. Research of Environmental Sciences, 29(11): 1626-1634. |
[1] | 李太魁, 张香凝, 寇长林, 吕金岭, 郭战玲, 骆晓声. 不同农艺措施对丹江口库区坡耕地茶园水土和磷素流失的影响[J]. 生态环境学报, 2021, 30(12): 2324-2330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||