Ecology and Environment ›› 2022, Vol. 31 ›› Issue (12): 2431-2440.DOI: 10.16258/j.cnki.1674-5906.2022.12.018
Previous Articles Next Articles
XIE Jiefen1,2(), ZHANG Jiaen1,2,3,4,*(
), WEI Hui1,2,3,4, LIU Ziqiang2, CHEN Xuan2
Received:
2022-08-09
Online:
2022-12-18
Published:
2023-02-15
Contact:
ZHANG Jiaen
谢洁芬1,2(), 章家恩1,2,3,4,*(
), 危晖1,2,3,4, 刘自强2, 陈璇2
通讯作者:
章家恩
作者简介:
谢洁芬(1980年生),女,讲师,博士研究生,主要研究方向为生态系统生态学。E-mail: jfxie@scau.edu.cn
基金资助:
CLC Number:
XIE Jiefen, ZHANG Jiaen, WEI Hui, LIU Ziqiang, CHEN Xuan. Microplastic-based Compound Pollution in Soil: An overview[J]. Ecology and Environment, 2022, 31(12): 2431-2440.
谢洁芬, 章家恩, 危晖, 刘自强, 陈璇. 土壤中微塑料复合污染研究进展与展望[J]. 生态环境学报, 2022, 31(12): 2431-2440.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.12.018
污染类型 Pollution type | 常见污染物 Common pollutant | 污染成分 Pollution component | 主要微塑料类型 Major types of microplastic | 微塑料粒径 Microplastic particle size | 复合效应 Composition effect | 文献 Reference |
---|---|---|---|---|---|---|
外源性污染 Exogenous pollution | 重金属 Heavy meta | As | PVC | — | 对蚯蚓毒性较低 | Wang et al., |
Cu | PA, PE, PS, PET, PVC, PMMA | 70‒350 μm | 铜离子的吸附受 微塑料类型影响较大 | Yang et al., | ||
Zn | HDPE | <5 mm | 增加锌的生物利用性 | Hodsonet al., | ||
外源性污染 Exogenous pollution | 持久性有机污染物 Persistent organic pollutant | 邻苯二甲酸酯类 | PVC, PE, PS | <75 μm | 吸附呈现高度线性 | Liu et al., |
多溴联苯醚 | PET | <75 μm | 累积负荷多溴联苯醚 | Gaylor et al., | ||
4-(2, 4-二氯苯氧基)丁酸,阿特拉津 | PE | 250 μm | 降低土壤吸附能力 | Hüffer et al., | ||
多环芳烃、多氯联苯 | PE, PS | 250 μm, 300 μm | 多环芳烃和多氯联苯的 组织浓度降低 | Wang et al., | ||
外源性污染 Exogenous pollution | 抗生素 Antibiotic | 磺胺嘧啶、阿莫西林、四环素、环丙沙星、甲氧苄啶 | PE, PS, PP, PA, PVC | 75‒180 μm | 吸附能力因抗生素、微塑料类型和环境条件而异 | Li et al., |
四环素 | PE | <1 m | 抑制四环素降解和扩散 | Sun et al., | ||
内源性污染 Endogenous pollution | 微塑料添加剂 Microplastic additive (增塑剂 plasticizer) | 邻苯二甲酸酯类 | PVC | — | 对生物健康造成威胁 | 赵一默等, |
Table 1 Combined effect of microplastics with other common pollutants in soil
污染类型 Pollution type | 常见污染物 Common pollutant | 污染成分 Pollution component | 主要微塑料类型 Major types of microplastic | 微塑料粒径 Microplastic particle size | 复合效应 Composition effect | 文献 Reference |
---|---|---|---|---|---|---|
外源性污染 Exogenous pollution | 重金属 Heavy meta | As | PVC | — | 对蚯蚓毒性较低 | Wang et al., |
Cu | PA, PE, PS, PET, PVC, PMMA | 70‒350 μm | 铜离子的吸附受 微塑料类型影响较大 | Yang et al., | ||
Zn | HDPE | <5 mm | 增加锌的生物利用性 | Hodsonet al., | ||
外源性污染 Exogenous pollution | 持久性有机污染物 Persistent organic pollutant | 邻苯二甲酸酯类 | PVC, PE, PS | <75 μm | 吸附呈现高度线性 | Liu et al., |
多溴联苯醚 | PET | <75 μm | 累积负荷多溴联苯醚 | Gaylor et al., | ||
4-(2, 4-二氯苯氧基)丁酸,阿特拉津 | PE | 250 μm | 降低土壤吸附能力 | Hüffer et al., | ||
多环芳烃、多氯联苯 | PE, PS | 250 μm, 300 μm | 多环芳烃和多氯联苯的 组织浓度降低 | Wang et al., | ||
外源性污染 Exogenous pollution | 抗生素 Antibiotic | 磺胺嘧啶、阿莫西林、四环素、环丙沙星、甲氧苄啶 | PE, PS, PP, PA, PVC | 75‒180 μm | 吸附能力因抗生素、微塑料类型和环境条件而异 | Li et al., |
四环素 | PE | <1 m | 抑制四环素降解和扩散 | Sun et al., | ||
内源性污染 Endogenous pollution | 微塑料添加剂 Microplastic additive (增塑剂 plasticizer) | 邻苯二甲酸酯类 | PVC | — | 对生物健康造成威胁 | 赵一默等, |
吸附对象 Adsorption object | 主要互作机理 Main interaction mechanism | 主要影响因素 Main influencing factors | 复合污染效应和风险 Compound pollution effects and risks |
---|---|---|---|
重金属 Heavy metal | 主要是与金属阳离子通过络合作用 (Zou et al., | 1. 微塑料种类及其老化程度等影响吸附的速率 (Massos et al., 2. 土壤环境的异质化如DOC增加,改变重金属的流动性和生物利用度,影响吸附量 (Nizzetto et al., | 1. 吸附的重金属成为土壤动物接触重金属的来源,并可能介导重金属进入食物链,增加重金属对土壤动物的生态毒理效应 (Zhou et al., 2. 增加农田中重金属的解吸量和重金属有效态含量,同时,加大微塑料渗入地下水及被作物吸收的风险 (朱永官等, |
持久性有机 污染物 Persistent organic pollutants | 主要是受范德华力、比表面积所主导的分配作用和表面吸附 (任欣伟等, | 1. 微塑料自身特性如含氧官能团不同,吸附的作用力不同,影响吸附值 (Hüffer et al., 2018; Müller et al., 2018; Xu et al., 2. 土壤环境因子对微塑料吸附有机污染物产生影响 (Hodson et al., | 1. 影响持久性有机污染物在土壤环境中迁移及分配 (侯军华等, 2. 增加土壤溶液中的可溶性有机物比例,影响土壤结构或改变土壤中过氧化氢酶等活性 (Liu et al., |
抗生素 Antibiotic | 主要是微塑料的多孔结构和形成氢键 (Li et al., | 1. 微塑料自身特性如比表面积等影响吸附量 (Shen et al., 2. 土壤环境因子如土壤中的无机颗粒物与微塑料竞争吸附抗生素 (赵方凯等, | 1. 抑制土壤中抗生素降解和加速部分抗生素迁移 (Li et al., 2. 影响抗生素的解吸 (Xu et al., |
Table 2 Adsorption of microplastics on typical pollutants in soil
吸附对象 Adsorption object | 主要互作机理 Main interaction mechanism | 主要影响因素 Main influencing factors | 复合污染效应和风险 Compound pollution effects and risks |
---|---|---|---|
重金属 Heavy metal | 主要是与金属阳离子通过络合作用 (Zou et al., | 1. 微塑料种类及其老化程度等影响吸附的速率 (Massos et al., 2. 土壤环境的异质化如DOC增加,改变重金属的流动性和生物利用度,影响吸附量 (Nizzetto et al., | 1. 吸附的重金属成为土壤动物接触重金属的来源,并可能介导重金属进入食物链,增加重金属对土壤动物的生态毒理效应 (Zhou et al., 2. 增加农田中重金属的解吸量和重金属有效态含量,同时,加大微塑料渗入地下水及被作物吸收的风险 (朱永官等, |
持久性有机 污染物 Persistent organic pollutants | 主要是受范德华力、比表面积所主导的分配作用和表面吸附 (任欣伟等, | 1. 微塑料自身特性如含氧官能团不同,吸附的作用力不同,影响吸附值 (Hüffer et al., 2018; Müller et al., 2018; Xu et al., 2. 土壤环境因子对微塑料吸附有机污染物产生影响 (Hodson et al., | 1. 影响持久性有机污染物在土壤环境中迁移及分配 (侯军华等, 2. 增加土壤溶液中的可溶性有机物比例,影响土壤结构或改变土壤中过氧化氢酶等活性 (Liu et al., |
抗生素 Antibiotic | 主要是微塑料的多孔结构和形成氢键 (Li et al., | 1. 微塑料自身特性如比表面积等影响吸附量 (Shen et al., 2. 土壤环境因子如土壤中的无机颗粒物与微塑料竞争吸附抗生素 (赵方凯等, | 1. 抑制土壤中抗生素降解和加速部分抗生素迁移 (Li et al., 2. 影响抗生素的解吸 (Xu et al., |
[1] |
ARIAS-ANDRES M, KETTNER M T, MIKI T, et al., 2018. Microplastics: New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems[J]. Science of the Total Environment, 635: 1152-1159.
DOI URL |
[2] |
BAKKER D P, KLIJNSTRA J W, BUSSCHER H J, et al., 2003. The effect of dissolved organic carbon on bacterial adhesion to conditioning films adsorbed on glass from natural seawater collected during different seasons[J]. Biofouling, 19(6): 391-397.
PMID |
[3] |
BATOOL I, QADIR A, LEVERMORE J, et al., 2022. Dynamics of airborne microplastics, appraisal and distributional behaviour in atmosphere: A review[J]. Science of the Total Environment, 806(Part 4): 150745.
DOI URL |
[4] |
CARPENTER E J, SMITH K L, 1972. Plastics on the Sargasso Sea surface[J]. Science, 175(4027): 1240-1241.
PMID |
[5] |
CHEN Y S, WU C F, ZHANG H B, et al., 2013. Empirical estimation of pollution load and contamination levels of phthalate esters in agricultural soils from plastic film mulching in China[J]. Environmental Earth Sciences, 70(1): 239-247.
DOI URL |
[6] |
DATTA M S, SLIWERSKA E, GORE J, et al., 2016. Microbial interactions lead to rapid micro-scale successions on model marine particles[J]. Nature Communications, 7: 11965.
DOI PMID |
[7] |
DE T C A, DEVRIESE L I, HAEGEMAN A, et al., 2015. Bacterial community profiling of plastic litter in the Belgian part of the North Sea[J]. Environmental Science & Technology, 49(16): 9629-9638.
DOI URL |
[8] | DHALIWAL S S, NARESH R K, MANDAL A, et al., 2019. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review[J]. Environmental and Sustainability Indicators, 1-2: 100007. |
[9] |
FAURE F, DEMARS C, WIESER O, et al., 2015. Plastic pollution in Swiss surface waters: nature and concentrations, interaction with pollutants[J]. Environmental Chemistry, 12(5): 582-591.
DOI URL |
[10] |
FOULON V, LE R F, LAMBERT C, et al., 2016. Colonization of polystyrene microparticles by vibrio crassostreae: Light and electron microscopic investigation[J]. Environmental Science & Technology, 50(20): 10988-10996.
DOI URL |
[11] |
GAYLOR M O, HARVEY E, HALE R C, 2013. Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils[J]. Environmental Science & Technology, 47(23): 13831-13839.
DOI URL |
[12] |
GUO X Y, WANG X L, ZHOU X Z, et al., 2012. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition[J]. Environmental Science & Technology, 46(13): 7252-7259.
DOI URL |
[13] |
HERMABESSIERE L, DEHAUT A, PAUL-PONT I, et al., 2017. Occurrence and effects of plastic additives on marine environments and organisms: A review[J]. Chemosphere, 182:781-793.
DOI PMID |
[14] |
HODSON M E, DUFFUS-HODSON C A, CLARK A, et al., 2017. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J]. Environmental Science & Technology, 51(8): 4714-4721.
DOI URL |
[15] |
HUANG Y, ZHAO Y R, WANG J, et al., 2019. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 254(Part A): 112983.
DOI URL |
[16] |
HÜFFER T, HOFMANN T, 2016. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution[J]. Environment Pollution, 214: 194-201.
DOI URL |
[17] |
HÜFFER T, METZELDER F, SIGMUND G, et al., 2019. Polyethylene microplastics influence the transport of organic contaminants in soil[J]. Science of the Total Environment, 657: 242-247.
DOI URL |
[18] |
HÜFFER T, WENIGER A K, HOFMANN T, 2018. Data on sorption of organic compounds by aged polystyrene microplastic particles[J]. Data Brief, 18: 474-479.
DOI PMID |
[19] |
IMRAN M, DAS K R, NAIK M M, 2019. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat[J]. Chemosphere, 215: 846-857.
DOI PMID |
[20] |
KETTNER M T, ROJAS JIMENEZ K, OBERBECKMANN S, et al., 2017. Microplastics alter composition of fungal communities in aquatic ecosystems[J]. Environmental Microbiology, 19(11): 4447-4459.
DOI PMID |
[21] | KOELMANS A A, 2015. Modeling the role of microplastics in bioaccumulation of organic chemicals to marine aquatic organisms: A critical review[M]// Marine Anthropogenic Litter. Cham: Springer: 309-324. |
[22] |
LANG M F, YU X Q, LIU J H, et al., 2020. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics[J]. Science of the Total Environment, 722: 137762.
DOI URL |
[23] |
LI C C, GAN Y D, DONG J Y, et al., 2020a. Impact of microplastics on microbial community in sediments of the Huangjinxia Reservoir-water source of a water diversion project in western China[J]. Chemosphere, 253: 126740.
DOI URL |
[24] | LI J, GUO K, CAO Y S, et al., 2020b. Enhance in mobility of oxytetracycline in a sandy loamy soil caused by the presence of microplastics[J]. Environmental Pollution, 269: 16151. |
[25] |
LI J, ZHANG K N, ZHANG H, 2018. Adsorption of antibiotics on microplastics[J]. Environmental Pollution, 237: 460-467.
DOI PMID |
[26] |
LIU D T, ZHANG Y H, CHEN L Y, et al., 2022. Prevalence of small sized microplastics is coastal sediments detected by multipoint confocal micro-Raman spectrum scanning[J]. Science of the Total Environment, 831: 154741.
DOI URL |
[27] |
LIU F F, LIU G Z, ZHU Z L, et al., 2019. Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry[J]. Chemosphere, 214: 688-694.
DOI URL |
[28] |
LIU H F, YANG X M, LIU G B, et al., 2017. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 185: 907-917.
DOI PMID |
[29] |
MASSOS A, TURNER A, 2017. Cadmium, lead and bromine in beached microplastics[J]. Environmental Pollution, 227: 139-145.
DOI PMID |
[30] |
MEI W P, CHEN G E, BAO J Q, et al., 2020. Interactions between microplastics and organic compounds in aquatic environments: A mini review[J]. Science of the Total Environment, 736: 139472.
DOI URL |
[31] |
MÜLLER A, BECKER R, DORGERLOH U, et al., 2018. The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics[J]. Environmental Pollution, 240: 639-646.
DOI PMID |
[32] |
NET S, SEMPÉRÉR, DELMONT A, et al., 2015. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices[J]. Environmental Science & Technology, 49(7): 4019-4035.
DOI URL |
[33] |
NIZZETTO L, FUTTER M, LANGAAS S, 2016a. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science & Technology, 50(20): 10777-10779.
DOI URL |
[34] | NIZZETTO L, LANGAAS S, FUTTER M, 2016b. Pollution: Do microplastics spill on to farm soils?[J]. Nature, 537(7621): 488. |
[35] |
OBERBECKMANN S, LODER M G J, LABRENZ M, 2015. Marine microplastic-associated biofilms-a review[J]. Environmental Chemistry, 12: 551-562.
DOI URL |
[36] |
PALUSELLI A, FAUVELLE V, GALGANI F, et al., 2019. Phthalate release from plastic fragments and degradation in seawater[J]. Environmental Science & Technology, 53(1): 166-175.
DOI URL |
[37] |
PINTO M, LANGER T M, HÜFFER T, et al., 2019. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession[J]. PLoS ONE, 14(6): e0217165.
DOI URL |
[38] |
RICHARD H, CARPENTER E J, KOMADA T, et al., 2019. Biofilm facilitates metal accumulation onto microplastics in estuarine waters[J]. Science of the Total Environment, 683: 600-608.
DOI URL |
[39] |
RILLIG M C, LEHMANN A, 2020. Microplastic in terrestrial ecosystems[J]. Science, 368(6498): 1430-1431.
DOI PMID |
[40] |
ROAGER L, SONNENSCHEIN E C, 2019. Bacterial candidates for colonization and degradation of marine plastic debris[J]. Environmental Science & Technology, 53(20): 11636-11643.
DOI URL |
[41] | RUMMEL C D, JAHNKE A, GOROKHOVA E, et al., 2017. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment[J]. Environmental Science & Technology Letters, 4: 258-267. |
[42] |
SEIDENSTICKER S, GRATHWOHL P, LAMPRECHT J, et al., 2018. A combined experimental and modeling study to evaluate pH-dependent sorption of polar and non-polar compounds to polyethylene and polystyrene microplastics[J]. Environmental Sciences Europe, 30(1): 30.
DOI PMID |
[43] |
SHEN X C, LI D C, SIMA X F, et al., 2018. The effects of environmental conditions on the enrichment of antibiotics on microplastics in simulated natural water column[J]. Environmental Research, 166: 377-383.
DOI URL |
[44] |
SUN J T, JIN L, HE T T, et al., 2020. Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China[J]. Science of the Total Environment, 740: 140001.
DOI URL |
[45] |
SUN M M, YE M, JIAO W T, et al., 2018. Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastic- contaminated greenhouse soil facilitated by sophorolipid[J]. Journal of Hazardous Materials, 345: 131-139.
DOI URL |
[46] |
THOMPSON R C, OLSEN Y, MITCHELL R P, et al., 2004. Lost at sea: Where is all the plastic?[J]. Science, 304: 838.
PMID |
[47] | TU C, ZHOU Q, ZHANG C J, et al., 2020. Biofilms of microplastics[M]// Microplastics in Terrestrial Environments. Cham: Springer: 299-320. |
[48] |
UZUN P, FARAZANDE S, GUVEN B, 2022. Mathematical modeling of microplastic abundance, distribution, and transport in water environments: A review[J]. Chemosphere, 288(Part 2): 132517.
DOI URL |
[49] |
WANG H T, DING J, XIONG C, et al., 2019a. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica [J]. Environmental Pollution, 251: 110-116.
DOI URL |
[50] |
WANG J, COFFIN S, SUN C L, et al., 2019b. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil[J]. Environmental Pollution, 249: 776-784.
DOI URL |
[51] |
WANG J, LIU X H, LI Y, et al., 2019c. Microplastics as contaminants in the soil environment: A mini-review[J]. Science of the Total Environment, 691: 848-857.
DOI URL |
[52] |
WANG S S, XUE N N, LI W F, et al., 2020. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters[J]. Science of the Total Environment, 708: 134594.
DOI URL |
[53] |
WANG W F, WANG J, 2018. Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics[J]. Chemosphere, 193: 567-573.
DOI PMID |
[54] |
WANG Y, ZHOU B H, CHEN H L, et al., 2022. Distribution, biological effects and biofilms of microplastics in freshwater systems-A review[J]. Chemosphere, 299: 134370.
DOI URL |
[55] |
WU P F, CAI Z W, JIN H B, et al., 2019. Adsorption mechanisms of five bisphenol analogues on PVC microplastics[J]. Science of the Total Environment, 650: 671-678.
DOI |
[56] |
WU X W, LIU P, HUANG H Y, et al., 2020. Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations[J]. Science of the Total Environment, 717: 137033.
DOI URL |
[57] |
XU B L, LIU F, BROOKES P C, et al., 2018. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter[J]. Environmental Pollution, 240: 87-94.
DOI PMID |
[58] |
XU Z L, QIAN X T, WANG C, et al., 2020. Environmentally relevant concentrations of microplastic exhibits negligible impacts on thiacloprid dissipation and enzyme activity in soil[J]. Environmental Research, 189: 109892.
DOI URL |
[59] |
YANG J, CANG L, SUN Q, et al., 2019. Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics[J]. Environmental Science and Pollution Research, 26: 23027-23036.
DOI URL |
[60] | YIN J N, HUANG G H, LI M N, et al., 2021. Will the chemical contaminants in agricultural soil affect the ecotoxicity of microplastics?[J]. ACS Agricultural Science & Technology, 1: 314. |
[61] |
YOU Y M, WANG Z G, XU W H, et al., 2019. Phthalic acid esters disturbed the genetic information processing and improved the carbon metabolism in black soils[J]. Science of the Total Environment, 653: 212-222.
DOI URL |
[62] |
YU H, HOU J H DANG Q L, et al., 2020. Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels[J]. Journal of Hazardous Materials, 395: 122690-122700.
DOI URL |
[63] |
YUSUF A, SODIQ A, GIWA A, et al., 2022. Updated review on microplastics in water, their occurrence, detection, measurement, environmental pollution, and the need for regulatory standards[J]. Environmental Pollution, 292(Part B): 118421.
DOI URL |
[64] |
ZETTLER E R, MINCER T J, AMARAL ZETTLER L A, 2013. Life in the “plastisphere”: Microbial communities on plastic marine debris[J]. Environmental Science & Technology, 47: 7137-7146.
DOI URL |
[65] |
ZHANG H B, WANG J Q, ZHOU B Y, et al., 2018a. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors[J]. Environmental Pollution, 243(Part B): 1550-1557.
DOI URL |
[66] | ZHANG H B, ZHOU Q, XIE Z Y, et al., 2018b. Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in north China[J]. Science of the Total Environment, 616-617: 1505-1512. |
[67] |
ZHOU Y F, LIU X N, WANG J, 2020. Ecotoxicological effects of microplastics and cadmium on the earthworm Eisenia foetida[J]. Journal of Hazardous Materials, 392: 122273.
DOI URL |
[68] |
ZOU J Y, LIU X P, ZHANG D M, et al., 2020. Adsorption of three bivalent metals by four chemical distinct microplastics[J]. Chemosphere, 248: 126064.
DOI URL |
[69] | 陈蕾, 高山雪, 徐一卢, 2021. 塑料添加剂向生态环境中的释放与迁移研究进展[J]. 生态学报, 41(8): 3315-3324. |
CHEN L, GAO S X, XU Y L, 2021. Progress on release and migration of plastic additives to ecological environment[J]. Acta ecologica sinica, 41(8): 3315-3324. | |
[70] | 褚献献, 郑波, 何楠, 等, 2021. 微塑料与污染物相互作用的研究进展[J]. 环境化学, 40(2): 427-435. |
CHU X X, ZHENG B, HE N, et al., 2021. Progress on the interaction between microplastics and contaminants[J]. Environmental Chemistry, 40(2): 427-435. | |
[71] | 范玉梅, 石佳颖, 高李璟, 2019. 土壤中微塑料的来源及检测[J]. 化工时刊, 33(6): 28-31. |
FAN Y M, SHI J Y, GAO L J, 2019. The source and detection of microplastics in soil systems[J]. Chemical Industry Times, 33(6): 28-31. | |
[72] | 付东东, 张琼洁, 范正权, 等, 2019. 微米级聚苯乙烯对铜的吸附特性[J]. 中国环境科学, 39(11): 4769-4775. |
FU D D, ZHANG Q J, FAN Z Q, et al., 2019. Adsorption characteristics of copper ions on polystyrene microplastics[J]. China Environmental Science, 39(11): 4769-4775. | |
[73] | 侯军华, 檀文炳, 余红, 等, 2020. 土壤环境中微塑料的污染现状及其影响研究进展[J]. 环境工程, 38(2): 16-27, 15. |
HOU J H, TAN W B, YU H, et al., 2020. Microplastics in soil ecosystem: A review on sources, fate and ecological impact[J]. Environmental Engineering, 38(2): 16-27, 15. | |
[74] | 侯俊, 许晓雅, 程芳, 等, 2020. 微塑料与有机污染物的相互作用及环境行为研究进展[J]. 河海大学学报(自然科学版), 48(1): 22-28. |
HOU J, XU X Y, CHENG F, et al., 2020. Research progress on interaction and environment behavior between microplastics and organic pollutants[J]. Journal of Hehai University (Natural Sciences), 48(1): 22-28. | |
[75] | 季梦如, 马旖旎, 季荣, 2020. 微塑料圈: 环境微塑料对微生物的载体作用[J]. 环境保护, 48(23): 19-27. |
JI M R, MA Y N, JI R, 2020. Plastisphere: The vector effects of microplastics on microbial communities[J]. Environmental Protection, 48(23): 19-27. | |
[76] | 鞠志成, 金德才, 邓晔, 2021. 土壤中塑料与微生物的相互作用及其生态效应[J]. 中国环境科学, 41(5): 2352-2361. |
JU Z C, JIN D C, DENG Y, 2021. The interaction between plastics and microorganisms in soil and their ecological effects[J]. China Environmental Science, 41(5): 2352-2361. | |
[77] | 李爱峰, 李方晓, 邱江兵, 等, 2019. 水环境中微塑料的污染现状、生物毒性及控制对策[J]. 中国海洋大学学报 (自然科学版), 49(10): 88-100. |
LI A F, LI F X, QIU J B, et al., 2019. Pollution status, biological toxicity and control strategy of microplastics in water environments: A review[J]. Periodical of Ocean University of China, 49(10): 88-100. | |
[78] | 李昇昇, 李良忠, 李敏, 等, 2020. 环境样品中微塑料及其结合污染物鉴别分析研究进展[J]. 环境化学, 39(4): 960-974. |
LI S S, LI L Z, LI M, et al., 2020. Study on identification of microplastics and the combined pollutants in environmental samples[J]. Environmental Chemistry, 39(4): 960-974. | |
[79] | 李守益, 2019. 微塑料的老化过程及其对污染物吸附的影响机制[D]. 淮南:安徽理工大学: 4-5. |
LI S Y, 2019. The aging process of microplastics and its influence on the sorption of pollutants[D]. Huainan:Anhui University of Science and Technology: 4-5. | |
[80] | 林旭萌, 宿程远, 吴淑敏, 等, 2021. 微塑料PES与2, 4-DCP复合污染对厌氧污泥胞外聚合物与微生物群落的影响[J]. 环境科学, 42(4): 1946-1955. |
LIN X M, SU C Y, WU S M, et al., 2021. Effects of PES and 2, 4- DCP on the extracellular polymeric substances and microbial community of anaerobic granular sludge[J]. Environmental Science, 42(4): 1946-1955. | |
[81] | 刘沙沙, 付建平, 郭楚玲, 等, 2019. 微塑料的环境行为及其生态毒性研究进展[J]. 农业环境科学学报, 38(5): 957-969. |
LIU S S, FU J P, GUO C L, et al., 2019. Research progress on environmental behavior and ecological toxicity of microplastics[J]. Journal of Agro-Environment Science, 38(5): 957-969. | |
[82] | 罗凯, 李文红, 章海波, 等, 2014. 南京典型设施菜地有机肥和土壤中四环素类抗生素的污染特征调查[J]. 土壤, 46(2): 330-338. |
LUO K, LI W H, ZHANG H B, et al., 2014. Pollution characteristics of tetracycline antibiotics in typical protected vegetable organic fertilizer of Nanjing city[J]. Soils, 46(2): 330-338. | |
[83] | 骆永明, 施华宏, 涂晨, 等, 2021. 环境中微塑料研究进展与展望[J]. 科学通报, 66(13): 1547-1562. |
LUO Y M, SHI H H, TU C, et al., 2021. Research progresses and prospects of microplastics in the environment[J]. Chinese Science Bulletin, 66(13): 1547-1562. | |
[84] | 任欣伟, 唐景春, 于宸, 等, 2018. 土壤微塑料污染及生态效应研究进展[J]. 农业环境科学学报, 37(6): 1045-1058. |
REN X W, TANG J C, YU C, et al., 2018. Advances in research on the ecological effects of microplastic pollution on soil ecosystems[J]. Journal of Agro-Environment Science, 37(6): 1045-1058. | |
[85] |
宋欢, 罗锡明, 张莉, 等, 2019. 微塑料对水中甲基橙的吸附特征分析[J]. 地学前缘, 26(6): 19-27.
DOI |
SONG H, LUO X M, ZHANG L, et al., 2019. Characteristic analysis of methylorange adsorption on microplastics in water[J]. Earth Science Frontiers, 26(6): 19-27.
DOI |
|
[86] | 田其凡, 何玘霜, 陆安祥, 等, 2020. 农田土壤抗生素抗性基因与微生物群落的关系[J]. 环境化学, 39(5): 1346-1355. |
TIAN Q F, HE Q S, LU A X, et al., 2020. Relationship between antibiotic resistance genes and microbial communities in farmland soil[J]. Environmental Chemistry, 39(5): 1346-1355. | |
[87] | 万红友, 王俊凯, 张伟, 2022. 土壤微塑料与重金属、持久性有机污染物和抗生素作用影响因素综述[J]. 农业资源与环境学报, 39(4): 643-650. |
WAN H Y, WANG J K, ZHANG W, 2022. Key influencing factors for interactions between microplastics and heavy metals, persistent organic pollutants, and antibiotics in soil[J]. Journal of Agricultural Resources and Environment, 39(4): 643-650. | |
[88] | 王一飞, 李淼, 于海瀛, 等, 2019. 微塑料对环境中有机污染物吸附解吸的研究进展[J]. 生态毒理学报, 14(4): 23-30. |
WANG Y F, LI M, YU H Y, et al., 2019. Research progress on the adsorption and desorption between microplastics and environmental organic pollutants[J]. Asian Journal of Ecotoxicology, 14(4): 23-30. | |
[89] | 徐鹏程, 郭健, 马东, 等, 2020. 新制和老化微塑料对多溴联苯醚的吸附[J]. 环境科学, 41(3): 1329-1337. |
XU P C, GUO J, MA D, et al., 2020. Sorption of polybrominated diphenyl ethers by virgin and aged microplastics[J]. Environmental Science, 41(3): 1329-1337. | |
[90] | 徐湘博, 孙明星, 张林秀, 等, 2021. 土壤微塑料污染研究进展与展望[J]. 农业资源与环境学报, 38(1): 1-9. |
XU X B, SUN M X, ZHANG L X, et al., 2021. Research progress and prospect of soil microplastic pollution[J]. Journal of Agricultural Resources and Environment, 38(1): 1-9. | |
[91] | 徐擎擎, 张哿, 邹亚丹, 等, 2018. 微塑料与有机污染物的相互作用研究进展[J]. 生态毒理学报, 13(1): 40-49. |
XU Q Q, ZHANG G, ZOU Y D, et al., 2018. Interactions between microplastics and organic pollutants: Current status and knowledge gaps[J]. Asian Journal of Ecotoxicology, 13(1): 40-49. | |
[92] | 徐希媛, 王帅, 郑立, 等, 2019. 中国南北方近岸海域中微塑料附生真核生物群落结构特征分析[J]. 海洋科学进展, 37(4): 652-663. |
XU X Y, WANG S, ZHANG L, et al., 2019. Community structure and diversity of microplastics attached eukaryotes in southern and northern shorelines of China[J]. Advances in Marine Science, 37(4): 652-663. | |
[93] | 杨杰, 仓龙, 邱炜, 等, 2019. 不同土壤环境因素对微塑料吸附四环素的影响[J]. 农业环境科学学报, 38(11): 2503-2510. |
YANG J, CANG L, QIU W, et al., 2019. Effects of different soil environmental factors on tetracycline adsorption of microplastics[J]. Journal of Agro-Environment Science, 38(11): 2503-2510. | |
[94] | 杨杰, 李连祯, 周倩, 等, 2021. 土壤环境中微塑料污染: 来源、过程及风险[J]. 土壤学报, 58(2): 281-298. |
YANG J, LI L Z, ZHOU Q, et al., 2021. Microplastics contamination of soil environment: Sources, processes and risks[J]. Acta Pedologica Sinica, 58(2): 281-298. | |
[95] | 张悦, 袁骐, 蒋玫, 等, 2019. 邻苯二甲酸酯类毒性及检测方法研究进展[J]. 环境化学, 38(5): 1035-1046. |
ZHANG Y, YUAN Q, JIANG M, et al., 2019. Research progress in toxicity and detection methods of phthalic acid esters[J]. Environmental Chemistry, 38(5): 1035-1046. | |
[96] | 赵方凯, 杨磊, 乔敏, 等, 2017. 土壤中抗生素的环境行为及分布特征研究进展[J]. 土壤, 49(3): 428-436. |
ZHAO F K, YANG L, QIAO M, et al., 2017. Environmental behavior and distribution of antibiotics in soils: A review[J]. Soils, 49(3): 428-436. | |
[97] | 赵一默, 海睿洋, 王伊妹, 等, 2021. 微塑料浸提液的生物毒性研究[J]. 高等教育在线 (7): 96-97. |
ZHAO Y M, HAI R Y, WANG Y M, et al., 2021. Study on biological toxicity of microplastics extract[J]. Higher Education Online (7): 96-97. | |
[98] | 周倩, 章海波, 周阳, 等, 2018. 滨海河口潮滩中微塑料的表面风化和成分变化[J]. 科学通报, 63(2): 214-223. |
ZHOU Q, ZHANG H B, ZHOU Y, et al., 2018. Surface weathering and changes in components of microplastics from estuarine beaches[J]. Chinese Science Bulletin, 63(2): 214-223. | |
[99] | 朱永官, 朱冬, 许通, 等, 2019. (微)塑料污染对土壤生态系统的影响: 进展与思考[J]. 农业环境科学学报, 38(1): 1-6. |
ZHU Y G, ZHU D, XU T, et al., 2019. Impacts of (micro) plastics on soil ecosystem: Progress and perspective[J]. Journal of Agro- Environment Science, 38(1): 1-6. |
[1] | WANG Jiayi, SUN Tingting, SHA Runyu, CHEN Tinghong, XING Ran, QIN Boqiang, SHI Wenqing. Study on the Synergic Effect of Algae Salvage on Pollution Control and Carbon Emission Reduction in Eutrophic Lakes [J]. Ecology and Environment, 2023, 32(6): 1108-1114. |
[2] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[3] | ZHOU Yuxiang, ZHAO Yu, NIE Rendong, DING Ding, GUO Lihua, ZHOU Jiazheng. Characterization and Prediction of Land Desertification in the Lower Liaohe River Plain [J]. Ecology and Environment, 2023, 32(6): 1133-1139. |
[4] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[5] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[6] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[7] | XU Xiaoyun, RAO Zhihan, JIANG Hongbin, ZHANG Wei, CHEN Chao, YANG Yongan, HU Yanli, WEI Haichuan. Pollution Characteristics and Formation Potential for O3 and SOA of Ambient VOCs in Suining Industrial Zone in Summer [J]. Ecology and Environment, 2023, 32(5): 956-968. |
[8] | ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland [J]. Ecology and Environment, 2023, 32(4): 660-667. |
[9] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[10] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[11] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[12] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[13] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[14] | QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain [J]. Ecology and Environment, 2023, 32(3): 459-468. |
[15] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn