Ecology and Environment ›› 2025, Vol. 34 ›› Issue (1): 46-55.DOI: 10.16258/j.cnki.1674-5906.2025.01.006
• Research Article [Ecology] • Previous Articles Next Articles
HUANG Lianxi1(), WANG Zehuang2, TIAN Lihua2, ZHAO Jingpeng2, CHEN Weisheng1, LIN Qimei1, HUANG Qing1, WEI Lan1,*(
)
Received:
2024-06-21
Online:
2025-01-18
Published:
2025-01-21
Contact:
WEI Lan
黄连喜1(), 王泽煌2, 田利华2, 赵景鹏2, 陈伟盛1, 林启美1, 黄庆1, 魏岚1,*(
)
通讯作者:
魏岚
作者简介:
黄连喜(1982年生),女,副研究员,硕士,主要从事耕地土壤地力提升、农产品质量安全调控及土壤污染修复治理等研究工作。E-mail: hlx4@163.com
基金资助:
CLC Number:
HUANG Lianxi, WANG Zehuang, TIAN Lihua, ZHAO Jingpeng, CHEN Weisheng, LIN Qimei, HUANG Qing, WEI Lan. Characteristics and Differences of Soil Mineral Nutrients in Jiangmen City, Guangdong Province[J]. Ecology and Environment, 2025, 34(1): 46-55.
黄连喜, 王泽煌, 田利华, 赵景鹏, 陈伟盛, 林启美, 黄庆, 魏岚. 广东省江门市耕地土壤矿质养分特征及差异[J]. 生态环境学报, 2025, 34(1): 46-55.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.01.006
养分指标 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
---|---|---|---|---|---|---|
有机质质量分数/(g∙kg−1) | >40 | 30—40 | 20—30 | 10—20 | 6—10 | <6.0 |
碱解氮质量分数/(mg∙kg−1) | >150 | 120—150 | 90—120 | 60-90 | 30—60 | <30 |
有效磷质量分数/(mg∙kg−1) | >40 | 20—40 | 10—20 | 5—10 | 3—5 | <3 |
速效钾质量分数/(mg∙kg−1) | >200 | 150— 200 | 100—150 | 50—100 | 30— 50 | <30 |
交换性钙容量/(cmol∙kg−1) | ≥4 | 2—4 | ≤2 | |||
交换性镁容量/(cmol∙kg−1) | ≥1 | 0.5—1 | ≤0.5 | |||
有效硼质量分数/(mg∙kg−1) | >2.0 | 1.01— 2.0 | 0.501—1.0 | 0.201—0.50 | <0.20 | |
有效硅质量分数/(mg∙kg−1) | >230 | 115—230 | 70—115 | 25—70 | <25 |
Table 1 Classification standard of soil organic matter and nutrient elements
养分指标 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
---|---|---|---|---|---|---|
有机质质量分数/(g∙kg−1) | >40 | 30—40 | 20—30 | 10—20 | 6—10 | <6.0 |
碱解氮质量分数/(mg∙kg−1) | >150 | 120—150 | 90—120 | 60-90 | 30—60 | <30 |
有效磷质量分数/(mg∙kg−1) | >40 | 20—40 | 10—20 | 5—10 | 3—5 | <3 |
速效钾质量分数/(mg∙kg−1) | >200 | 150— 200 | 100—150 | 50—100 | 30— 50 | <30 |
交换性钙容量/(cmol∙kg−1) | ≥4 | 2—4 | ≤2 | |||
交换性镁容量/(cmol∙kg−1) | ≥1 | 0.5—1 | ≤0.5 | |||
有效硼质量分数/(mg∙kg−1) | >2.0 | 1.01— 2.0 | 0.501—1.0 | 0.201—0.50 | <0.20 | |
有效硅质量分数/(mg∙kg−1) | >230 | 115—230 | 70—115 | 25—70 | <25 |
耕地利用类型 | pH | 有机质质量分数 | |||||||
---|---|---|---|---|---|---|---|---|---|
范围 | 均值 | 中位值 | 变异系数/% | 范围/(g∙kg−1) | 均值/(g∙kg−1) | 中位值/(g∙kg−1) | 变异系数/% | ||
水稻田 | 3.70—6.96 | 5.48 | 5.44 | 10.7 | 11.2—70.7 | 30.5 | 29.6 | 36.4 | |
叶菜地 | 4.50—7.07 | 5.82 | 5.70 | 11.0 | 13.4—42.2 | 24.4 | 23.3 | 32.6 | |
根茎蔬菜地 | 2.88—7.54 | 5.77 | 5.70 | 17.0 | 4.92—48.9 | 22.3 | 23.7 | 45.9 | |
茄果与瓜类蔬菜地 | 4.03—6.89 | 5.41 | 5.35 | 13.4 | 6.05—83.9 | 25.9 | 25.1 | 44.7 | |
豆类蔬菜地 | 4.04—6.89 | 5.69 | 5.69 | 11.2 | 9.84—45.0 | 24.4 | 25.2 | 41.9 | |
玉米地 | 4.72—7.08 | 5.62 | 5.60 | 11.9 | 13.2—41.0 | 27.3 | 26.9 | 25.3 | |
花生地 | 4.16—8.25 | 6.13 | 6.33 | 16.2 | 8.98—31.2 | 18.3 | 16.5 | 36.0 | |
果园 | 4.02—7.10 | 5.46 | 5.54 | 15.9 | 9.44—60.0 | 30.6 | 26.3 | 39.4 |
Table 2 Soil pH value and organic matter content in the soil of farmland planted with different crops
耕地利用类型 | pH | 有机质质量分数 | |||||||
---|---|---|---|---|---|---|---|---|---|
范围 | 均值 | 中位值 | 变异系数/% | 范围/(g∙kg−1) | 均值/(g∙kg−1) | 中位值/(g∙kg−1) | 变异系数/% | ||
水稻田 | 3.70—6.96 | 5.48 | 5.44 | 10.7 | 11.2—70.7 | 30.5 | 29.6 | 36.4 | |
叶菜地 | 4.50—7.07 | 5.82 | 5.70 | 11.0 | 13.4—42.2 | 24.4 | 23.3 | 32.6 | |
根茎蔬菜地 | 2.88—7.54 | 5.77 | 5.70 | 17.0 | 4.92—48.9 | 22.3 | 23.7 | 45.9 | |
茄果与瓜类蔬菜地 | 4.03—6.89 | 5.41 | 5.35 | 13.4 | 6.05—83.9 | 25.9 | 25.1 | 44.7 | |
豆类蔬菜地 | 4.04—6.89 | 5.69 | 5.69 | 11.2 | 9.84—45.0 | 24.4 | 25.2 | 41.9 | |
玉米地 | 4.72—7.08 | 5.62 | 5.60 | 11.9 | 13.2—41.0 | 27.3 | 26.9 | 25.3 | |
花生地 | 4.16—8.25 | 6.13 | 6.33 | 16.2 | 8.98—31.2 | 18.3 | 16.5 | 36.0 | |
果园 | 4.02—7.10 | 5.46 | 5.54 | 15.9 | 9.44—60.0 | 30.6 | 26.3 | 39.4 |
耕地利用类型 | 碱解氮质量分数 | 有效磷质量分数 | 速效钾质量分数 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
范围/ (mg∙kg−1) | 均值/ (mg∙kg−1) | 中位值/ (mg∙kg−1) | 变异系数/ % | 范围/ (mg∙kg−1) | 均值/ (mg∙kg−1) | 中位值/ (mg∙kg−1) | 变异系数/ % | 范围/ (mg∙kg−1) | 均值/ (mg∙kg−1) | 中位值/ (mg∙kg−1) | 变异系数/ % | |||
水稻田 | 14.0—275 | 123 | 119 | 45.3 | 4.68—206 | 57.5 | 46.5 | 78.9 | 12.0—303 | 84.4 | 75.0 | 64.1 | ||
叶菜地 | 44.9—190 | 130 | 129 | 33.6 | 21.8—478 | 174 | 98.3 | 86.6 | 38.0—410 | 163 | 153 | 56.8 | ||
根茎蔬菜地 | 29.6—226 | 89.7 | 77.9 | 52.6 | 3.93—306 | 103 | 72.9 | 87.6 | 6.00—313 | 68.2 | 53.0 | 82.3 | ||
茄果-瓜类蔬菜地 | 15.1—302 | 137 | 115 | 49.0 | 4.89—740 | 182 | 144 | 76.0 | 17.0—709 | 163 | 130 | 84.9 | ||
豆类蔬菜地 | 32.6—347 | 98.5 | 87.9 | 68.8 | 6.09—419 | 147 | 115 | 79.3 | 28.0—337 | 117 | 93.0 | 79.9 | ||
玉米地 | 53.5—218 | 127 | 120 | 34.9 | 14.8—390 | 162 | 117 | 69.9 | 29.0—653 | 209 | 153 | 85.6 | ||
花生地 | 3.10—193 | 85.5 | 83.9 | 48.7 | 2.35—292 | 83.5 | 56.6 | 93.9 | 27.0—292 | 71.9 | 56.0 | 82.0 | ||
果园 | 38.0—435 | 144 | 130 | 58.0 | 8.02—694 | 159 | 116 | 87.2 | 54.0—1.11×103 | 294 | 181 | 85.8 |
Table 3 Contents of soil alkali-hydrolyzed nitrogen, available phosphorus and available potassium in the soil of farmland planted with different crops
耕地利用类型 | 碱解氮质量分数 | 有效磷质量分数 | 速效钾质量分数 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
范围/ (mg∙kg−1) | 均值/ (mg∙kg−1) | 中位值/ (mg∙kg−1) | 变异系数/ % | 范围/ (mg∙kg−1) | 均值/ (mg∙kg−1) | 中位值/ (mg∙kg−1) | 变异系数/ % | 范围/ (mg∙kg−1) | 均值/ (mg∙kg−1) | 中位值/ (mg∙kg−1) | 变异系数/ % | |||
水稻田 | 14.0—275 | 123 | 119 | 45.3 | 4.68—206 | 57.5 | 46.5 | 78.9 | 12.0—303 | 84.4 | 75.0 | 64.1 | ||
叶菜地 | 44.9—190 | 130 | 129 | 33.6 | 21.8—478 | 174 | 98.3 | 86.6 | 38.0—410 | 163 | 153 | 56.8 | ||
根茎蔬菜地 | 29.6—226 | 89.7 | 77.9 | 52.6 | 3.93—306 | 103 | 72.9 | 87.6 | 6.00—313 | 68.2 | 53.0 | 82.3 | ||
茄果-瓜类蔬菜地 | 15.1—302 | 137 | 115 | 49.0 | 4.89—740 | 182 | 144 | 76.0 | 17.0—709 | 163 | 130 | 84.9 | ||
豆类蔬菜地 | 32.6—347 | 98.5 | 87.9 | 68.8 | 6.09—419 | 147 | 115 | 79.3 | 28.0—337 | 117 | 93.0 | 79.9 | ||
玉米地 | 53.5—218 | 127 | 120 | 34.9 | 14.8—390 | 162 | 117 | 69.9 | 29.0—653 | 209 | 153 | 85.6 | ||
花生地 | 3.10—193 | 85.5 | 83.9 | 48.7 | 2.35—292 | 83.5 | 56.6 | 93.9 | 27.0—292 | 71.9 | 56.0 | 82.0 | ||
果园 | 38.0—435 | 144 | 130 | 58.0 | 8.02—694 | 159 | 116 | 87.2 | 54.0—1.11×103 | 294 | 181 | 85.8 |
耕地利 用类型 | 交换性钙质量摩尔浓度 | 交换性镁质量摩尔浓度 | 有效硼质量分数 | 有效硅质量分数 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
b/(cmol∙kg−1) | 变异 系数/ % | b/(cmol∙kg−1) | 变异 系数/ % | w/(mg∙kg−1) | 变异 系数/ % | w/(mg∙kg−1) | 变异 系数/ % | ||||||||||||
范围 | 均值 | 中位值 | 范围 | 均值 | 中位值 | 范围 | 均值 | 中位值 | 范围 | 均值 | 中位值 | ||||||||
水稻田 | 9.00×10−2—7.35 | 1.47 | 1.20 | 75.6 | 0.100—2.00 | 0.570 | 0.410 | 77.0 | 8.00×10−2—1.68 | 0.640 | 0.620 | 50.5 | 27.2—252 | 110 | 92.9 | 51.7 | |||
叶菜地 | 0.360— 7.00 | 2.78 | 2.45 | 61.8 | 0.200—2.20 | 0.940 | 0.800 | 62.2 | 0.180— 1.18 | 0.700 | 0.760 | 37.6 | 60.2—427 | 143 | 110 | 65.8 | |||
根茎 蔬菜地 | N.d— 8.20 | 1.91 | 1.20 | 94.6 | 0.100—2.50 | 0.380 | 0.300 | 108 | 0.148—3.33 | 0.690 | 0.620 | 75.1 | 25.8—549 | 145 | 101 | 76.4 | |||
茄果与瓜类蔬菜地 | N.d— 6.23 | 1.54 | 1.10 | 81.0 | N.d— 2.34 | 0.590 | 0.500 | 78.9 | 0.151— 1.86 | 0.610 | 0.520 | 55.1 | 28.1—693 | 104 | 85.8 | 89.0 | |||
豆类蔬菜地 | 0.340— 7.30 | 1.96 | 1.50 | 90.1 | 0.200—4.70 | 0.710 | 0.370 | 143 | 0.220— 1.30 | 0.640 | 0.590 | 45.0 | 33.8—479 | 159 | 127 | 69.2 | |||
玉米地 | N.d— 12.7 | 2.81 | 1.40 | 111 | 0.200—3.00 | 0.800 | 0.400 | 96.0 | 0.190— 1.08 | 0.650 | 0.660 | 34.5 | 44.2—430 | 137 | 77.5 | 85.6 | |||
花生地 | 0.107— 9.00 | 2.81 | 2.15 | 82.2 | 0.100—1.96 | 0.420 | 0.300 | 102 | 9.00×10−2—1.15 | 0.510 | 0.480 | 52.4 | 25.2—529 | 172 | 121 | 75.2 | |||
果园 | N.d— 13.0 | 2.88 | 1.71 | 98.9 | 0.100—4.70 | 1.14 | 0.930 | 83.3 | 8.30×10−2—1.82 | 0.750 | 0.730 | 46.2 | 41.4—768 | 156 | 137 | 77.6 |
Table 4 Contents of exchangeable calcium, exchangeable magnesium, available boron and available silicon in the soil of farmland planted with different crops
耕地利 用类型 | 交换性钙质量摩尔浓度 | 交换性镁质量摩尔浓度 | 有效硼质量分数 | 有效硅质量分数 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
b/(cmol∙kg−1) | 变异 系数/ % | b/(cmol∙kg−1) | 变异 系数/ % | w/(mg∙kg−1) | 变异 系数/ % | w/(mg∙kg−1) | 变异 系数/ % | ||||||||||||
范围 | 均值 | 中位值 | 范围 | 均值 | 中位值 | 范围 | 均值 | 中位值 | 范围 | 均值 | 中位值 | ||||||||
水稻田 | 9.00×10−2—7.35 | 1.47 | 1.20 | 75.6 | 0.100—2.00 | 0.570 | 0.410 | 77.0 | 8.00×10−2—1.68 | 0.640 | 0.620 | 50.5 | 27.2—252 | 110 | 92.9 | 51.7 | |||
叶菜地 | 0.360— 7.00 | 2.78 | 2.45 | 61.8 | 0.200—2.20 | 0.940 | 0.800 | 62.2 | 0.180— 1.18 | 0.700 | 0.760 | 37.6 | 60.2—427 | 143 | 110 | 65.8 | |||
根茎 蔬菜地 | N.d— 8.20 | 1.91 | 1.20 | 94.6 | 0.100—2.50 | 0.380 | 0.300 | 108 | 0.148—3.33 | 0.690 | 0.620 | 75.1 | 25.8—549 | 145 | 101 | 76.4 | |||
茄果与瓜类蔬菜地 | N.d— 6.23 | 1.54 | 1.10 | 81.0 | N.d— 2.34 | 0.590 | 0.500 | 78.9 | 0.151— 1.86 | 0.610 | 0.520 | 55.1 | 28.1—693 | 104 | 85.8 | 89.0 | |||
豆类蔬菜地 | 0.340— 7.30 | 1.96 | 1.50 | 90.1 | 0.200—4.70 | 0.710 | 0.370 | 143 | 0.220— 1.30 | 0.640 | 0.590 | 45.0 | 33.8—479 | 159 | 127 | 69.2 | |||
玉米地 | N.d— 12.7 | 2.81 | 1.40 | 111 | 0.200—3.00 | 0.800 | 0.400 | 96.0 | 0.190— 1.08 | 0.650 | 0.660 | 34.5 | 44.2—430 | 137 | 77.5 | 85.6 | |||
花生地 | 0.107— 9.00 | 2.81 | 2.15 | 82.2 | 0.100—1.96 | 0.420 | 0.300 | 102 | 9.00×10−2—1.15 | 0.510 | 0.480 | 52.4 | 25.2—529 | 172 | 121 | 75.2 | |||
果园 | N.d— 13.0 | 2.88 | 1.71 | 98.9 | 0.100—4.70 | 1.14 | 0.930 | 83.3 | 8.30×10−2—1.82 | 0.750 | 0.730 | 46.2 | 41.4—768 | 156 | 137 | 77.6 |
[1] | CHANG D, LI S, LAI Z Q, 2023. Effects of extreme precipitation intensity and duration on the runoff and nutrient yields[J]. Journal of Hydrology, 626(Part A): 130281. |
[2] |
JABBOROVA D, SAYYED R Z, AZIMOV A, et al., 2021. Impact of mineral fertilizers on mineral nutrients in the ginger rhizome and on soil enzymes activities and soil properties[J]. Saudi Journal of Biological Sciences, 28(9):5268-5274.
DOI PMID |
[3] |
JOHNSON D W, TURNER J, 2019. Tamm Review: Nutrient cycling in forests: A historical look and newer developments[J]. Forest Ecology and Management, 444:344-373.
DOI |
[4] | LI C, YANG J, LI Z M, et al., 2023. Integrating crop and soil nutrient management for higher wheat grain yield and protein concentration in dryland areas[J]. European Journal of Agronomy, 147:126827. |
[5] | LUNA E, JOUANY C, CASTAÑEDA C, 2019. Soil composition and plant nutrients at the interface between crops and saline wetlands in arid environments in NE Spain[J]. CATENA, 173:384-393. |
[6] | MA Y Q, WOOLF D, FAN M S, et al., 2023. Global crop production increase by soil organic carbon[J]. Nature Geoscience, 16(12):1159-1165. |
[7] | MALONE Z, BERHE A A, RYALS R, et al., 2023. Impacts of organic matter amendments on urban soil carbon and soil quality: A meta-analysis[J]. Journal of Cleaner Production, 419:138148. |
[8] | PENG X D, DAI Q H, DING G J, et al., 2019. Role of underground leakage in soil, water and nutrient loss from a rock-mantled slope in the karst rocky desertification area[J]. Journal of Hydrology, 578:124086. |
[9] | SELVAM R, SANTHI R, MARAGATHAM S, et al., 2022. Targeted yield model-based balanced nutrient recommendation for barnyard millet on inceptisol of Tamil Nadu[J]. Indian Journal of Agricultural Research, 56(6):638-645. |
[10] | SUN Y Y, ZHANG N N, YAN J K, et al., 2020. Effects of soft rock and biochar applications on millet (Setaria italica L.) crop performance in sandy soil[J]. Agronomy, 10(5):669. |
[11] | WANG M M, TAVAKKOLI E, RENGASAMY P, et al., 2021. Management zone delineation based on soil properties measured during the reproductive stage of rice in the field[J]. Land Degradation and Development, 32(10):3106-3121. |
[12] | YAHAYA S M, MAHMUD A A, ABDULLAHI M, et al., 2023. Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: A review[J]. Pedosphere, 33(3):385-406. |
[13] |
阿丽娅·阿力木, 丛小涵, 夏晓莹, 等, 2022. 不同土地利用方式下土壤养分特征变化分析[J]. 新疆农业科学, 59(4):925-933.
DOI |
ALIYA A, CONG X H, XIA X Y, et al., 2022. Characteristics of soil nutrient under different land use patterns[J]. Xinjiang Agricultural Seiences, 59(4):925-933. | |
[14] | 董一漩, 屠乃美, 魏征, 等, 2019. 施肥模式对不同基础地力稻田培肥和水稻产量的动态影响[J]. 东北农业科学, 44(2):13-18, 33. |
DONG Y X, TU N M, WEI Z, et al., 2019. The dynamic effects of fertilization mode on fertilization and rice yield in paddy fields with different basic fertility[J]. Journal of Northeast Agricultural Sciences, 44(2):1-18, 33. | |
[15] | 广东省土壤普查办公室, 1993. 广东土壤[M]. 北京: 科学出版社. |
Soil Census Office of Guangdong Province, 1993. Guangdong soil[M]. Beijing: Science Press. | |
[16] | 胡建新, 汪莹, 彭成林, 等, 2011. 攀枝花烟区土壤交换性钙、镁含量评价[J]. 西南农业学报, 24(4):1415-1418. |
HU J X, WANG Y, PENG C L, et al., 2011. Evaluation of soil exchangeable calcium and magnesium in Panzhihua tobacco-growing areas[J]. Southwest China Journal of Agricultural Sciences, 24(4):1415-1418. | |
[17] |
黄志鹏, 李龙承, 吴海宁, 等, 2017. 增施钙肥对酸性旱地幼龄果园间作花生的影响[J]. 中国油料作物学报, 39(5):693-697.
DOI |
HUANG Z P, LI L C, WU H N, et al., 2017. Effects of calcium fertilizer on intercropping peanut in acid young orchard soil[J]. Chinese Journal of Oil Crop Sciences, 39(5):693-697. | |
[18] | 江叶枫, 钟珊, 李婕, 等, 2018. 近30年余干县耕地土壤碳氮比时空变异特征及其影响因素[J]. 环境科学, 39(3):1386-1395. |
JIANG Y F, ZHONG S, LI J, et al., 2018. Spatial and temporal variability of soil c-to-n ratio of Yugan county and its influencing factors in the past 30 years[J]. Environmental Science, 39(3):1386-1395. | |
[19] | 李丹萍, 刘敦一, 张白鸽, 等, 2018. 不同镁肥在中国南方三种缺镁土壤中的迁移和淋洗特征[J]. 土壤学报, 55(6):1513-1524. |
LI D P, LIU D Y, ZHANG B G, et al., 2018. Movement and leaching of magnesium fertilizers in three types of magnesium-deficient soils in south China relative to fertilizer type[J]. Acta Pedologica Sinica, 55(6):1513-1524. | |
[20] | 王巍巍, 魏春雁, 张之鑫, 等, 2016. 不同种稻年限盐碱地水田表层土壤酶活性变化及其与土壤养分关系[J]. 东北农业科学, 41(4):43-48. |
WANG W W, WEI C Y, ZHANG Z X, et al., 2016. Studies on changes of surface layer soil enzyme in saline- alkali paddy field of different planting years and relationship between soil enzyme changes and soil nutrients[J]. Journal of Northeast Agricultural Sciences, 41(4):43-48. | |
[21] | 王校辉, 2021. 河南省平顶山市耕地土壤养分状况及聚类分析[J]. 东北农业科学, 46(3):37-40. |
WANG X H, 2021. Soil nutrient status and cluster analysis of cultivated land in Pingdingshan city of Henan province[J]. Journal of Northeast Agricultural Sciences, 46(3):37-40. | |
[22] | 薛雪, 毛宇鹏, 张洪, 2023. 珠三角典型区域农田小区尺度氮、磷、镉、砷输移特征与控制对策[J]. 环境工程技术学报, 13(3):1179-1186. |
XUE X, MAO Y P, ZHANG H, 2023. Transport fluxes of nitrogen, phosphorus, cadmium and arsenic at farmland plot scale in the typical areas of Pearl River Delta region[J]. Journal of Environmental Engineering Technology, 13(3):1179-1186. | |
[23] |
杨东, 刘晓霞, 陈红金, 等, 2023. 定额制施肥对土壤及生态环境影响的研究[J]. 中国农学通报, 39(32):91-98.
DOI |
YANG D, LIU X X, CHEN H J, et al., 2023. Effeet of quota-based fertilization on soil and ecological environment: Research progress[J]. Chinese Agricultural Science Bulletin, 39(32):91-98. | |
[24] | 张竞, 苗晋杰, 裴艳东, 等, 2018. 潮白河中游冲积平原土壤养分空间变异特征及其影响因素[J]. 土壤通报, 49(6):1436-1444. |
ZHANG J, MIAO J J, PEI Y D, et al., 2018. Spatial variability of soil nutrient and its controlling factors in the middle reaches of Chaobai River[J]. Chinese Journal of Soil Science, 49(6):1436-1444. | |
[25] | 张宁宁, 白雪, 欧阳小雪, 等, 2023. 土壤因子与农产品品质关系研究进展[J]. 中国无机分析化学, 13(6):513-523. |
ZHANG N N, BAI X, OUYANG X X, et al., 2023. Research progress on the relationship between soilfactors and agricultural product quality[J]. Chinese Journal of Inorganic Analytical Chemistry, 13(6):513-523. | |
[26] | 郑立臣, 宇万太, 马强, 等, 2004. 农田土壤肥力综合评价研究进展[J]. 生态学杂志, 23(5):156-161. |
ZHENG L C, YU W T, MA Q, et al., 2004. Advances in the integrated evaluation of farmland fertility[J]. Chinese Journal of Ecology, 23(5):156-161. | |
[27] |
周海燕, 徐明岗, 蔡泽江, 等, 2019. 湖南祁阳县土壤酸化主要驱动因素贡献解析[J]. 中国农业科学, 52(8):1400-1412.
DOI |
ZHOU H Y, XU M G, CAI Z J, et al., 2019. Quantitative analysis of driving-factors of soil acidification in Qiyang county, Hunan province[J]. Scientia Agricultura Sinica, 52(8):1400-1412.
DOI |
|
[28] | 周敏, 杨国顺, 2019. 葡萄园土壤养分状况分析与肥力评价[J]. 安徽农业科学, 47(22):164-169. |
ZHOU M, YANG G S, 2019. Soil fertility analysis and evaluation of v. Davidii foëx vineyard[J]. Journal of Anhui Agricultural Sciences, 47(22):164-169. | |
[29] | 朱梓弘, 杨程, 谢银财, 等, 2018. 重度石漠化区不同土地利用方式下土壤养分特征[J]. 中国岩溶, 37(6):842-849. |
ZHU Z H, YANG C, XIE Y C, et al., 2018. Characteristics of soil nutrient in karst rocky regions with heavy desertification under different land-use patterns[J]. Carsologica Sinica, 37(6):842-849. | |
[30] | 中华人民共和国农业部, 2006. 土壤检测第1部分:土壤样品的采集、 处理和贮存: NY/T 1121.1—2006[S]. |
Ministry of Agriculture of the People's Republic of China,2006. Soil Testing Part 1: Soil sampling, processing and reposition: NY/T 1121.1—2006[S]. |
[1] | XU Mingyu, YU Longsheng. Soil Improvement Effect of Agricultural and Forestry Waste Organic Materials on Ionic Rare Earth Mine Tailing [J]. Ecology and Environment, 2025, 34(1): 126-134. |
[2] | LU Dehao, ZHENG Fenglin, GU Jiawei, SHUAI Xiaomai, YANG Jiaman, LI Cheng, CAI Mengzhen, CHEN Hongyue. Analysis and Evaluation of Litter and Soil Water Conservation Capacity of Different Stand Types [J]. Ecology and Environment, 2025, 34(1): 26-35. |
[3] | HOU Jinlong, MA Zhiqiang, YANG Cheng, GE Shuangshuang, HE Di, DONG Fan. Analysis of Spatio-temporal Variation of Vegetation Carbon Sources and Sinks in the Beijing-Tianjin-Hebei Region and Influencing Factors [J]. Ecology and Environment, 2024, 33(9): 1329-1338. |
[4] | LI Jianfu, HUANG Zhilin, HE Chengzhong, JIANG Xin, SONG Lin, LIU Jiaxin, CHEN Liding. Spatial Distribution and Key Factors Affecting Soil Organic Carbon Within the Karst Fault Basin in Eastern Yunnan, China [J]. Ecology and Environment, 2024, 33(9): 1339-1352. |
[5] | LI Yanlin, CHEN Yangyang, YANG Shuangrong, LIU Jumei. Study on the Effects of Organic Acids in Plant Root Exudates on Soil Organic Carbon and Nitrogen Mineralization [J]. Ecology and Environment, 2024, 33(9): 1362-1371. |
[6] | SHI Hanzhi, XIONG Zhenqian, CAO Yiran, WU Zhichao, WEN Dian, LI Furong, LI Dongqin, WANG Xu. Effect of Straw Returning to Field on Organic Carbon Fixation in Red Soil and Black Soil [J]. Ecology and Environment, 2024, 33(9): 1372-1383. |
[7] | ZHU Leyang, ZHANG Xizhe, TAO Jiang, WANG Xiu, HAN Yanying, YE Yanhui. The Effect of Nitrogen Addition on Soil Respiration in the Abies Georgei var. Smithii Forest of Sygera Mountains [J]. Ecology and Environment, 2024, 33(9): 1384-1396. |
[8] | ZHU Ling, WEI Tianxing, YU Huan, WANG Xian, FAN Dehui, ZHAO Yuqi. Allelopathic Potential of Robinia pseudoacacia Root System and Rhizosphere Soil on 7 Species of Arbor, Shrub, and Grass Plants [J]. Ecology and Environment, 2024, 33(9): 1406-1415. |
[9] | WU Dongyang, WU Jiahuan, LI Weizhi, HUANG Zhijie, YANG Chunya, CHEN Huojun. Effects of Vermicompost and Pig manure Combined with Chemical Fertilizers on Soil Quality, Growth and Quality of Peppers [J]. Ecology and Environment, 2024, 33(9): 1416-1425. |
[10] | CONG Xin, ZHANG Huaidi, ZHANG Rong, ZHAO Cen, CHEN Kun, LIU Hanbing. Pollution Characteristics and Risk Analysis of Heavy Metal in Farmland Soils of China in Recent 10 Years Based on Meta Analysis [J]. Ecology and Environment, 2024, 33(9): 1451-1459. |
[11] | LIU Dongyi, QU Yonghua, FENG Yaowei, QU Ran. Research on Chromium Ion Content Inversion of GF-5 Satellite Images Based on Grid Search Optimization CatBoost Model [J]. Ecology and Environment, 2024, 33(9): 1460-1470. |
[12] | PANG Bo, HAI Xiang, ZHANG Haifang, ZHANG Yanjun, WANG Hui, LIU Hongmei, YANG Dianlin. Effects of Spread of Veratrum nigrum on Vegetation Characteristics and Soil Physicochemical Properties in Mountain Meadow Steppe [J]. Ecology and Environment, 2024, 33(8): 1174-1181. |
[13] | WANG Wenjing, ZHAI Shuijing, WANG Sai. Distribution Characteristics of Silicon and Its Influencing Factors in the Wetland Soils along the Minjiang River Downstream [J]. Ecology and Environment, 2024, 33(8): 1182-1191. |
[14] | FAN Beibie, DING Shuai, ZHANG Tiantian, ZHANG Shuai, WEI Lulu, CHEN Qing. Simulation Study on Phosphorus Loss Risk with Periodic Flooding-Drying and Straw Incorporation in a Dolomite-Amended Brown Soil [J]. Ecology and Environment, 2024, 33(8): 1203-1213. |
[15] | ZHANG Jinglei, WANG Guoliang, WU Bo, JIA Chunlin, ZHANG Jinhong, ZHOU Yuan, MA Bing. The Effects of Alfalfa-Triticale Rotation on Soil Bacterial and Fungal Community Diversity and Co-occurrence Network in Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2024, 33(7): 1048-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn