Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (10): 1547-1557.DOI: 10.16258/j.cnki.1674-5906.2025.10.005
• Research Article [Ecology] • Previous Articles Next Articles
YANG Jiawei1,2(), GU Zhongchun1, HU Qi1, DAI Xue1, WANG Xiaorong1,2,*(
), LAN Zhu1, HE Ling1,3, LIU Xuequan1,2
Received:
2025-03-21
Online:
2025-10-18
Published:
2025-09-26
杨佳伟1,2(), 辜忠春1, 胡琦1, 戴薛1, 王晓荣1,2,*(
), 兰竹1, 何玲1,3, 刘学全1,2
通讯作者:
E-mail: 作者简介:
杨佳伟(1990年生),男,助理研究员,硕士,主要从事森林生态学研究。E-mail: Jiawei_yang19@126.com
基金资助:
CLC Number:
YANG Jiawei, GU Zhongchun, HU Qi, DAI Xue, WANG Xiaorong, LAN Zhu, HE Ling, LIU Xuequan. Effects of Drought Stress on Dry Matter Distribution and Root Morphology in Seedlings of Five Tree Species with Varying Root Types[J]. Ecology and Environmental Sciences, 2025, 34(10): 1547-1557.
杨佳伟, 辜忠春, 胡琦, 戴薛, 王晓荣, 兰竹, 何玲, 刘学全. 干旱胁迫对5种不同根型树种幼苗干物质分配和根系形态的影响[J]. 生态环境学报, 2025, 34(10): 1547-1557.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.10.005
有机质质量分数/ (g·kg−1) | 全氮质量分数/ (g·kg−1) | 全磷质量分数/ (g·kg−1) | 全钾质量分数/ (g·kg−1) | 水解性氮质量分数/ (mg·kg−1) | 有效磷质量分数/ (mg·kg−1) | 速效钾质量分数/ (mg·kg−1) | pH |
---|---|---|---|---|---|---|---|
19.4±2.31 | 1.10±0.150 | 0.220±0.0200 | 9.59±1.16 | 76.5±8.22 | 1.31±0.140 | 48.3±5.13 | 5.01±0.480 |
Table 1 Table of physical and chemical properties of soil
有机质质量分数/ (g·kg−1) | 全氮质量分数/ (g·kg−1) | 全磷质量分数/ (g·kg−1) | 全钾质量分数/ (g·kg−1) | 水解性氮质量分数/ (mg·kg−1) | 有效磷质量分数/ (mg·kg−1) | 速效钾质量分数/ (mg·kg−1) | pH |
---|---|---|---|---|---|---|---|
19.4±2.31 | 1.10±0.150 | 0.220±0.0200 | 9.59±1.16 | 76.5±8.22 | 1.31±0.140 | 48.3±5.13 | 5.01±0.480 |
树种 | 参数 | t/d | F | p | |||
---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | ||||
樟 Camphora officinarum | 根长/cm | 2120±78.5b | 2750±96.9a | 2720±95.8a | 2870±134a | 31.863 | <0.001 |
根表面积/cm2 | 498±18.4b | 664±24.2a | 734±28.1a | 748±84.7a | 17.666 | <0.001 | |
根平均直径/mm | 0.510±0.0200a | 0.520±0.0200a | 0.510±0.0200a | 0.500±0.0100a | 0.278 | 0.840 | |
根体积/cm3 | 30.5±1.22b | 39.7±1.45a | 39.6±1.58a | 40.6±2.72a | 20.322 | <0.001 | |
根尖个数 | 830±30.0c | 977±34.0b | 1030±39.0a | 1070±40.0a | 24.764 | <0.001 | |
栓皮栎 Quercus variabilis | 根长/cm | 2170±83.1c | 2240±84.5c | 2440±84.0b | 2790±105a | 28.301 | <0.001 |
根表面积/cm2 | 587±21.4b | 616±21.7b | 842±33.8a | 885±33.0a | 88.602 | <0.001 | |
根平均直径/mm | 0.290±0.0100b | 0.290±0.0100b | 0.310±0.0100a | 0.320±0.0200a | 5.405 | 0.025 | |
根体积/cm3 | 72.3±2.69b | 76.4±2.84b | 104±3.75a | 110±3.86a | 97.833 | <0.001 | |
根尖个数 | 947±38.0c | 981±67.0bc | 1060±41.0b | 1220±41.0a | 18.789 | 0.001 | |
青冈 Quercus glauca | 根长/cm | 1250±45.2b | 1370±53.8a | 1090±39.0c | 1280±43.7b | 20.284 | <0.001 |
根表面积/cm2 | 275±10.4b | 359±13.3a | 266±10.9b | 277±10.7b | 44.212 | <0.001 | |
根平均直径/mm | 0.320±0.0200a | 0.330±0.0200a | 0.330±0.0200a | 0.320±0.0200a | 0.333 | 0.802 | |
根体积/cm3 | 13.3±0.530b | 17.4±0.550a | 12.8±0.400b | 13.4±0.490b | 55.109 | <0.001 | |
根尖个数 | 328±13.0b | 357±12.0a | 365±14.0a | 373±14.0a | 6.552 | 0.015 | |
杉木 Cunninghamia lanceolata | 根长/cm | 1180±46.7a | 965±38.0c | 1 060±39.3b | 930±37.8c | 22.376 | <0.001 |
根表面积/cm2 | 334±13.2a | 258±9.34b | 244±9.16b | 182±6.72c | 119.934 | <0.001 | |
根平均直径/mm | 0.710±0.0300a | 0.670±0.0300a | 0.610±0.0200b | 0.550±0.0200c | 24.118 | <0.001 | |
根体积/cm3 | 11.9±0.470a | 9.14±0.310b | 8.66±0.310b | 6.50±0.260c | 125.036 | <0.001 | |
根尖个数 | 174±7.00b | 189±7.00a | 194±7.00a | 198±8.00a | 6.270 | 0.017 | |
毛竹 Phyllostachys edulis | 根长/cm | 1280±48.8a | 1290±48.9a | 964±36.9b | 854±94.7b | 38.994 | <0.001 |
根表面积/cm2 | 351±13.7a | 328±12.7a | 205±8.17b | 170±13.4c | 160.818 | <0.001 | |
根平均直径/mm | 0.690±0.0300a | 0.640±0.0300b | 0.560±0.0200c | 0.510±0.0300d | 29.633 | <0.001 | |
根体积/cm3 | 15.1±0.580a | 14.1±0.670b | 10.9±0.390c | 8.81±0.330d | 97.899 | <0.001 | |
根尖个数 | 477±19.0b | 498±20.0ab | 517±19.0a | 525±19.0a | 3.769 | 0.059 |
Table 2 Effect of drought stress on root growth of five tree species
树种 | 参数 | t/d | F | p | |||
---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | ||||
樟 Camphora officinarum | 根长/cm | 2120±78.5b | 2750±96.9a | 2720±95.8a | 2870±134a | 31.863 | <0.001 |
根表面积/cm2 | 498±18.4b | 664±24.2a | 734±28.1a | 748±84.7a | 17.666 | <0.001 | |
根平均直径/mm | 0.510±0.0200a | 0.520±0.0200a | 0.510±0.0200a | 0.500±0.0100a | 0.278 | 0.840 | |
根体积/cm3 | 30.5±1.22b | 39.7±1.45a | 39.6±1.58a | 40.6±2.72a | 20.322 | <0.001 | |
根尖个数 | 830±30.0c | 977±34.0b | 1030±39.0a | 1070±40.0a | 24.764 | <0.001 | |
栓皮栎 Quercus variabilis | 根长/cm | 2170±83.1c | 2240±84.5c | 2440±84.0b | 2790±105a | 28.301 | <0.001 |
根表面积/cm2 | 587±21.4b | 616±21.7b | 842±33.8a | 885±33.0a | 88.602 | <0.001 | |
根平均直径/mm | 0.290±0.0100b | 0.290±0.0100b | 0.310±0.0100a | 0.320±0.0200a | 5.405 | 0.025 | |
根体积/cm3 | 72.3±2.69b | 76.4±2.84b | 104±3.75a | 110±3.86a | 97.833 | <0.001 | |
根尖个数 | 947±38.0c | 981±67.0bc | 1060±41.0b | 1220±41.0a | 18.789 | 0.001 | |
青冈 Quercus glauca | 根长/cm | 1250±45.2b | 1370±53.8a | 1090±39.0c | 1280±43.7b | 20.284 | <0.001 |
根表面积/cm2 | 275±10.4b | 359±13.3a | 266±10.9b | 277±10.7b | 44.212 | <0.001 | |
根平均直径/mm | 0.320±0.0200a | 0.330±0.0200a | 0.330±0.0200a | 0.320±0.0200a | 0.333 | 0.802 | |
根体积/cm3 | 13.3±0.530b | 17.4±0.550a | 12.8±0.400b | 13.4±0.490b | 55.109 | <0.001 | |
根尖个数 | 328±13.0b | 357±12.0a | 365±14.0a | 373±14.0a | 6.552 | 0.015 | |
杉木 Cunninghamia lanceolata | 根长/cm | 1180±46.7a | 965±38.0c | 1 060±39.3b | 930±37.8c | 22.376 | <0.001 |
根表面积/cm2 | 334±13.2a | 258±9.34b | 244±9.16b | 182±6.72c | 119.934 | <0.001 | |
根平均直径/mm | 0.710±0.0300a | 0.670±0.0300a | 0.610±0.0200b | 0.550±0.0200c | 24.118 | <0.001 | |
根体积/cm3 | 11.9±0.470a | 9.14±0.310b | 8.66±0.310b | 6.50±0.260c | 125.036 | <0.001 | |
根尖个数 | 174±7.00b | 189±7.00a | 194±7.00a | 198±8.00a | 6.270 | 0.017 | |
毛竹 Phyllostachys edulis | 根长/cm | 1280±48.8a | 1290±48.9a | 964±36.9b | 854±94.7b | 38.994 | <0.001 |
根表面积/cm2 | 351±13.7a | 328±12.7a | 205±8.17b | 170±13.4c | 160.818 | <0.001 | |
根平均直径/mm | 0.690±0.0300a | 0.640±0.0300b | 0.560±0.0200c | 0.510±0.0300d | 29.633 | <0.001 | |
根体积/cm3 | 15.1±0.580a | 14.1±0.670b | 10.9±0.390c | 8.81±0.330d | 97.899 | <0.001 | |
根尖个数 | 477±19.0b | 498±20.0ab | 517±19.0a | 525±19.0a | 3.769 | 0.059 |
Figure 7 The correlation between the status of seedlings and the root growth of deep-rooted and shallow-rooted tree species under drought stress conditions
[1] | ANDEREGG W R L, SCHWALM C, BIONDI F, et al., 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models[J]. Science, 349(6247): 528-532. |
[2] |
ANDREA C, JOHN P B, MOHSEN Z, et al, 2017. Root hairs enable high transpiration rates in drying soils[J]. New Phytologist, 216(3): 771-781.
DOI PMID |
[3] | ANGELA H, 2004. The plastic plant: root responses to heterogeneous supplies of nutrients[J]. New Phytologist, 162(1): 9-24. |
[4] | BAI Y S, ZHOU Y F, YUE T, et al., 2023. Plant growth-promoting rhizobacteria Bacillus velezensis JB0319 promotes lettuce growth under salt stress by modulating plant physiology and changing the rhizosphere bacterial community[J]. Environmental and Experimental Botany, 32(2): 223-245. |
[5] | BEATRIZ O, NICOLA L, DANIEL V W, et al., 2018. Root branching toward water involves posttranslational modification of transcription factor ARF7[J]. Science, 362(6421): 1407-1410. |
[6] | BRENDAN C, TIMOTHY J B, CRAIG R B, et al., 2018. Triggers of tree mortality under drought[J]. Nature, 558: 531-539. |
[7] | GABRIEL M M, CAMARERO J J, PALACIO S, et al., 2009. Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction[J]. Trees, 23(4):787-799. |
[8] | IVANO B, CLAUDE H, MELISSA A, et al., 2015. How tree roots respond to drought[J]. Frontiers in Plant Science, 6(547): 1-16. |
[9] | JIAN S Q, ZHAO C Y, FANG S M, et al., 2015. The distribution of fine root length density for six artificial afforestation tree species in Loess Plateau of northwest China[J]. Forest Systems, 24(1): e003. |
[10] |
JONATHAN P L, TOBIAS W, 2015. Opportunities and challenges in the subsoil: pathways to deeper rooted crops[J]. Journal of Experimental Botany, 66(8): 2199-2210.
DOI PMID |
[11] | LI S B, HUANG X Y, ZHENG R P, et al., 2024. Xylem plasticity of root, stem, and branch in Cunninghamia lanceolata under drought stress: Implications for whole-plant hydraulic integrity[J]. Frontiers in Plant Science, 15: 1308360. |
[12] |
LIU Y, NADEZHDA N, HU W, et al., 2023. Evaporation-driven internal hydraulic redistribution alleviates root drought stress: mechanisms and modeling[J]. Plant Physiology, 193(2): 1058-1072.
DOI PMID |
[13] | MAX B, CHRISTOPHER J S, FRANCOIS R, et al., 2020. Persistence and plasticity in conifer water-use strategies[J]. Journal of Geophysical Research Biogeosciences, 125(2): 1-20. |
[14] |
POORTER H, JAGODZINSKI A M, RUIZ-PEINADO R, et al., 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents[J]. New Phytologist, 208(3): 736-749.
DOI PMID |
[15] | REICH P B, HOBBIE S E, LEE T D, 2014. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation[J]. Nature Geoscience, 7(12): 920-924. |
[16] | RICHARD D B, WIM H P, 2014. Belowground biodiversity and ecosystem functioning[J]. Nature, 515: 505-511. |
[17] | STEFANO M, GIULIA V, GABRIEL G K, et al., 2013. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade‐off[J]. New Phytologist, 198(1): 169-178. |
[18] |
THOMAS R, 1999. Source-sink regulation by sugar and stress[J]. Current Opinion in Plant Biology, 2(3): 198-206.
DOI PMID |
[19] | WANG X P, LIU H L, YU F L, et al., 2019. Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering[J]. Scientific Reports, 9(1): 8543. |
[20] | WU X P, LIU S R, LUAN J W, et al., 2023. Responses of water use in Moso bamboo (Phyllostachys heterocycla) culms of different developmental stages to manipulative drought[J]. Forest Ecosystems, 6(31): 1-14. |
[21] |
陈思佚, 唐燕, 何腾, 等, 2024. 秦岭9个树种的木质部栓塞特性与水力安全风险[J]. 植物生态学报, 48(9): 1213-1222.
DOI |
CHEN S Y, TANG Y, HE T, et al., 2024. Xylem embolism characteristics and hydraulic safety risks of nine tree species in Qinling Mountains[J]. Chinese Journal of Plant Ecology, 48(9): 1213-1222. | |
[22] | 曹志华, 吴中能, 刘俊龙, 等, 2022. 不同竹种对淹水胁迫的生理响应[J]. 中南林业科技大学学报, 42(8): 1-14. |
CAO Z H, WU Z N, LIU J L, et al., 2022. Physiological responses and comprehensive evaluation of different bamboo species under waterlogging stress[J]. Journal of Central South University of Forestry & Technology, 42(8): 1-14. | |
[23] | 冯潇, 田玲, 尹群, 等, 2024. 3种玉兰幼苗生长和生理特性对干旱胁迫的响应[J]. 北京林业大学学报, 46(9): 57-67. |
FENG X, TIAN L, YIN Q, et al., 2024. Response of growth and physiological characteristics of three Magnolia spp. seedlings to drought stress[J]. Journal of Beijing Forestry University, 46(9): 57-67. | |
[24] | 高歌, 李正才, 葛晓改, 等, 2022. 施氮对干旱胁迫下毛竹幼苗生物量和根系形态的影响[J]. 生态学杂志, 41(5): 858-864. |
GAO G, LI Z C, GE X G, et al., 2022. Effects of nitrogen addition on biomass and root morphology of Phyllostachys edulis seedlings under drought stress[J]. Chinese Journal of Ecology, 41(5): 858-864. | |
[25] | 金思雨, 彭祚登, 2022. 刺槐和油松干旱胁迫响应研究进展[J]. 西北林学院学报, 37(4): 79-91. |
JIN S Y, PENG Z D, 2022. Research progress on drought stress on Robinia pseudoacacia and Pinus tabuliformis[J]. Journal of Northwest Forestry University, 37(4): 79-91. | |
[26] |
李天良, 霍光伟, 乌云娜, 2022. 放牧影响下典型草原克氏针茅和多根葱根系属性比较[J]. 应用生态学报, 33(2): 360-368.
DOI |
LI T L, HUO G W, WU Y N, 2022. Comparison of root traits of Stipa krylovii and Allium polyrhizum under grazing in typical steppe[J]. Chinese Journal of Applied Ecology, 33(2): 360-368. | |
[27] | 李涛涛, 刘溢健, 叶佳丽, 等, 2024. 作物旱后复水补偿效应产生的源-库-流的响应及机制[J]. 水土保持学报, 38(2): 1-12, 338. |
LI T T, LIU Y J, YE J L, et al., 2024. Response and mechanism of source sink-flow caused by the compensation elfect of crop rehydration after drought[J]. Journal of Soil and Water Conservation, 38(2):1-12, 338. | |
[28] | 刘元玺, 王丽娜, 吴俊文, 等, 2024. 云南松幼苗生物量和非结构性碳水化合物特征的干旱响应[J]. 林业科学, 60(6): 71-85. |
LIU Y X, WANG L N, WU J W, et al., 2024. Non-Structural carbohydrate and biomass characteristics of Pinus yunnanensis seedlings under continuous drought Stress[J]. Scientia Silvae Sinicae, 60(6): 71-85. | |
[29] | 吴敏, 张文辉, 周建云, 等, 2014. 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响[J]. 生态学报, 34(15): 4223-4233. |
WU M, ZHANG W H, ZHOU J Y, et al., 2014. Effects of drought stress on growth, physiological and biochemical parameters in fine roots of Quercus variabilis Bl. Seedlings[J]. Acta Ecologica Sinica, 34(15): 4223-4233. | |
[30] | 吴小健, 李秉钧, 颜耀, 等, 2023. 不同种源杉木细根解剖性状的差异分析[J]. 森林与环境学报, 43(3): 232-239. |
WU X J, LI B J, YAN Y, et al., 2023. Analysis of differences in fine root anatomical traits of Chinese fir from different provenances[J]. Journal of Forest and Environment, 43(3): 232-239. | |
[31] | 万春燕, 余俊瑞, 朱师丹, 2024. 40种常见药用草本植物根系解剖特征研究[J]. 热带亚热带植物学报, 32(3): 409-416. |
WAN C Y, YU J R, ZHU S D, 2024. Root anatomical traits of 40 medicinal herbs[J]. Journal of Tropical and Subtropical Botany, 32(3): 409-416. | |
[32] | 万胜, 张虎国, 易杭, 等, 2024. 不同龄级及林分密度天山云杉的碳储量及其分配特征[J]. 森林与环境学报, 44(5): 521-529. |
WAN S, ZHANG H G, YI H, et al., 2024. Carbon storage and distribution characteristics of Picea schrenkiana var. tianschanica natural forest at different age classes and stand densities[J]. Journal of Forest and Environment, 44(5): 521-529. | |
[33] | 王凯, 郭晶晶, 王冬琦, 等, 2015. 樟子松和油松根叶对春季干旱胁迫的响应[J]. 生态学杂志, 34(11): 3132-3138. |
WANG K, GUO J J, WANG D Q, et al., 2015. Responses of roots and needles of Pinus sylvestris var. mongolica and Pinus tabuliformis to spring drought stress[J]. Chinese Journal of Ecology, 34(11): 3132-3138. | |
[34] | 汪堃, 南丽丽, 郭全恩, 等, 2022. 干旱胁迫对不同根型苜蓿根系构型的影响[J]. 生态学报, 42(20): 8365-8373. |
WANG K, NAN L L, GUO Q E, et al., 2022. Effects of drought stress on root architecture of different roo-type alfalfa[J]. Acta Ecologica Sinica, 42(20): 8365-8373. | |
[35] |
王小菁, 萧浪涛, 董爱武, 等, 2017. 2016年中国植物科学若干领域重要研究进展[J]. 植物学报, 52(4): 394-452.
DOI |
WANG X J, XIAO L T, DONG A W, et al., 2017. Research Advances in Plant Science in China in 2016[J]. Chinese Bulletin of Botany, 52(4): 394-452. | |
[36] |
王梓翔, 任悦, 鲁莹, 等, 2024. 干旱-复水对樟子松幼苗生理特征的影响[J]. 干旱区研究, 41(12): 2120-2131.
DOI |
WANG Z X, REN Y, LU Y, et al., 2024. Effects of drought stress and rehydration on the physiological characteristics of Pinus sylvestris var. mongolica seedlings[J]. Arid Zone Research, 41(12): 2120-2131. | |
[37] |
席本野, 邸楠, 曹治国, 等, 2018. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 42(9): 885-905.
DOI |
XI B Y, DI N, CAO Z G, et al., 2018. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees[J]. Chinese Journal of Plant Ecology, 42(9): 885-905. | |
[38] | 杨振亚, 周本智, 陈庆标, 等, 2018. 干旱对杉木幼苗根系构型及非结构性碳水化合物的影响[J]. 生态学报, 38(18): 6729-6740. |
YANG Z Y, ZHOU B Z, CHEN Q B, et al., 2018. Effects of drought on root architecture and non-structural carbohydrate of Cunninghamia lanceolata[J]. Acta Ecologica Sinica, 38(18): 6729-6740. | |
[39] | 张妍, 葛颜锐, 赵冉, 等, 2022. 木栓质的结构组分、生物合成及其功能的研究进展[J]. 科学通报, 67(9): 822-833. |
ZHANG Y, GE Y R, ZHAO R, et al., 2022. Progress on the structural components, biosynthesis and functions of suberin[J]. Chinese Science Bulletin, 67(9): 822-833. | |
[40] |
张玉翠, 谭江红, 闫彩霞, 2024. 湖北省区域性高温、干旱及其复合事件变化特征及危险性评估[J]. 干旱气象, 42(6): 825-835.
DOI |
ZHANG Y C, TAN J H, YAN C X, 2024. Variability characteristics and risk assessment of regional high temperature, drought and their compound events in Hubei Province[J]. Journal of Arid Meteorology, 42(6): 825-835. |
[1] | GUO Jiawen, LIU Kai, LIU Gaoyuan, GAO Xinxin, YANG Kun, PAN Bo. Effects of Exogenous Cane Leaf Additives in Different Forms on Properties of Red Soil and Sugarcane Growth Yunnan [J]. Ecology and Environmental Sciences, 2025, 34(7): 1100-1110. |
[2] | CHEN Yan, SHI Chenglong, LI Pujun, XIAO Jiang, CHEN Guangcai. Co-hydrothermal Liquid Phase Product of Heavy Metal-containing Trees and Bone Meal: Analysis and Preliminary Evaluation [J]. Ecology and Environmental Sciences, 2025, 34(4): 642-652. |
[3] | YANG Keming, PENG Lishun, ZHANG Yanhai, GU Xinru, CHEN Xinyang, JIANG Kegui. Research on Biomass Inversion of Multiple Vegetation Types on the Surface of Mining Areas [J]. Ecology and Environmental Sciences, 2024, 33(7): 1027-1035. |
[4] | WEI Daixiao, MEN Yatai, LI Yaojie, XU Mingyi, CAI Wenxiu, SHEN Guofeng. Environmental Health Benefits and Cost Analysis of Using Biomass Pellets for Space Heating [J]. Ecology and Environmental Sciences, 2024, 33(6): 927-934. |
[5] | GAO Xingxing, BAO Hai, DING Yanxu. Spatial Distribution of Biogenic Volatile Organic Compounds Emission Rate in Hohhot Region during Summer [J]. Ecology and Environmental Sciences, 2024, 33(12): 1902-1913. |
[6] | LI Rui, WANG Shaojun, LAN Mengjie, LUO Shuang, XIA Jiahui, YANG Shengqiu, XIE Lingling, XIAO Bo, GUO Xiaofei, WANG Zhengjun, GUO Zhipeng. Response of Soil Carbon Mineral Rate in Rocky Desertification to Arbuscular Mycorrhizal Fungi Inoculation [J]. Ecology and Environmental Sciences, 2024, 33(10): 1506-1515. |
[7] | CHEN Yan, YANG Hui, NING Jing, ZHU Degen, WU Xia, HUANG Fen, MA Yang, CHEN Wei, Mitja PRELOVŠEK, Nataša RAVBAR. Plant Water Use Sources and Efficiency During Vegetation Restoration in Typical Karst Area Under Severe Drought Conditions [J]. Ecology and Environmental Sciences, 2024, 33(10): 1534-1543. |
[8] | WANG Chuanyang, ZHANG Xiaoling, LAN Linhui, PAN Jie. Analysis of the Impact of High Temperature and Drought on the Concentration Changes of Pollutants in the Sichuan Basin in Summer of 2022 [J]. Ecology and Environmental Sciences, 2024, 33(1): 80-91. |
[9] | LIU Han, WANG Ping, SUN Luyuan, QING Wenjing, CHEN Xiaofen, CHEN Jin, ZHOU Guopeng, LIANG Ting, LIU Jia, LI Yanli. Effects of Winter Green Manure Planting on Soil Microbial Biomass Carbon, Nitrogen, and Enzyme Activity in Red Soil Young Citrus Orchard [J]. Ecology and Environmental Sciences, 2023, 32(9): 1623-1631. |
[10] | TANG Zhiwei, WENG Ying, ZHU Xiatong, CAI Hongmei, DAI Wenci, WANG Pengna, ZHENG Baoqiang, LI Jincai, CHEN Xiang. Meta-analysis of Soil Microbial Mass Carbon and Its Influencing Factors in Farmland in China under Straw Return [J]. Ecology and Environmental Sciences, 2023, 32(9): 1552-1562. |
[11] | LIANG Chuan, YANG Yanfang, YU Shanshan, ZHOU Li, ZHANG Jingwei, ZHANG Xiujuan. Differences of Microbial Biomass and Community Structure Characteristics in Sediments under Net-pen and Pond Fish Farming [J]. Ecology and Environmental Sciences, 2023, 32(8): 1487-1495. |
[12] | YAN Juping, WANG Xiaoping, GONG Ping, GAO Shaopeng. The Emission Characteristic of Carbonaceous Aerosols from Primary Sources in Nepal [J]. Ecology and Environmental Sciences, 2023, 32(8): 1449-1456. |
[13] | JIANG Yishan, SUN Yingtao, ZHANG Gan, LUO Chunling. Pattern and Influencing Factors of Forest Soil Microbial Communities in Different Climate Types in China [J]. Ecology and Environmental Sciences, 2023, 32(8): 1355-1364. |
[14] | ZHAO Haiying, LIU Zhiyuan, YUAN Mengxian, ZHANG Qingwen, ZHANG Qiong, CAO Jiling. Effects of Silver Nanoparticles on FTIR Spectroscopic Characterization of Maize Seedlings [J]. Ecology and Environmental Sciences, 2023, 32(7): 1285-1292. |
[15] | CHEN Dongdong, HUO Lili, ZHAO Liang, CHEN Xin, SHU Min, HE Fuquan, ZHANG Yukun, ZHANG Li, LI Qi. Contribution of Water and Heat Factors to Spatial Variability of Soil Microbial Biomass Carbon and Nitrogen in Qinghai Alpine Grassland: Based on Enhanced Regression Tree Model [J]. Ecology and Environmental Sciences, 2023, 32(7): 1207-1217. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn