Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (10): 1495-1506.DOI: 10.16258/j.cnki.1674-5906.2025.10.001
• Papers on “Emerging Pollutants” • Next Articles
ZHAO Yu1,2(), FANG Wangkai1,2, ZHANG Ziwei1,2, ZHANG Huanjun1,2,*(
), LI Yi1,2
Received:
2025-03-29
Online:
2025-10-18
Published:
2025-09-26
赵彧1,2(), 方王凯1,2, 张紫薇1,2, 张焕军1,2,*(
), 李轶1,2
通讯作者:
E-mail: 作者简介:
赵彧(2001年生),男,硕士研究生,主要从事环境中新型污染物生态风险的研究。E-mail: 13797515613@163.com
基金资助:
CLC Number:
ZHAO Yu, FANG Wangkai, ZHANG Ziwei, ZHANG Huanjun, LI Yi. Occurrence Characteristics of Nonsteroidal Anti-inflammatory Drugs and Their Effects on Bacterial Communities and Antibiotic Resistance Genes in Taihu Lake[J]. Ecology and Environmental Sciences, 2025, 34(10): 1495-1506.
赵彧, 方王凯, 张紫薇, 张焕军, 李轶. 太湖水体中非甾体消炎药的赋存特征及其对细菌群落和抗生素抗性基因的影响[J]. 生态环境学报, 2025, 34(10): 1495-1506.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.10.001
基因 种类 | 名称 | 引物 | 引物序列 | 片段长度/ bp |
---|---|---|---|---|
磺胺类 | sul1 | F | GACTGCAGGCTGGTGGTTAT | 107 |
R | GAAGAACCGCACAATCTCGT | |||
sul2 | F | TCCGGTGGAGGCCGGTATCTGG | 190 | |
R | CGGGAATGCCATCTGCCTTGAG | |||
四环素类 | tetC | F | CTTGAGAGCCTTCAACCCAG | 418 |
R | ATGGTCGTCATCTACCTGCC | |||
tetW | F | GAGAGCCTGCTATATGCCAGC | 168 | |
R | GGGCGTATCCACAATGTTAAC | |||
大环内酯类 | mphA | F | CTTGAGAGCCTTCAACCCAG | 214 |
R | ATGGTCGTCATCTACCTGCC | |||
ermB | F | GAGAGCCTGCTATATGCCAGC | 190 | |
R | GGGCGTATCCACAATGTTAAC | |||
喹诺酮类 | qnrS | F | CTTGAGAGCCTTCAACCCAG | 54.6 |
R | ATGGTCGTCATCTACCTGCC | |||
β-内酰胺类 | ampC | F | CTTGAGAGCCTTCAACCCAG | 189 |
R | ATGGTCGTCATCTACCTGCC | |||
氨基糖苷类 | strA | F | CTTGAGAGCCTTCAACCCAG | 241 |
R | ATGGTCGTCATCTACCTGCC | |||
整合子 | intI1 | F | CTTGAGAGCCTTCAACCCAG | 151 |
R | ATGGTCGTCATCTACCTGCC |
Table 1 Primer sequences corresponding to the target gene
基因 种类 | 名称 | 引物 | 引物序列 | 片段长度/ bp |
---|---|---|---|---|
磺胺类 | sul1 | F | GACTGCAGGCTGGTGGTTAT | 107 |
R | GAAGAACCGCACAATCTCGT | |||
sul2 | F | TCCGGTGGAGGCCGGTATCTGG | 190 | |
R | CGGGAATGCCATCTGCCTTGAG | |||
四环素类 | tetC | F | CTTGAGAGCCTTCAACCCAG | 418 |
R | ATGGTCGTCATCTACCTGCC | |||
tetW | F | GAGAGCCTGCTATATGCCAGC | 168 | |
R | GGGCGTATCCACAATGTTAAC | |||
大环内酯类 | mphA | F | CTTGAGAGCCTTCAACCCAG | 214 |
R | ATGGTCGTCATCTACCTGCC | |||
ermB | F | GAGAGCCTGCTATATGCCAGC | 190 | |
R | GGGCGTATCCACAATGTTAAC | |||
喹诺酮类 | qnrS | F | CTTGAGAGCCTTCAACCCAG | 54.6 |
R | ATGGTCGTCATCTACCTGCC | |||
β-内酰胺类 | ampC | F | CTTGAGAGCCTTCAACCCAG | 189 |
R | ATGGTCGTCATCTACCTGCC | |||
氨基糖苷类 | strA | F | CTTGAGAGCCTTCAACCCAG | 241 |
R | ATGGTCGTCATCTACCTGCC | |||
整合子 | intI1 | F | CTTGAGAGCCTTCAACCCAG | 151 |
R | ATGGTCGTCATCTACCTGCC |
湖区名称 | γ(EC)/ (μS∙cm−1) | pH | ρ(DO)/ (mg∙L−1) | ρ(TN)/ (mg∙L−1) | ρ(NH4+-N)/ (mg∙L−1) | ρ(TP)/ (mg∙L−1) |
---|---|---|---|---|---|---|
WT | 393.00a | 8.39a | 7.15c | 4.07a | 0.64a | 0.22a |
ZS | 382.33a | 8.32a | 7.10c | 3.59ab | 0.50ab | 0.19a |
ML | 397.00a | 8.61a | 7.87bc | 2.98b | 0.33b | 0.21a |
GH | 382.00a | 8.55a | 9.16a | 2.35c | 0.09c | 0.09b |
CA | 387.25a | 8.57a | 8.87ab | 2.11c | 0.10c | 0.10b |
Table 2 Main physical and chemical parameters in water of Taihu Lake
湖区名称 | γ(EC)/ (μS∙cm−1) | pH | ρ(DO)/ (mg∙L−1) | ρ(TN)/ (mg∙L−1) | ρ(NH4+-N)/ (mg∙L−1) | ρ(TP)/ (mg∙L−1) |
---|---|---|---|---|---|---|
WT | 393.00a | 8.39a | 7.15c | 4.07a | 0.64a | 0.22a |
ZS | 382.33a | 8.32a | 7.10c | 3.59ab | 0.50ab | 0.19a |
ML | 397.00a | 8.61a | 7.87bc | 2.98b | 0.33b | 0.21a |
GH | 382.00a | 8.55a | 9.16a | 2.35c | 0.09c | 0.09b |
CA | 387.25a | 8.57a | 8.87ab | 2.11c | 0.10c | 0.10b |
湖区 名称 | OTU 数量 | Shannon 指数 | Simpson 指数 | Chao1 指数 | 覆盖度 |
---|---|---|---|---|---|
WT | 1205.67ac | 4.87ab | 0.034a | 1402.98a | 0.99a |
ZS | 1262.33a | 5.37a | 0.014b | 1466.38a | 0.99a |
ML | 956.33b | 4.76b | 0.038a | 1257.98ab | 0.99a |
GH | 938.67b | 4.55b | 0.024a | 1132.13b | 0.99a |
CA | 1036.33bc | 4.53b | 0.033ab | 1275.05ab | 0.99a |
Table 3 Bacterial community diversity index in water of Taihu Lake (at 97% Similarity Level)
湖区 名称 | OTU 数量 | Shannon 指数 | Simpson 指数 | Chao1 指数 | 覆盖度 |
---|---|---|---|---|---|
WT | 1205.67ac | 4.87ab | 0.034a | 1402.98a | 0.99a |
ZS | 1262.33a | 5.37a | 0.014b | 1466.38a | 0.99a |
ML | 956.33b | 4.76b | 0.038a | 1257.98ab | 0.99a |
GH | 938.67b | 4.55b | 0.024a | 1132.13b | 0.99a |
CA | 1036.33bc | 4.53b | 0.033ab | 1275.05ab | 0.99a |
[1] |
ALMEIDA F A D, VARGAS E L G, CARNEIRO D G, et al., 2018. Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella[J]. Microbial Pathogenesis, 121: 369-388.
DOI PMID |
[2] | CHEN H Y, JING L J, YAO Z P, et al., 2019b. Prevalence, source and risk of antibiotic resistance genes in the sediments of Lake Tai (China) deciphered by metagenomic assembly: A comparison with other global lakes[J]. Environment International, 127: 267-275. |
[3] | CHEN J Y, SU Z G, DAI T J, et al., 2019a. Occurrence and distribution of antibiotic resistance genes in the sediments of the East China Sea bays[J]. Journal of Environmental Sciences, 81: 156-167. |
[4] | FU Y H, HU F, WANG F, et al., 2024. Distinct assembly patterns of soil antibiotic resistome revealed by land-use changes over 30 years[J]. Environmental Science & Technology, 58(23): 10216-10226. |
[5] | HERNANDEZ D J, DAVID A S, MENGES E S, et al., 2021. Environmental stress destabilizes microbial networks[J]. The ISME Journal, 15(6): 1722-1734. |
[6] | HUANG J C, DING J N, JIANG H, et al., 2022. Pharmaceuticals and personal care products across different water bodies in Taihu Lake Basin, China: Occurrence, source, and flux[J]. International Journal of Environmental Research and Public Health, 19(17): 11135. |
[7] | HUANG X, ZHANG Z S, REN X L, et al., 2024. Metabolite identification and disinfection by-product formation in AAO-MBR system with waste liquid isopropyl alcohol as a carbon source[J]. Journal of Environmental Chemical Engineering, 12(5): 113562. |
[8] | JIANG C, GENG J J, HU H D, et al., 2017. Impact of selected non-steroidal anti-inflammatory pharmaceuticals on microbial community assembly and activity in sequencing batch reactors[J]. Plos One, 12(6): e0179236. |
[9] | LI Y F, ZHANG C N, WANG X X, et al., 2023. Pollutant impacts on bacteria in surface water and sediment: Conventional versus emerging pollutants in Taihu Lake, China[J]. Environmental Pollution, 323: 121334. |
[10] | LIN J Y, ZHANG Y, BIAN Y, et al., 2023. Non-steroidal anti-inflammatory drugs (NSAIDs) in the environment: Recent updates on the occurrence, fate, hazards and removal technologies[J]. Science of the Total Environment, 904: 166897. |
[11] | LIU C, WANG Y J, ZHOU Z Y, et al., 2024b. Protist predation promotes antimicrobial resistance spread through antagonistic microbiome interactions[J]. The ISME Journal, 18(1): wrae169. |
[12] | LIU H Q, LAM J C, W, LI W W, et al., 2017. Spatial distribution and removal performance of pharmaceuticals in municipal wastewater treatment plants in China[J]. Science of the Total Environment, 586: 1162-1169. |
[13] | LIU Q, JIA J, HU H J, et al., 2024a. Nitrogen and phosphorus limitations promoted bacterial nitrate metabolism and propagation of antibiotic resistome in the phycosphere of Auxenochlorella pyrenoidosa[J]. Journal of Hazardous Materials, 468: 133786. |
[14] | LOUCA S, POLZ M F, MAZEL F, et al., 2018. Function and functional redundancy in microbial systems[J]. Nature Ecology & Evolution, 2(6): 936-943. |
[15] | LUO Y, MAO D Q, RYSZ M, et al., 2010. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 44(19): 7220-7225. |
[16] | MASEDA D, RICCIOTTI E, 2020. NSAID-Gut microbiota interactions[J]. Frontiers in Pharmacology, 11: 01153. |
[17] | MENAGEN B, PEDAHZUR R, AVNIR D, 2017. Sustained release from a metal-Analgesics entrapped within biocidal silver[J]. Science Reports, 7(1): 4161. |
[18] | MULKIEWICZ E, WOLECKI D, ŚWIACKA K, et al., 2021. Metabolism of non-steroidal anti-inflammatory drugs by non-target wild-living organisms[J]. Science of the Total Environment, 791: 148251. |
[19] | NJOKU C B, OSEGHE E, MSAGATI T A M, 2022. Synthesis and application of perovskite nanoparticles for the adsorption of ketoprofen and fenoprofen in wastewater for sustainable water management[J]. Journal of Molecular Liquids, 346: 118232. |
[20] | NKOOM M, LU G H, LIU J C, 2018. Occurrence and ecological risk assessment of pharmaceuticals and personal care products in Taihu Lake, China: A review[J]. Environmental Science: Processes & Impacts, 20(12): 1640-1648. |
[21] | NNADOZIE C F, ODUME O N, 2019. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes[J]. Environmental Pollution, 254(Part B): 113067. |
[22] | PAROLINI M, 2020. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review[J]. Science of the Total Environment, 740: 140043. |
[23] |
PENG S, FENG Y Z, WANG Y M, et al., 2017. Prevalence of antibiotic resistance genes in soils after continually applied with different manure for 30 years[J]. Journal of Hazardous Materials, 340: 16-25.
DOI PMID |
[24] | PENNEKAMP F, PONTARP M, TABI A, et al., 2018. Biodiversity increases and decreases ecosystem stability[J]. Nature, 563(7729): 109-112. |
[25] | PINO-OTíN M R, MUñIZ S, VAL J, et al., 2017. Effects of 18 pharmaceuticals on the physiological diversity of edaphic microorganisms[J]. Science of the Total Environment, 595: 441-450. |
[26] |
RAWSON T M, MING D, AHMAD R, et al., 2020. Antimicrobial use, drug-resistant infections and COVID-19[J]. Nature Reviews Microbiology, 18(8): 409-410.
DOI PMID |
[27] | RUPRECHT J E, BIRRER S C, DAFFORN K A, et al., 2021. Wastewater effluents cause microbial community shifts and change trophic status[J]. Water Research, 200: 117206. |
[28] | SUBIRATS J, TIMONER X, SàNCHEZ-MELSIÓ A, et al., 2018. Emerging contaminants and nutrients synergistically affect the spread of class 1 integron-integrase (intI1) and sul1 genes within stable streambed bacterial communities[J]. Water Research, 138: 77-85. |
[29] |
SUN Q, LI M Y, MA C, et al., 2016. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China[J]. Environmental Pollution, 208: 371-381.
DOI PMID |
[30] | VAN BOECKEL T P, BROWER C, GILBERT M, et al., 2015. Global trends in antimicrobial use in food animals[J]. Proceedings of the National Academy of Sciences, 112(18): 5649-5654. |
[31] | WANG Y, LU J, ENGELSTÄDTER J, et al., 2020a. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation[J]. The ISME Journal, 14(8): 2179-2196. |
[32] | WANG Y F, QIAO M, ZHU D, et al., 2020b Antibiotic resistance in the collembolan gut microbiome accelerated by the nonantibiotic drug carbamazepine[J]. Environmental Science & Technology, 54(17): 10754-10762. |
[33] | WHITFIELD-CARGILE C M, COHEN N D, CHAPKIN R S, et al., 2016. The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy[J]. Gut Microbes, 7(3): 246-261. |
[34] |
WU C X, HUANG X L, WITTER J D, et al., 2014. Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China[J]. Ecotoxicology and Environmental Safety, 106: 19-26.
DOI PMID |
[35] | YANG Y W, CHEN N X, SUN L, et al., 2021. Short-term cold stress can reduce the abundance of antibiotic resistance genes in the cecum and feces in a pig model[J]. Journal of Hazardous Materials, 416: 125868. |
[36] | YU P F, GUO Z Y, WANG T T, et al., 2023. Insights into the mechanisms of natural organic matter on the photodegradation of indomethacin under natural sunlight and simulated light irradiation[J]. Water Research, 244: 120539. |
[37] |
YUAN K, WANG X W, CHEN X, et al., 2019. Occurrence of antibiotic resistance genes in extracellular and intracellular DNA from sediments collected from two types of aquaculture farms[J]. Chemosphere, 234: 520-527.
DOI PMID |
[38] | ZHANG H J, XU L Y, HOU X, et al., 2024. Ketoprofen promotes the conjugative transfer of antibiotic resistance among antibiotic resistant bacteria in natural aqueous environments[J]. Environmental Pollution, 360: 124676. |
[39] | ZHAO C D, SUYAMUD B, YUAN Y, et al., 2025. Effect of non-antibiotic factors on conjugative transfer of antibiotic resistance genes in aquaculture water[J]. Journal of Hazardous Materials, 483: 136701. |
[40] |
ZHAO R X, FENG J, LIU J, et al., 2019. Deciphering of microbial community and antibiotic resistance genes in activated sludge reactors under high selective pressure of different antibiotics[J]. Water Research, 151: 388-402.
DOI PMID |
[41] | ZHAO S, LI H Y, ZHOU J, et al., 2024. Simultaneous degradation of NSAIDs in aqueous and sludge stages by an electron-Fenton system derived from sediment microbial fuel cell based on a novel Fe@Mn biochar GDC[J]. Chemical Engineering Journal, 482: 148979. |
[42] | ZHENG W L, HUYAN J Q, TIAN Z, et al., 2020. Clinical class 1 integron-integrase gene - A promising indicator to monitor the abundance and elimination of antibiotic resistance genes in an urban wastewater treatment plant[J]. Environment International, 135: 105372. |
[43] | ZHU S Y, YANG B Q, WANG Z Q, et al., 2023. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors[J]. Ecotoxicology and Environmental Safety, 262: 115124. |
[44] | 邓芠, 2016. 酮洛芬在水环境中的光化学降解行为研究[D]. 广州: 广东工业大学: 1-13. |
DENG W, 2016. The study on photolytic behavior of ketoprofen in aqueous environment[D]. Guangzhou: Guangdong University of Technology: 1-13. | |
[45] | 邓小虎, 2014. 非甾体抗炎药镇痛作用的临床应用进展[J]. 中国新药杂志, 23(14): 1637-1642. |
DENG X H, 2014. Non-steroidal anti-inflammatory drugs for pain management[J]. Chinese Journal of New Drugs, 23(14): 1637-1642. | |
[46] | 国家环境保护总局, 2002. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社: 200-284. |
State Environmental Protection Agency, 2002. Monitoring and analysismethods of water and wastewater[M]. The fourth edition. Beijing: China Environmental Science Press: 200-284. | |
[47] | 胡小婕, 秦超, 高彦征, 2022. 有机污染物对抗生素抗性基因水平转移的影响及机制[J]. 科学通报, 67(35): 4224-4235. |
HU X J, QIN C, GAO Y Z, 2022. Organic contaminants influence the horizontal transfer of antibiotic resistance genes[J]. Chinese Science Bulletin, 67(35): 4224-4235. | |
[48] | 黄柳青, 王雯冉, 张浴曈, 等, 2024. 地表水中全氟及多氟烷基化合物 (PFASs) 的污染现状研究进展[J]. 环境化学, 43(3): 693-710. |
HUANG L Q, WANG W R, ZHANG Y T, et al., 2024. Research progress on the pollution status of per-and polyfluoroalkyl substances (PFASs) in surface water: A review[J]. Environmental Chemistry 43(3): 693-710. | |
[49] | 黄璐璐, 谷宇锋, 吴翠蓉, 等, 2020. 细菌的应激反应和生理代谢与耐药性及其控制策略[J]. 生物工程学报, 36(11): 2287-2297. |
HUANG L L, GU Y F, WU C R, et al., 2020. Bacterial stress response, physiological metabolism and antimicrobial tolerance and the control strategies[J]. Chinese Journal of Biotechnology, 36(11): 2287-2297. | |
[50] | 李银辉, 刘韵超, 郑子英, 等, 2025. 河北省典型蔬菜地土壤中抗生素抗性基因的污染特征及其健康风险评估[J]. 生态毒理学报, 20(2): 297-309. |
LI Y H, LIU Y C, ZHENG Z Y, et al., 2025. Pollution characteristics and health risk assessment of antibiotic resistance genes in typical vegetable field soil in Hebei Province[J]. Asian Journal of Ecotoxicology, 20(2): 297-309. | |
[51] | 廉杰, 2020. 非甾体类消炎药在太湖中的赋存及其对芦苇生理生长的影响研究[D]. 无锡: 江南大学: 1-20. |
LIAN J, 2020. Occurrence of non-steroidal anti-inflammatory drugs in Taihu Lake and its effect on the physiological growth of reed[D]. Wu'xi: Jiangnan University: 1-20. | |
[52] | 廉杰, 李祎飞, 王晓暄, 等, 2020. 太湖水体中NSAIDs的时空分布规律和生态风险评价[J]. 环境科学, 41(5): 2229-2238. |
LIAN J, LI Y F, WANG X X, et al., 2020. Temporal and spatial occurrence of NSAIDs in Taihu Lake and relevant risk assessment[J]. Environmental Science, 41(5): 2229-2238. | |
[53] | 刘娜, 金小伟, 薛荔栋, 等, 2017. 太湖流域药物和个人护理品污染调查与生态风险评估[J]. 中国环境科学, 37(9): 3515-3522. |
LIU N, JIN X W, XUE L D, et al., 2017. Concentrations distribution and ecological risk assessment of pharmaceuticals and personal care products in Taihu Lake[J]. China Environmental Science, 37(9): 3515-3522. | |
[54] | 马明, 殷燚杰, 石亚东, 等, 2024. “引江济太” 影响下太湖贡湖湾湖流时空变化[J]. 湖泊科学, 36(6): 1922-1932. |
MA M, YIN Y J, SHI Y D, et al., 2024. Temporal and spatial changes of lake current in Gonghu Bay under the influence of “Water diversion from the Yangtze River to Taihu Lake”[J]. Journal of Lake Sciences, 36(6): 1922-1932. | |
[55] | 马云, 商弘颖, 刘学虎, 等, 2013. 对乙酰氨基酚降解菌的分离鉴定和初步特性研究[J]. 浙江工业大学学报, 41(1): 31-34, 43. |
MA Y, SHANG H Y, LIU X H, et al., 2013. Isolation and characterization of an acetaminophen degrading bacterium[J]. Journal of Zhejiang University of Technology, 41(1): 31-34, 43. | |
[56] | 潘晓雪, 2016. “引江济太” 对贡湖主要饮用水源地水质影响分析[D]. 无锡: 江南大学: 1-16. |
PAN X X, 2016. Effect of “Water diversion from the Yangtze River to Taihu Lake” on the main drinking water sources of the Gonghu Bay[D]. Wuxi: Jiangnan University: 1-16. | |
[57] | 苏超, 崔严, 2020. 长江流域淡水生态系统内分泌干扰物、药物和个人护理品的风险排序[J]. 环境科学, 41(11): 4981-4988. |
SU C, CUI Y, 2020. Risk ranking of endocrine disrupting compounds, pharmaceuticals, and personal care products in the aquatic environment of the Yangtze River Basin[J]. Environmental Science, 41(11): 4981-4988. | |
[58] | 苏志国, 张衍, 代天娇, 等, 2018. 环境中抗生素抗性基因与Ⅰ型整合子的研究进展[J]. 微生物学通报, 45(10): 2217-2233. |
SU Z G, ZHANG Y, DAI T J, et al., 2018. Antibiotic resistance genes and class 1 integron in the environment: research progress[J]. Microbiology China, 45(10): 2217-2233. | |
[59] | 孙秋根, 王智源, 董建玮, 等, 2018. 太湖流域河网4种典型抗生素的时空分布和风险评价[J]. 环境科学学报, 38(11): 4400-4410. |
SUN Q G, WANG Z Y, DONG J W, et al., 2018. Spatial-temporal distribution and risk evaluation of four typical antibiotics in river networks of Taihu Lake Basin[J]. Acta Scientiae Circumstantia, 38(11): 4400-4410. | |
[60] | 王雯, 侯雨君, 石云舟, 等, 2024. 非甾体抗炎药致胃溃疡动物模型概述[J]. 中国实验动物学报, 32(8): 1084-1092. |
WANG W, HOU Y J, SHI Y Z, et al., 2024. Review of animal models of non-steroidal anti-inflammatory drug-induced gastric ulcer[J]. Acta Laboratorium Animalis Scientia Sinica, 32(8): 1084-1092. | |
[61] | 魏欣, 薛顺利, 杨帆, 等, 2017. 零价铁对污泥高温厌氧消化过程中四环素抗性基因及第一类整合子的消减影响[J]. 环境科学, 38(2): 697-702. |
WEI X, XUE S L, YANG F, et al., 2017. Effect of zero valent iron on the decline of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic digestion of sludge[J]. Environmental Science, 38(2): 697-702. | |
[62] | 文菲菲, 黄魁, 夏慧, 等, 2025. 湿地植物对农村污水耐药基因遗传元件的富集研究[J]. 中国环境科学, 45(4): 1985-1994. |
WEN F F, HUANG K, XIA H, et al., 2025. Enrichment of antibiotic resistance genetic elements in rural sewage by wetland plants[J]. China Environmental Science, 45(4): 1985-1994. | |
[63] | 谢嘉倩, 辛晓东, 洪俊明, 等, 2022. 闽南地区低温下复合填料强化生物滤柱除臭及微生物分析[J]. 环境工程学报, 16(4): 1123-1132. |
XIE J Q, XIN X D, HONG J M, et al., 2022. Efficiency and microbial analysis of deodorization process of biofilter enhanced by composite filler under low temperature in Southern Fujian[J]. Chinese Journal of Environmental Engineering, 16(4): 1123-1132. | |
[64] | 严静娜, 2018. 非甾体抗炎药在污水处理系统中的赋存及降解研究——以双氯芬酸为例[D]. 广州: 华南理工大学: 1-14. |
YAN J N, 2018. Occurrence and degradation mechanism of Non-steroidal Anti-inflammatory Drugs in sewage treatment system: Diclofenac represented[D]. Guangzhou: South China University of Technology: 1-14. | |
[65] | 姚程, 胡小贞, 姜霞, 等, 2021. 太湖贡湖湾人工湖滨带水生植物恢复及其富营养化控制[J]. 湖泊科学, 33(6): 1626-1638. |
YAO C, HU X Z, JIANG X, et al., 2021. Macrophytes restoration and its effects on eutrophication control in rehabilitated lakeshore zone of Gonghu Bay, Lake Taihu[J]. Journal of Lake Sciences, 33(6): 1626-1638. | |
[66] | 张春秋, 蒋聪, 耿金菊, 等, 2019. 环境浓度双氯芬酸对活性污泥处理性能和微生物群落的影响[J]. 环境科学学报, 39(10): 3215-3224, 3565. |
ZHANG C Q, JIANG C, GENG J J, et al., 2019. Effect of diclofenac at environmental concentration on the wastewater treatment efficiency and the microbial community in activated sludge[J]. Acta Scientiae Circumstantiae, 39(10): 3215-3224, 3565. | |
[67] | 张晓娜, 许慧芹, 汝少国, 等, 2023. 海洋环境中抗生素抗性基因的分布、来源、传播和风险研究[J]. 生态毒理学报, 18(1): 174-190. |
ZHANG X N, XU H Q, RU S G, et al., 2023. Study on distribution, source, propagation and risk of antibiotic resistance genes in marine environment[J]. Asian Journal of Ecotoxicology, 18(1): 174-190. | |
[68] | 张正华, 陆光华, 丁剑楠, 2015. 水体中双氯芬酸的分布与生态效应研究[J]. 四川环境, 34(1): 120-126. |
ZHANG Z H, LU G H, DING J N, 2015. Distribution and ecological effects of diclofenac in water[J]. Sichuan Environment, 34(1): 120-126. | |
[69] | 赵思雅, 申珊齐, 李爱民, 2024. 太湖抗生素、抗性基因的时空分布特征及生态风险评估[J]. 生态毒理学报, 19(3): 192-207. |
ZHAO S Y, SHEN S Q, LI A M, 2024. Characteristics of spatial and temporal distribution of antibiotics and resistance genes and ecological risk assessment in Lake Taihu[J]. Asian Journal of Ecotoxicology, 19(3): 192-207. | |
[70] | 周伟, 2020. 电子束辐照和UV/H2O2降解水体中吲哚美辛的处理特性及相关作用机理研究[D]. 上海: 上海大学: 1-16. |
ZHOU W, 2020. Study on degradation characteristics and mechanism of indomethacin in water by electron beam irradiation and UV/H2O2[D]. Shanghai: Shanghai University: 1-16. |
[1] | XIAO Yongyin, WANG Fan, LI Canhua, WANG Chao, WANG Wanjun. Enrichment Characteristics and Health Risks of Antibiotic Resistance Genes in Biofilms on Biodegradable Microplastics in Freshwater [J]. Ecology and Environmental Sciences, 2025, 34(7): 1029-1041. |
[2] | LIN Yulan, CHEN Houpu, YU Wenhao, WANG Baoying, ZHANG Yang, ZHANG Jinbo, CAI Zucong, ZHAO Jun. Effects of Reductive Soil Disinfestation on Common Antibiotics and Their Antibiotic Resistance Genes in Soil [J]. Ecology and Environmental Sciences, 2024, 33(7): 1107-1116. |
[3] | LING Hong, ZHU Xiaoxiao, WU Dan, SU Xiaomei, GUO Xiya. Assessing Water Ecological Security in the Taihu Lake Basin through Ecological Function Localization [J]. Ecology and Environmental Sciences, 2024, 33(3): 418-427. |
[4] | GAO Xiaoyu, WANG Lei. The Accumulation, Transfer and Elimination of Antibiotic Resistance Genes in Soil: A Review [J]. Ecology and Environmental Sciences, 2023, 32(11): 2062-2071. |
[5] | XIANG Xing, MAN Baiying, ZHANG Junzhong, LUO Yang, MAO Xiaotao, ZHANG Chao, SUN Binghua, WANG Xi. Vertical Distribution of Bacterial Community and Functional Groups Mediating Nitrogen Cycling in Mount Huangshan, Anhui, China [J]. Ecology and Environmental Sciences, 2023, 32(1): 56-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn