Ecology and Environment ›› 2022, Vol. 31 ›› Issue (5): 875-884.DOI: 10.16258/j.cnki.1674-5906.2022.05.003
• Research Articles • Previous Articles Next Articles
ZHANG Hengyu1,2(), SUN Shuchen1,*(
), WU Yuanzhi2,3,*(
), AN Juan, SONG Hongli
Received:
2021-12-15
Online:
2022-05-18
Published:
2022-07-12
Contact:
SUN Shuchen,WU Yuanzhi
张恒宇1,2(), 孙树臣1,*(
), 吴元芝2,3,*(
), 安娟, 宋红丽
通讯作者:
孙树臣,吴元芝
作者简介:
张恒宇(1997年生),女,硕士研究生,主要从事土壤水分与植物作用关系研究。E-mail: 18765497953@163.com
基金资助:
CLC Number:
ZHANG Hengyu, SUN Shuchen, WU Yuanzhi, AN Juan, SONG Hongli. Distribution Characteristics of Soil Water, Carbon and Nitrogen under Different Vegetation Densities in Loess Plateau[J]. Ecology and Environment, 2022, 31(5): 875-884.
张恒宇, 孙树臣, 吴元芝, 安娟, 宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征[J]. 生态环境学报, 2022, 31(5): 875-884.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.05.003
植被类型 Vegetation type | 密度 Density | 平均株高 Average plant height/ cm | 平均基径 Average base diameter/ mm | 标准枝条数 The amounts of standard ranch |
---|---|---|---|---|
柠条 Caragana korshinskii | 低密度 Low density | 131.2±3.1a | 9.18±0.08a | 205 |
中密度 Medium density | 106.7±2.3b | 7.27±0.04b | 300 | |
高密度 High density | 104.6±2.0b | 7.35±0.07b | 270 | |
沙柳 Salix psammophyllum | 低密度 Low density | 177.4±4.9a | 11.28±0.07a | 58 |
中密度 Medium density | 177.1±5.1a | 10.65±0.07b | 65 | |
高密度 High density | 166.1±5.6b | 7.17±0.04c | 58 |
Table 1 Average plant height, average base diameter and the amounts of standard ranch for Caragana korshinskii and Salix psammophyllum
植被类型 Vegetation type | 密度 Density | 平均株高 Average plant height/ cm | 平均基径 Average base diameter/ mm | 标准枝条数 The amounts of standard ranch |
---|---|---|---|---|
柠条 Caragana korshinskii | 低密度 Low density | 131.2±3.1a | 9.18±0.08a | 205 |
中密度 Medium density | 106.7±2.3b | 7.27±0.04b | 300 | |
高密度 High density | 104.6±2.0b | 7.35±0.07b | 270 | |
沙柳 Salix psammophyllum | 低密度 Low density | 177.4±4.9a | 11.28±0.07a | 58 |
中密度 Medium density | 177.1±5.1a | 10.65±0.07b | 65 | |
高密度 High density | 166.1±5.6b | 7.17±0.04c | 58 |
植被类型 Vegetation type | 土层深度Soil depth/ cm | 土壤含水量θ/% | |||
---|---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | |||
柠条林地 Caragana korshinskii | 0-50 | 13.05±0.73a | 12.41±2.04a | 12.02±0.87a | |
50-100 | 10.42±1.85ab | 11.57±2.28a | 8.37±2.52b | ||
100-150 | 8.02±0.44a | 5.30±0.31b | 5.49±0.34b | ||
150-300 | 7.61±0.69a | 6.24±0.21c | 6.82±0.52b | ||
沙柳林地 Salix psammophyllum | 0-50 | 12.06±1.03a | 9.94±1.91b | 9.63±1.06b | |
50-100 | 12.91±0.92a | 10.79±0.97b | 10.61±0.74b | ||
100-150 | 10.48±1.36a | 10.48±0.87a | 8.52±1.17b | ||
150-300 | 12.52±1.20a | 9.23±0.45b | 8. 18±0.41c |
Table 2 Variance analysis of soil water content differences under different vegetation densities
植被类型 Vegetation type | 土层深度Soil depth/ cm | 土壤含水量θ/% | |||
---|---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | |||
柠条林地 Caragana korshinskii | 0-50 | 13.05±0.73a | 12.41±2.04a | 12.02±0.87a | |
50-100 | 10.42±1.85ab | 11.57±2.28a | 8.37±2.52b | ||
100-150 | 8.02±0.44a | 5.30±0.31b | 5.49±0.34b | ||
150-300 | 7.61±0.69a | 6.24±0.21c | 6.82±0.52b | ||
沙柳林地 Salix psammophyllum | 0-50 | 12.06±1.03a | 9.94±1.91b | 9.63±1.06b | |
50-100 | 12.91±0.92a | 10.79±0.97b | 10.61±0.74b | ||
100-150 | 10.48±1.36a | 10.48±0.87a | 8.52±1.17b | ||
150-300 | 12.52±1.20a | 9.23±0.45b | 8. 18±0.41c |
植被类型 vegetation type | 土层深度 Soil depth/ cm | 土壤储水量W/mm | |||
---|---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | |||
柠条林地 Caragana korshinskii | 0-50 | 88.75 | 84.40 | 81.74 | |
50-100 | 70.85 | 78.67 | 56.90 | ||
100-150 | 54.54 | 36.05 | 37.33 | ||
150-300 | 153.37 | 127.87 | 142.00 | ||
0-300 | 367.50 | 326.98 | 317.97 | ||
沙柳林地 Salix psammophyllum | 0-50 | 82.04 | 67.62 | 65.50 | |
50-100 | 87.79 | 73.36 | 72.13 | ||
100-150 | 71.29 | 71.27 | 57.96 | ||
150-300 | 261.36 | 188.06 | 165.44 | ||
0-300 | 502.48 | 400.30 | 361.03 |
Table 3 Soil water storage under different vegetation densities
植被类型 vegetation type | 土层深度 Soil depth/ cm | 土壤储水量W/mm | |||
---|---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | |||
柠条林地 Caragana korshinskii | 0-50 | 88.75 | 84.40 | 81.74 | |
50-100 | 70.85 | 78.67 | 56.90 | ||
100-150 | 54.54 | 36.05 | 37.33 | ||
150-300 | 153.37 | 127.87 | 142.00 | ||
0-300 | 367.50 | 326.98 | 317.97 | ||
沙柳林地 Salix psammophyllum | 0-50 | 82.04 | 67.62 | 65.50 | |
50-100 | 87.79 | 73.36 | 72.13 | ||
100-150 | 71.29 | 71.27 | 57.96 | ||
150-300 | 261.36 | 188.06 | 165.44 | ||
0-300 | 502.48 | 400.30 | 361.03 |
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 土壤有机碳含量Si/(g∙kg-1) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 3.94±1.39a | 3.05±2.19a | 2.36±1.15a |
50-100 | 2.46±0.66a | 1.96±0.12ab | 1.52±0.10b | |
100-300 | 1.43±0.11b | 1.60±0.13a | 1.21±0.08c | |
沙柳林地 Salix psammophyllum | 0-50 | 1.49±0.35a | 2.17±1.23a | 1.99±1.29a |
50-100 | 1.52±0.18a | 1.24±0.08b | 1.33±0.08b | |
100-300 | 1.66±0.13a | 1.44±0.12b | 1.31±0.11c |
Table 4 Variance analysis of soil organic carbon content under different vegetation densities
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 土壤有机碳含量Si/(g∙kg-1) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 3.94±1.39a | 3.05±2.19a | 2.36±1.15a |
50-100 | 2.46±0.66a | 1.96±0.12ab | 1.52±0.10b | |
100-300 | 1.43±0.11b | 1.60±0.13a | 1.21±0.08c | |
沙柳林地 Salix psammophyllum | 0-50 | 1.49±0.35a | 2.17±1.23a | 1.99±1.29a |
50-100 | 1.52±0.18a | 1.24±0.08b | 1.33±0.08b | |
100-300 | 1.66±0.13a | 1.44±0.12b | 1.31±0.11c |
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 有机碳密度 Socd/(kg•m-2) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 2.68 | 2.08 | 1.61 |
50-100 | 1.67 | 1.33 | 1.04 | |
100-300 | 3.86 | 4.34 | 3.29 | |
0-300 | 8.21 | 7.75 | 5.93 | |
沙柳林地 Salix psammophyllum | 0-50 | 1.01 | 1.48 | 1.35 |
50-100 | 1.03 | 0.84 | 0.90 | |
100-300 | 4.56 | 3.87 | 3.51 | |
0-300 | 6.60 | 6.19 | 5.77 |
Table 5 Differences of soil organic carbon density under different vegetation densities
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 有机碳密度 Socd/(kg•m-2) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 2.68 | 2.08 | 1.61 |
50-100 | 1.67 | 1.33 | 1.04 | |
100-300 | 3.86 | 4.34 | 3.29 | |
0-300 | 8.21 | 7.75 | 5.93 | |
沙柳林地 Salix psammophyllum | 0-50 | 1.01 | 1.48 | 1.35 |
50-100 | 1.03 | 0.84 | 0.90 | |
100-300 | 4.56 | 3.87 | 3.51 | |
0-300 | 6.60 | 6.19 | 5.77 |
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 全氮含量Ti/(g∙kg-1) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 0.39±0.16a | 0.28±0.22a | 0.23±0.09a |
50-100 | 0.22±0.08a | 0.20±0.05a | 0.14±0.02a | |
100-300 | 0.14±0.02a | 0.15±0.01a | 0.12±0.02b | |
沙柳林地 Salix psammophyllum | 0-50 | 0.18±0.12a | 0.17±0.12a | 0.16±0.10a |
50-100 | 0.13±0.01a | 0.09±0.01b | 0.09±0.01b | |
100-300 | 0.15±0.05a | 0.12±0.02b | 0.11±0.01b |
Table 6 Variance analysis of soil total nitrogen mass fraction under different vegetation densities
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 全氮含量Ti/(g∙kg-1) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 0.39±0.16a | 0.28±0.22a | 0.23±0.09a |
50-100 | 0.22±0.08a | 0.20±0.05a | 0.14±0.02a | |
100-300 | 0.14±0.02a | 0.15±0.01a | 0.12±0.02b | |
沙柳林地 Salix psammophyllum | 0-50 | 0.18±0.12a | 0.17±0.12a | 0.16±0.10a |
50-100 | 0.13±0.01a | 0.09±0.01b | 0.09±0.01b | |
100-300 | 0.15±0.05a | 0.12±0.02b | 0.11±0.01b |
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 全氮密度Tnd/(kg∙m-2) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 0.26 | 0.19 | 0.16 |
50-100 | 0.15 | 0.14 | 0.10 | |
100-300 | 0.39 | 0.41 | 0.35 | |
0-300 | 0.80 | 0.74 | 0.60 | |
沙柳林地 Salix psammophyllum | 0-50 | 0.13 | 0.12 | 0.11 |
50-100 | 0.09 | 0.06 | 0.06 | |
100-300 | 0.44 | 0.32 | 0.31 | |
0-300 | 0.65 | 0.50 | 0.48 |
Table 7 Soil total nitrogen density differences under different vegetation densities
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 全氮密度Tnd/(kg∙m-2) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 0.26 | 0.19 | 0.16 |
50-100 | 0.15 | 0.14 | 0.10 | |
100-300 | 0.39 | 0.41 | 0.35 | |
0-300 | 0.80 | 0.74 | 0.60 | |
沙柳林地 Salix psammophyllum | 0-50 | 0.13 | 0.12 | 0.11 |
50-100 | 0.09 | 0.06 | 0.06 | |
100-300 | 0.44 | 0.32 | 0.31 | |
0-300 | 0.65 | 0.50 | 0.48 |
植被类型 Vegetation type | 密度 Density | 相关系数及显著性 Correlation coefficient and significance | 土壤有机碳含量 Si | 全氮含量 Ti | |
---|---|---|---|---|---|
柠条林地 Caragana korshinskii | 低密度 Low density | 土壤含水量θ | r | 0.957** | 0.939** |
P | 0.000 | 0.000 | |||
中密度 Medium density | r | 0.767** | 0.642** | ||
P | 0.000 | 0.001 | |||
高密度 High density | r | 0.751** | 0.840** | ||
P | 0.000 | 0.000 | |||
沙柳林地 Salix psammophyllum | 低密度 Low density | 土壤含水量θ | r | -0.099 | 0.206 |
P | 0.654 | 0.345 | |||
中密度 Medium density | r | -0.353 | -0.038 | ||
P | 0.099 | 0.865 | |||
高密度 High density | r | 0.025 | -0.609* | ||
P | 0.911 | 0.002 |
Table 8 Correlation analysis between soil organic carbon content, total nitrogen content and soil water content in different vegetation type
植被类型 Vegetation type | 密度 Density | 相关系数及显著性 Correlation coefficient and significance | 土壤有机碳含量 Si | 全氮含量 Ti | |
---|---|---|---|---|---|
柠条林地 Caragana korshinskii | 低密度 Low density | 土壤含水量θ | r | 0.957** | 0.939** |
P | 0.000 | 0.000 | |||
中密度 Medium density | r | 0.767** | 0.642** | ||
P | 0.000 | 0.001 | |||
高密度 High density | r | 0.751** | 0.840** | ||
P | 0.000 | 0.000 | |||
沙柳林地 Salix psammophyllum | 低密度 Low density | 土壤含水量θ | r | -0.099 | 0.206 |
P | 0.654 | 0.345 | |||
中密度 Medium density | r | -0.353 | -0.038 | ||
P | 0.099 | 0.865 | |||
高密度 High density | r | 0.025 | -0.609* | ||
P | 0.911 | 0.002 |
[1] |
CROW S E, LAJTHA K, BOWDEN R D, et al., 2009. Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest[J]. Forest Ecology and Management, 258(10): 2224-2232.
DOI URL |
[2] |
CHANG R Y, FU B J, LIU G H, et al., 2012. The effects of afforestation on soil organic and inorganic carbon: A case study of the Loess Plateau of China[J]. Catena, 95: 145-152.
DOI URL |
[3] |
DAVIDSON E A, TRUMBORE S E, AMUNDSON R, 2000. Soil warmingand organic carbon content[J]. Nature, 408: 789-790.
DOI URL |
[4] | DAVID R L, REZAUL M, DELPHIS F L, et al., 2011. Soil moisture: A central and unifying theme in physical geography[J]. Progress in Physical Geography, 35(1): 65-86. |
[5] |
FU B J, WANG S, LIU Y, et al., 2017. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China[J]. Annual Review of Earth and Planetary Sciences, 45(1): 223-243.
DOI URL |
[6] |
FU W, HUANG M B, GALLICHAND J, et al., 2012. Optimization of plant coverage in relation to water balance in the Loess Plateau of China[J]. Geoderma, 173-174: 134-144.
DOI URL |
[7] | LIANG H B, SHI J W, LIN Z S, et al., 2018. Evaluation of soil desiccation intensity in different ages of Caragana korshinskii Kom. in loess hilly region, Northwestern Shanxi[J]. Research of Soil and Water Conservation, 25(2): 87-93. |
[8] |
WANG Y F, FU B J, LV Y H, et al., 2011. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess plateau, China[J]. Catena, 85(1): 58-66.
DOI URL |
[9] |
WANG Y Q, SHAO M A, LIU Z P, et al., 2012. Investigation of factors controlling the regional-scale distribution of dried soil layers under forestland on the Loess Plateau, China[J]. Hydrological Sciences Journal, 57(2): 265-281.
DOI URL |
[10] |
YANG L, WEI W, CHEN L D, et al., 2014. Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China[J]. Catena, 115: 123-133.
DOI URL |
[11] |
ZHANG G Q, ZHANG P, CAO Y, 2018. Ecosystem carbon and nitrogen storage following farmland afforestation with black locust (Robinia pseudoacacia) on the Loess Plateau, China[J]. Journal of Forestry Research, 29(3): 761-771.
DOI URL |
[12] |
ZHOU Z C, ZHANG X Y, GAN Z T, 2015. Changes in soil organic carbon and nitrogen after 26 years of farmland management on the Loess Plateau of China[J]. Journal of Arid Land, 7(6): 806-813.
DOI URL |
[13] | 陈洪松, 邵明安, 王克林, 2005. 黄土区深层土壤干燥化与土壤水分循环特征[J]. 生态学报, 25(10): 2491-2498. |
CHEN H S, SHAO M A, WANG K L, 2005. Characteristics of deep soil desiccation and soil water cycle in loess region[J]. Acta Ecologica Sinica, 25(10): 2491-2498. | |
[14] | 冯棋, 杨磊, 王晶, 等, 2019. 黄土丘陵区植被恢复的土壤碳水效应[J]. 生态学报, 39(18): 6598-6609. |
FENG Q, YANG L, WANG J, et al., 2019. Effects of soil carbon and water on vegetation restoration in loess hilly region[J]. Acta Ecologica Sinica, 39(18): 6598-6609. | |
[15] | 兰志龙, 赵英, 张建国, 等, 2018. 陕北黄土丘陵区不同土地利用方式下土壤碳剖面分布特征[J]. 环境科学, 39(1): 339-347. |
LAN Z L, ZHAO Y, ZHANG J G, et al., 2018. Distribution characteristics of soil carbon profile under different land use patterns in loess hilly-gully region of northern Shaanxi[J]. Environmental Science, 39(1): 339-347.
DOI URL |
|
[16] | 李荣磊, 黄来明, 裴艳武, 等, 2021. 毛乌素沙地圪丑沟小流域沙柳水分利用来源研究[J]. 水土保持学报, 35(2): 122-130. |
LI R L, HUANG L M, PEI Y W, et al., 2021. Study on water utilization sources of Salix psammophyllum in Geecugou Watershed of Mu US Sandy Land[J]. Journal of Soil and Water Conservation, 35(2): 122-130. | |
[17] | 刘丙霞, 2015. 黄土区典型灌草植被土壤水分时空分布及其植被承载力研究[D]. 杨凌: 中国科学院研究生院 (教育部水土保持与生态环境研究中心). |
LIU B X, 2015. Spatial and temporal distribution of soil water and vegetation carrying capacity of typical shrub-grass vegetation in loess region[D]. Yangling: Graduate University of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Eco-Environment. | |
[18] | 刘学彤, 魏艳春, 杨宪龙, 等, 2016. 水蚀风蚀交错带不同退耕模式对土壤有机碳及全氮的影响[J]. 应用生态学报, 27(1): 91-98. |
LIU X T, WEI Y C, YANG X L, et al., 2016. Effects of different tillage patterns on soil organic carbon and total nitrogen in wind-water erosion zone[J]. Chinese Journal of Applied Ecology, 27(1): 91-98. | |
[19] | 刘志鹏, 邵明安, 2010. 黄土高原小流域土壤水分及全氮的垂直变异[J]. 农业工程学报, 26(5): 71-77. |
LIU Z P, SHAO M A, 2010. Vertical variation of soil moisture and total nitrogen in a small watershed of the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 26(5): 71-77. | |
[20] | 任悦, 高广磊, 丁国栋, 等, 2018. 沙地樟子松人工林叶片-枯落物-土壤有机碳含量特征[J]. 北京林业大学学报, 40(7): 36-44. |
REN Y, GAO G L, DING G D, et al., 2018. Characteristics of leaf, litter and soil organic carbon content in mongolian scots pine plantation[J]. Journal of Beijing Forestry University, 40(7): 36-44. | |
[21] | 史利江, 高杉, 姚晓军, 等, 2021. 晋西北黄土丘陵区不同植被恢复下的土壤碳氮累积特征[J]. 生态环境学报, 30(9): 1787-1796. |
SHI L J, GAO S, YAO X J, et al., 2021. Characteristics of soil carbon and nitrogen accumulation under different vegetation restoration in loess hilly-gully region of northwest Shanxi Province[J]. Journal of Ecology and Environment, 30(9): 1787-1796. | |
[22] | 舒维花, 蒋齐, 王占军, 等, 2012. 宁夏盐池沙地不同密度人工柠条林土壤水分时空变化分析[J]. 干旱区资源与环境, 26(12): 172-176. |
SHU W H, JIANG Q, WANG Z J, et al., 2012. Temporal and spatial variation of soil moisture in artificial Caragana korshinskii forest with different densities in Yanchi Sandy Land, Ningxia[J]. Journal of Arid Land Resources and Environment, 26(12): 172-176. | |
[23] | 索立柱, 黄明斌, 段良霞, 等, 2017. 黄土高原不同土地利用类型土壤含水量的地带性与影响因素[J]. 生态学报, 37(6): 2045-2053. |
SUO L Z, HUANG M B, DUAN L X, et al., 2017. Zonality and influencing factors of soil water content in different land use types on the Loess Plateau[J]. Acta Ecologica Sinica, 37(6): 2045-2053. | |
[24] | 王岩松, 马保明, 高海平, 等, 2020. 晋西黄土区油松和刺槐人工林土壤养分及其化学计量比对林分密度的响应[J]. 北京林业大学学报, 42(8): 81-93. |
WANG Y S, MA B M, GAO H P, et al., 2020. Response of soil nutrients and stoichiometric ratio to stand density in Pinus tabulaeformis and Robinia pseudoacacia plantations in loess region of Western Shanxi Province[J]. Journal of Beijing Forestry University, 42(8): 81-93. | |
[25] | 吴多洋, 焦菊英, 于卫洁, 等, 2017. 陕北刺槐林木生长及林下植被与土壤水分对种植密度的响应特征[J]. 西北植物学报, 37(2): 346-355. |
WU D Y, JIAO J Y, YU W J, et al., 2017. Response characteristics of Robinia pseudoacacia tree growth, understory vegetation and soil moisture to planting density in northern Shaanxi[J]. Acta Botanica Boreali-Occidentalia Sinica, 37(2): 346-355. | |
[26] | 夏光辉, 郭青霞, 卢庆民, 等, 2020. 黄土丘陵区不同土地利用方式下土壤养分及生态化学计量特征[J]. 水土保持通报, 40(2): 140-147, 153. |
XIA G H, GUO Q X, LU Q M, et al., 2020. Soil nutrients and ecological stoichiometry under different land use patterns in loess hilly region[J]. Bulletin of Soil and Water Conservation, 40(2): 140-147, 153. | |
[27] | 杨帆, 潘成忠, 鞠洪秀, 2016. 晋西黄土丘陵区不同土地利用类型对土壤碳氮储量的影响[J]. 水土保持研究, 23(4): 318-324. |
YANG F, PAN C Z, JU H X, 2016. Effects of different land use types on soil carbon and nitrogen storage in loess hilly-gully region of western Shanxi Province[J]. Research of Soil and Water Conservation, 23(4): 318-324. | |
[28] | 杨国敏, 王爱, 王力, 2018. 六道沟流域2种典型灌木不同季节水分来源及利用效率[J]. 西北植物学报, 38(1): 140-149. |
YANG G M, WANG A, WANG L, 2018. Water sources and utilization efficiency of two typical shrubs in different seasons in Liudaogou Watershed[J]. Acta Botanica Sinica of Northwest China, 38(1): 140-149. | |
[29] | 杨磊, 张子豪, 李宗善, 2019. 黄土高原植被建设与土壤干燥化: 问题与展望[J]. 生态学报, 39(20): 7382-7388. |
YANG L, ZHANG Z H, LI Z S, 2019. Vegetation construction and soil desiccation on the Loess Plateau: Problems and prospects[J]. Acta Ecologica Sinica, 39(20): 7382-7388. | |
[30] | 杨丽霞, 陈少锋, 安娟娟, 等, 2014. 陕北黄土丘陵区不同植被类型群落多样性与土壤有机质、全氮关系研究[J]. 草地学报, 22(2): 291-298. |
YANG L X, CHEN S F, AN J J, et al., 2014. Relationship between community diversity of different vegetation types and total nitrogen of soil organic matter in loess hilly-gully region of northern Shaanxi province[J]. Acta Agrestia Sinica, 22(2): 291-298. | |
[31] | 杨勇, 宋向阳, 咏梅, 等, 2015. 不同干扰方式对内蒙古典型草原土壤有机碳和全氮的影响[J]. 生态环境学报, 24(2): 204-210. |
YANG Y, SONG X Y, YONG M, et al., 2015. Effects of different disturbance modes on soil organic carbon and total nitrogen in typical steppe of Inner Mongolia[J]. Journal of Ecology and Environment, 24(2): 204-210. | |
[32] | 于双, 许冬梅, 许爱云, 等, 2019. 不同恢复措施对宁夏荒漠草原土壤碳氮储量的影响[J]. 草业学报, 28(3): 12-19. |
YU S, XU D M, XU A Y, et al., 2019. Effects of different restoration measures on soil carbon and nitrogen storage in desert steppe of Ningxia[J]. Acta Prataculturae Sinica, 28(3): 12-19. | |
[33] | 张文文, 郭忠升, 宁婷, 等, 2015. 黄土丘陵半干旱区柠条林密度对土壤水分和柠条生长的影响[J]. 生态学报, 35(3): 725-732. |
ZHANG W W, GUO Z S, NING T, et al., 2015. Effects of caragana korshinskii forest density on soil moisture and growth of Caragana korshinskii in semi-arid region of Loess Hill[J]. Acta Ecologica Sinica, 35(3): 725-732. | |
[34] | 张智勇, 王瑜, 艾宁, 等, 2020. 陕北黄土区不同植被类型土壤有机碳分布特征及其影响因素[J]. 北京林业大学学报, 42(11): 56-63. |
ZHANG Z Y, WANG Y, AI N, et al., 2020. Distribution characteristics and influencing factors of soil organic carbon under different vegetation types in the loess region of northern Shaanxi province[J]. Journal of Beijing Forestry University, 42(11): 56-63. | |
[35] | 张富荣, 柳洋, 史常明, 等, 2021. 不同恢复年限刺槐林土壤碳、氮、磷含量及其生态化学计量特征[J]. 生态环境学报, 30(3): 485-491. |
ZHANG F R, LIU Y, SHI C M, et al., 2021. Soil carbon, nitrogen, phosphorus content and their ecological stoichiometric characteristics in different plantation ages[J]. Journal of Ecology and Environment, 30(3): 485-491. | |
[36] | 赵发珠, 韩新辉, 杨改河, 等, 2012. 黄土丘陵区不同退耕还林地土壤有机碳、氮密度变化特征[J]. 水土保持研究, 19(4): 43-47. |
ZHAO F Z, HAN X H, YANG G H, et al., 2012. Change characteristics of soil organic carbon and nitrogen density in different returning farmland to forestland in loess hilly region[J]. Research of Soil and Water Conservation, 19(4): 43-47. |
[1] | WANG Lin, WEI Wei. Characteristics and Driving Factors of Ecosystem Services Changes in A Typical County of the Loess Plateau [J]. Ecology and Environment, 2023, 32(6): 1140-1148. |
[2] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[3] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[4] | ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland [J]. Ecology and Environment, 2023, 32(4): 660-667. |
[5] | WANG Tiezheng, QU Xinyue, LIU Chunxiang, LI Youzhi. Spatial and Temporal Changes in Water Quality in the Dongjiang Lake and Their Relationships with Land Use in the Watershed [J]. Ecology and Environment, 2023, 32(4): 722-732. |
[6] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[7] | HE Yating, HE Youjun, WANG Peng, XIE Hesheng. Effects of Different Forest Management Regimes on Soil Organic Carbon in Aggregate Fractions in Natural Secondary Quercus mongolica Forests [J]. Ecology and Environment, 2023, 32(1): 11-17. |
[8] | QIN Yanpei, XU Shaojun, TIAN Yaowu. The Spatial Differentiation of Vegetation and Soil Carbon Density in Henan Section of the Yellow River Basin [J]. Ecology and Environment, 2022, 31(9): 1745-1753. |
[9] | XIAO Guoju, LI Xiujing, GUO Zhanqiang, HU Yanbin, WANG Jing. Effects of Soil Organic Carbon on Maize Growth and Water Use at the Eastern Foot of Helan Mountain in Ningxia [J]. Ecology and Environment, 2022, 31(9): 1754-1764. |
[10] | WANG Zhao, ZHANG Manyin, HU Yukun, LIU Weiwei, ZHANG Miaomiao. Effect of Salinity on Mercury Methylation in Sediments of A Typical Coastal Wetland [J]. Ecology and Environment, 2022, 31(9): 1876-1884. |
[11] | QI Yue, ZHANG Qiang, HU Shujuan, CAI Dihua, ZHAO Funian, ZHANG Kai, WANG Heling, WANG Runyuan. Climate Change and Its Impact on Winter Wheat Potential Productivity of Loess Plateau in China [J]. Ecology and Environment, 2022, 31(8): 1521-1529. |
[12] | MA Huiying, LI Xinzhu, MA Xinyu, GONG Lu. Characteristics and Driving Factors of Soil Organic Carbon Fractions under Different Vegetation Types of the mid-Northern Piedmont of the Tianshan Mountains, Xinjiang [J]. Ecology and Environment, 2022, 31(6): 1124-1131. |
[13] | WANG Chao, YANG Qiannan, ZHANG Chi, LI Xiangdong, CHEN Jing, ZHANG Xiaolong, CHEN Jinjie, LIU Kexue. Soil Organic Carbon Fractions and Their Sensitivities to Land Use in the Typical Danxia landform Area in the Humid Region of Southeast China [J]. Ecology and Environment, 2022, 31(6): 1132-1140. |
[14] | GONG Lingxuan, WANG Lili, ZHAO Jianning, LIU Hongmei, YANG Dianlin, ZHANG Guilong. Effects of Different Cover Crop Patterns on Soil Physicochemical Properties and Organic Carbon Mineralization in Tea Gardens [J]. Ecology and Environment, 2022, 31(6): 1141-1150. |
[15] | JI Xiaoyan, WANG Shanshan, YANG Kai, REN Bei. Temporal and Spatial Variation Characteristics of Total Nitrogen Concentration in Surface Water from 2016 to 2020 in China [J]. Ecology and Environment, 2022, 31(6): 1184-1192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn