生态环境学报 ›› 2022, Vol. 31 ›› Issue (7): 1425-1433.DOI: 10.16258/j.cnki.1674-5906.2022.07.015

• 研究论文 • 上一篇    下一篇

广东省珠江流域景观格局对水质净化服务的影响

王晨茜(), 张琼锐, 张若琪, 孙学超, 徐颂军*()   

  1. 华南师范大学地理科学学院,广东 广州 510631
  • 收稿日期:2022-02-19 出版日期:2022-07-18 发布日期:2022-08-31
  • 通讯作者: *徐颂军(1962年生),男,教授,博士,研究方向为环境生态学。E-mail: xusj@scnu.edu.cn
  • 作者简介:王晨茜(1997年生),女,硕士研究生,研究方向为景观生态学。E-mail: wangcx@m.scnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41877411)

Effects of Landscape Pattern on Water Quality Purification Service in the Pearl River Basin in Guangdong Province

WANG Chenxi(), ZHANG Qiongrui, ZHANG Ruoqi, SUN Xuechao, XU Songjun*()   

  1. School of Geography, South China Normal University, Guangzhou, 510631, P. R. China
  • Received:2022-02-19 Online:2022-07-18 Published:2022-08-31

摘要:

景观格局的动态变化通过改变进入河流的污染物种类和数量对水质净化服务产生重要影响。以广东省珠江流域为例,应用InVEST模型评估142个子流域的水质净化服务,基于Fragstats平台分析景观格局特征,在此基础上应用空间误差模型(SEM)和基于赤池信息准则(AIC)的模型选择与多模型推断探讨景观格局与水质净化服务的关系。结果发现,(1)景观组成方面,农田比例(CUL)和水域比例(WAT)对水质净化服务的削弱作用最强(β=0.47,0.15),是引起流域TP含量增加的主要原因。(2)景观配置方面,流域从上游到下游人类活动干扰加剧,景观异质性与复杂度增强,水质净化服务逐渐减弱。SHDI、ED与水质净化服务呈显著负相关(β=0.31,0.15)。(3)平均后的空间误差模型有效地消除了空间自相关性,具有较好的拟合效果(r2=90.12%)。其中,景观组成对水质净化服务的影响更大,解释了大部分的变化(r2=88.12%),景观配置指标只解释了另外的2%。该研究可为其他流域景观格局优化及水质净化服务管理提供参考。

关键词: 景观格局, 水质净化服务, AIC, 空间误差模型, 广东省珠江流域

Abstract:

Dynamic changes in landscape patterns can influence the water quality purification service by affecting pollutant discharge into rivers. We conducted a case study in the Pearl River basin in Guangdong province to examine the relationship between landscape pattern and water quality purification service. The landscape pattern characteristics were analyzed based on the Fragstats platform and the ecosystem water quality purification service was assessed by using the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) model in 142 sub-watersheds of the study area. The spatial error model (SEM), model selection, and multi-model inference based on AIC (Akaike information criterion) were used to determine the impacts of landscape pattern on water quality purification service. The results showed that (1) for landscape composition, Cropland proportion (CUL) and Openwater proportion (WAT) had the strongest weakening effects on water purification service and were the main reasons for the increase in TP output (β=0.47, 0.15). (2) For landscape configuration, with the intensification of human activities from upstream to downstream, the complexity and heterogeneity of landscape were enhanced, and the water quality purification service was gradually weakened. Both Edge Density (ED), and Shannon’s Diversity Index (SHDI) were significantly and negatively correlated with water purification service (β=0.15, 0.31). (3) The averaged SEM fitted better and effectively eliminated the spatial autocorrelation (r2=90.12%). Composition metrics had a stronger influence on water quality purification service, explaining most of the variation (r2=88.12%); configuration indices explained an additional 2%. This study can also provide references for landscape pattern optimization and water quality purification service management in other basins.

Key words: landscape pattern, water quality purification service, AIC, spatial error model, Pearl River basin in Guangdong Province

中图分类号: