Ecology and Environment ›› 2022, Vol. 31 ›› Issue (12): 2422-2430.DOI: 10.16258/j.cnki.1674-5906.2022.12.017
Previous Articles Next Articles
REN Jun1,2,3,*(), PAN Jiaxuan1,2, TAO Ling1,2,3, TONG Yunlong1,2, WANG Ruo’an1,2, SUN Xinni1,2
Received:
2021-07-10
Online:
2022-12-18
Published:
2023-02-15
Contact:
REN Jun
任珺1,2,3,*(), 潘佳璇1,2, 陶玲1,2,3, 仝云龙1,2, 王若安1,2, 孙新妮1,2
通讯作者:
任珺
作者简介:
任珺(1968年生),男,教授,博士,从事污染环境生态修复理论与技术研究。E-mail: renjun@mail.lzjtu.cn
基金资助:
CLC Number:
REN Jun, PAN Jiaxuan, TAO Ling, TONG Yunlong, WANG Ruo’an, SUN Xinni. Stabilization Remediation of Soil Polluted by Cd Using Palygorskite Modified by NaOH[J]. Ecology and Environment, 2022, 31(12): 2422-2430.
任珺, 潘佳璇, 陶玲, 仝云龙, 王若安, 孙新妮. 氢氧化钠改性坡缕石对Cd污染土壤的钝化修复效果[J]. 生态环境学报, 2022, 31(12): 2422-2430.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.12.017
Figure 1 The stabilized with palygorskite modified by NaOH Different lowercase letters indicatesignificant differences between treatments (P<0.05). The same below
钝化剂 Stabilizer | 钝化效率Es/% | 生态风险指数Ier/% | |||
---|---|---|---|---|---|
DTPA | TCLP | DTPA | TCLP | ||
CK | 56.91 | 35.66 | |||
NP01 | 5.18 | 4.77 | 53.96 | 33.96 | |
NP12 | 22.37 | 26.60 | 44.18 | 26.18 | |
NP14 | 16.91 | 21.41 | 47.29 | 27.30 | |
NP16 | 12.38 | 12.61 | 49.86 | 31.17 | |
NP18 | 10.47 | 18.32 | 50.95 | 29.13 | |
NP110 | 6.00 | 7.56 | 53.49 | 32.97 |
Table 1 The stabilization efficiency and ecological risk index of Cd in soil stabilized with palygorskite modified by NaOH
钝化剂 Stabilizer | 钝化效率Es/% | 生态风险指数Ier/% | |||
---|---|---|---|---|---|
DTPA | TCLP | DTPA | TCLP | ||
CK | 56.91 | 35.66 | |||
NP01 | 5.18 | 4.77 | 53.96 | 33.96 | |
NP12 | 22.37 | 26.60 | 44.18 | 26.18 | |
NP14 | 16.91 | 21.41 | 47.29 | 27.30 | |
NP16 | 12.38 | 12.61 | 49.86 | 31.17 | |
NP18 | 10.47 | 18.32 | 50.95 | 29.13 | |
NP110 | 6.00 | 7.56 | 53.49 | 32.97 |
钝化剂 Stabilizer | 茎富集系数 Fbc shoot | 根富集系数 Fbc root | 转运系数 Ft |
---|---|---|---|
CK | 0.391±0.023a | 0.572±0.006a | 0.683±0.048a |
NP01 | 0.343±0.030b | 0.526±0.002b | 0.652±0.054ab |
NP12 | 0.260±0.007d | 0.483±0.002e | 0.538±0.015d |
NP14 | 0.289±0.014c | 0.495±0.012d | 0.585±0.027cd |
NP16 | 0.296±0.001c | 0.494±0.001d | 0.599±0.002bc |
NP18 | 0.315±0.001bc | 0.509±0.001c | 0.620±0.001bc |
NP110 | 0.326±0.011b | 0.513±0.001c | 0.636±0.022abc |
F-value | 20.739*** | 91.179*** | 7.108*** |
Table 2 The bioconcentration factor and transfer factor of Cd for corn planted in soils stabilized with palygorskite modified by NaOH
钝化剂 Stabilizer | 茎富集系数 Fbc shoot | 根富集系数 Fbc root | 转运系数 Ft |
---|---|---|---|
CK | 0.391±0.023a | 0.572±0.006a | 0.683±0.048a |
NP01 | 0.343±0.030b | 0.526±0.002b | 0.652±0.054ab |
NP12 | 0.260±0.007d | 0.483±0.002e | 0.538±0.015d |
NP14 | 0.289±0.014c | 0.495±0.012d | 0.585±0.027cd |
NP16 | 0.296±0.001c | 0.494±0.001d | 0.599±0.002bc |
NP18 | 0.315±0.001bc | 0.509±0.001c | 0.620±0.001bc |
NP110 | 0.326±0.011b | 0.513±0.001c | 0.636±0.022abc |
F-value | 20.739*** | 91.179*** | 7.108*** |
项目 Items | 茎生物量 Biomass of stem | 根生物量 Biomass of root | 茎中Cd富集量 Cd in stem | 根中Cd富集量 Cd in root | 茎富集系数 Fbc shoot | 根富集系数 Fbc root | 转运系数 Ft |
---|---|---|---|---|---|---|---|
DTPA | −0.875** | −0.850** | 0.912** | 0.825** | 0.900** | 0.826** | 0.872** |
TCLP | −0.908** | −0.896** | 0.786** | 0.787** | 0.775** | 0.787** | 0.703** |
Table 3 The correlation coefficients between factors about Cd in maize plant and bioavailability of Cd in soils stabilized with palygorskite modified by NaOH
项目 Items | 茎生物量 Biomass of stem | 根生物量 Biomass of root | 茎中Cd富集量 Cd in stem | 根中Cd富集量 Cd in root | 茎富集系数 Fbc shoot | 根富集系数 Fbc root | 转运系数 Ft |
---|---|---|---|---|---|---|---|
DTPA | −0.875** | −0.850** | 0.912** | 0.825** | 0.900** | 0.826** | 0.872** |
TCLP | −0.908** | −0.896** | 0.786** | 0.787** | 0.775** | 0.787** | 0.703** |
[1] | CHANG E E, CHIANG P C, LU P H, et al., 2001. Comparisons of metal leachability for various wastes by extraction and leaching methods[J]. Chemosphere (Oxford), 45(1): 91-99. |
[2] |
CHEN T, ZHOU Z Y, XU S, et al., 2015. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge[J]. Bioresource Technology, 190: 388-394.
DOI PMID |
[3] |
CHOPPALA G, BOLAN N, KUNHIKRISHNAN A, et al., 2016. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate[J]. Chemosphere, 144: 374-381.
DOI PMID |
[4] |
GENG H X, WANG L, 2019. Cadmium: Toxic effects on placental and embryonic development[J]. Environmental Toxicology and Pharmacology, 67: 102-107.
DOI URL |
[5] | GONZALO M A B, RAQUEL J, RITA P, et al., 2012. Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition[J]. Journal of Hazardous Materials, 213-214: 447-456. |
[6] |
HAJEB P, SLOTH J J, SHAKIBAZADEH S, et al., 2014. Toxic Elements in Food: Occurrence, Binding, and Reduction Approaches[J]. Comprehensive Reviews in Food Science and Food Safety, 13(4): 457-472.
DOI URL |
[7] |
HUANG G Y, GAO R L, YOU J W, et al., 2019. Oxalic acid activated phosphate rock and bone meal to immobilize Cu and Pb in mine soils[J]. Ecotoxicology and Environmental Safety, 174: 401-407.
DOI PMID |
[8] |
HUANG R L, LIN Q T, ZHONG Q F, et al., 2020. Removal of Cd(II) and Pb(II) from aqueous solution by modified attapulgite clay[J]. Arabian Journal of Chemistry, 13(4): 4994-5008.
DOI URL |
[9] |
LI X Z, HE C L, ZUO S X, et al., 2019. Photocatalytic nitrogen fixation over fluoride/attapulgite nanocomposite: Effect of upconversion and fluorine vacancy[J]. Solar Energy, 191: 251-262.
DOI URL |
[10] |
MI X, REN J, TAO L, 2021. Stabilisation of heavy metals in soil using nanoscale zero-valent iron coated with palygorskite[J]. Chemistry in Ecology, 37(3): 234-251.
DOI URL |
[11] |
MUHAMMAD F Q, MUHAMMAD Z U R, SHAFAQAT A, et al., 2017. Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field[J]. Chemosphere, 174: 515-523.
DOI PMID |
[12] |
SHARMA A, NAGPAL A K, 2018. Soil amendments: A tool to reduce heavy metal uptake in crops for production of safe food[J]. Reviews in Environmental Science and Bio/Technology, 17(1): 187-203.
DOI URL |
[13] |
SHI L, GUO Z H, PENG C, et al., 2019. Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: A four-season field experiment[J]. Ecotoxicology and Environmental Safety, 171: 425-434.
DOI PMID |
[14] |
TANG X, LI Q, WU M, et al., 2016. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China[J]. Journal of Environmental Management, 181: 646-662.
DOI PMID |
[15] | WANG W B, WANG F F, KANG Y R, et al., 2015. Enhanced Adsorptive Removal of Methylene Blue from Aqueous Solution by Alkali-Activated Palygorskite[J]. Water, Air, & Soil Pollution, 226(3): 1-13. |
[16] |
ZHANG D, DING A F, 2019. Effects of passivating agents on the availability of Cd and Pb and microbial community function in a contaminated acidic soil[J]. Bulletin of Environmental Contamination and Toxicology, 103(1): 98-105.
DOI PMID |
[17] |
ZHANG M D, RAN R L, NAO W Q S, et al., 2019. Physiological effects of short-term copper stress on rape (Brassica napus L.) seedlings and the alleviation of copper stress by attapulgite clay in growth medium[J]. Ecotoxicology and Environmental Safety, 171: 878-886.
DOI URL |
[18] |
ZHANG Y, WANG W B, ZHANG J P, et al., 2015. A comparative study about adsorption of natural palygorskite for methylene blue[J]. Chemical Engineering Journal, 262: 390-398.
DOI URL |
[19] | 陈展祥, 陈传胜, 陈卫平, 等, 2018. 凹凸棒石及其改性材料对土壤镉生物有效性的影响与机制[J]. 环境科学, 39(10): 4744-4751. |
CHEN Z X, CHEN C S, CHEN W P, et al., 2018. Effect and mechanism of attapulgite and its modified materials on bioavailability of cadmium in soil[J]. Environmental Science, 39(10): 4744-4751. | |
[20] | 邓新, 温璐璐, 迟鑫姝, 2010. 镉对人体健康危害及防治研究进展[J]. 中国医疗前沿, 5(10): 4-5. |
DENG X, WEN L L, CHI X S, 2010. Cadmium hazards to human health and the prevention and treatment research[J]. National Medical Frontiers of China, 5(10): 4-5. | |
[21] | 弓建泽, 张心然, 李志勇, 等, 2021. 有机肥施用和外源镉添加对土壤理化性质、油菜生长及其镉积累的影响[J]. 土壤通报, 52(3): 679-685. |
GONG J Z, ZHANG X R, LI Z Y, et al., 2021. Effects of organic fertilizer combined with exogenous Cadmium addition on soil physical and chemical properties, rape growth and Cadmium accumulation[J]. Chinese Journal of Soil Science, 52(3): 679-685. | |
[22] | 郝金才, 李柱, 吴龙华, 等, 2019. 铅镉高污染土壤的钝化材料筛选及其修复效果初探[J]. 土壤, 51(4): 752-759. |
HAO J C, LI Z, WU L H, et al., 2019. Preliminary study on Cadmium and Lead stabilization in soil highly polluted with heavy metals using different stabilizing agents[J]. Soils, 51(4): 752-759. | |
[23] | 纪艺凝, 徐应明, 王农, 等, 2019. 鱼骨粉对土壤Cd污染钝化修复效应及其理化性质的影响[J]. 水土保持学报, 33(3): 312-319. |
JI Y N, XU Y M, WANG N, et al., 2019. Effect of fish bone meal on immobilization remediation of Cacmium contaminated soil and its physiochemical properties[J]. Journal of Soil and Water Conservation, 33(3): 312-319. | |
[24] | 李龙凤, 2008. 改性凹凸棒粘土对水溶液中铜离子吸附性能的研究[J]. 淮北煤炭师范学院学报 (自然科学版), 29(4): 33-36. |
LI L F, 2008. The study on the adsorption of copper ion on the modified attapugite clay[J]. Journal of Huaibei Coal Industry Teacher College (Natural Science), 29(4): 33-36. | |
[25] | 李琳佳, 夏建国, 唐枭, 等, 2019. 海泡石对污染土壤中铅的钝化效果[J]. 生态环境学报, 28(5): 1013-1020. |
LI L J, XIA J G, TANG X, et al., 2019. Immobilization of Pb in Contaminated Soil by Sepiolite[J]. Ecology and Environmental Sciences, 28(5): 1013-1020. | |
[26] | 刘玉琳, 张友义, 妙凌云, 2001. 甘肃含碘凹凸棒石矿的发现及应用前景初探[J]. 岩石矿物学杂志, 20(4): 504-506. |
LIU Y L, ZHANG Y Y, MIAO L Y, 2001. Discovery of iodic attapulgite deposits in gansu province and its preliminary application[J]. Acta Petrologica Et Mineralogica, 20(4): 504-506. | |
[27] | 刘左军, 陈正宏, 袁惠君, 等, 2010. 凹凸棒石粘土对土壤团粒结构及小麦生长的影响[J]. 土壤通报, 41(1): 142-144. |
LIU Z J, CHEN Z H, YUAN H J, et al., 2010. Effects of attapulgite clay on soil aggregate and wheat growth[J]. Chinese Journal of Soil Science, 41(1): 142-144. | |
[28] | 吕本儒, 郭小伟, 李银光, 2017. 重金属污染土壤钝化修复效果化学评价方法研究进展[J]. 环境与可持续发展, 42(2): 73-76. |
LÜ B R, GUO X W, LI Y G, 2017. Research progresses in chemical evaluation methods for passivating remediation effect of heavy metal contaminated soils[J]. Environment and Sustainable Development, 42(2): 73-76. | |
[29] | 罗宁临, 李忠武, 黄梅, 等, 2020. 壳聚糖 (改性)-沸石对农田土壤重金属镉钝化技术研究[J]. 湖南大学学报 (自然科学版), 47(4): 132-140. |
LUO N L, LI Z W, HUANG M, et al., 2020. Immobilizing cadmium in paddy soil by using modified chitosan-zeolite[J]. Journal of Hunan University (Natural Sciences), 47(4): 132-140. | |
[30] | 马铁铮, 马友华, 徐露露, 等, 2013. 农田土壤重金属污染的农业生态修复技术[J]. 农业资源与环境学报, 30(5): 39-43. |
MA T Z, MA Y H, XU L L, et al., 2013. Agro-ecological remediation technologies on heavy metal contamination in cropland soils[J]. Journal of Agricultural Resources and Environment, 30(5): 39-43. | |
[31] | 冉洪珍, 郭朝晖, 肖细元, 等, 2019. 改良剂连续施用对农田水稻Cd吸收的影响[J]. 中国环境科学, 39(3): 1117-1123. |
RAN H Z, GUO Z H, XIAO X Y, et al., 2019. Effects of continuous application of soil amendments on cadmium availability in paddy soil and uptake by rice[J]. China Environmental Science, 39(3): 1117-1123. | |
[32] | 任珺, 刘丽莉, 陶玲, 等, 2013. 甘肃地区凹凸棒石的矿物组成分析[J]. 硅酸盐通报, 32(11): 2362-2365. |
REN J, LIU L L, TAO L, et al., 2013. Mineral composition analysis of attapulgite from Gansu area[J]. Bulletin of the Chinese Ceramic Society, 32(11): 2362-2365. | |
[33] | 任静华, 廖启林, 范健, 等, 2017. 凹凸棒粘土对镉污染农田的原位钝化修复效果研究[J]. 生态环境学报, 26(12): 2161-2168. |
REN J H, LIAO Q L, FAN J, et al., 2017. Effectof in-situ stabilizing remediation of Cd-polluted soil by attapulgite[J]. Ecology and Environmental Sciences, 26(12): 2161-2168. | |
[34] | 陶玲, 管天成, 刘瑞珍, 等, 2021. 热改性坡缕石对土壤Cd污染的钝化修复研究[J]. 农业环境科学学报, 40(4): 782-790. |
TAO L, GUAN T C, LIU R Z, et al., 2021. Stabilization remediation of cadmium contaminated soil by using heat-modified palygorskite[J]. Journal of Agro-Environment Science, 40(4): 782-790. | |
[35] | 陶玲, 杨欣, 颜子皓, 等, 2018. 酸活化坡缕石制备重金属钝化材料的研究[J]. 非金属矿, 41(1): 11-14. |
TAO L, YANG X, YAN Z H, et al., 2018. Study on the function of passivant for heavy metals with palygorskite modified by acid[J]. Non-Metallic Mines, 41(1): 11-14. | |
[36] | 陶玲, 张倩, 张雪彬, 等, 2020. 凹凸棒石-污泥共热解生物炭对玉米苗期生长特性和重金属富集效应的影响[J]. 农业环境科学学报, 39(7): 1512-1520. |
TAO L, ZHANG Q, ZHANG X B, et al., 2020. Influence of biochar prepared by co-pyrolysis with attapulgite and sludge on maize growth and heavy metal accumulation[J]. Journal of Agro-Environment Science, 39(7): 1512-1520. | |
[37] | 王金明, 易发成, 2006. 改性凹凸棒石表征及其对模拟核素Cs+的吸附研究[J]. 非金属矿, 29(2): 53-55. |
WANG J M, YI F C, 2006. Study on characterization of modified attapulgite and its adsorption capacity on simulated nuclide Cs+[J]. Non-Metallic Mines, 29(2): 53-55. | |
[38] | 武成辉, 李亮, 雷畅, 等, 2017. 硅酸盐钝化剂在土壤重金属污染修复中的研究与应用[J]. 土壤, 49(3): 446-452. |
WU C H, LI L, LEI C, et al., 2017. Research and application of silicate passivation agent in remediation of heavy metal-contaminated soil: A review[J]. Soils, 49(3): 446-452. | |
[39] | 徐奕, 李剑睿, 徐应明, 等, 2017. 膨润土钝化与不同水分灌溉联合处理对酸性稻田土镉污染修复效应及土壤特性的影响[J]. 环境化学, 36(5): 1026-1035. |
XU Y, LI J R, XU Y M, et al., 2017. Effects of bentonite combined with different water management on immobilization remediation and soil properties of cadmium contaminated paddy soils[J]. Environmental Chemistry, 36(5): 1026-1035. | |
[40] | 许振岚, 陈红, 2010. 城市污泥人工土壤中重金属生物有效性及综合毒性研究[J]. 浙江大学学报 (理学版), 37(3): 300-305. |
XU Z L, CHEN H, 2010. Bioavailability and comprehensive toxicity of heavy metals in artificial soil composed of sewage sludge[J]. Journal of Zhejiang University (Science Edition), 37(3): 300-305. | |
[41] | 殷飞, 王海娟, 李燕燕, 等, 2015. 不同钝化剂对重金属复合污染土壤的修复效应研究[J]. 农业环境科学学报, 34(3): 438-448. |
YIN F, WANG H Y, LI Y Y, et al., 2015. Remediation of multiple heavy metal polluted soil using different immobilizing agents[J]. Journal of Agro-Environment Science, 34(3): 438-448. | |
[42] | 张静静, 赵永芹, 王菲菲, 等, 2019. 膨润土、褐煤及其混合添加对铅污染土壤钝化修复效应研究[J]. 生态环境学报, 28(2): 395-402. |
ZHANG J J, ZHAO Y Q, WANG F F, et al., 2019. Immobilization and remediation of Pb contaminated soil treated with bentonite, lignite and their mixed addition[J]. Ecology and Environmental Sciences, 28(2): 395-402. | |
[43] | 张平萍, 陈雪刚, 程继鹏, 等, 2009. 水热条件下坡缕石在NaOH溶液中的行为及结构变化[J]. 无机化学学报, 25(9): 1545-1550. |
ZHANG P P, CHEN X G, CHENG J P, et al., 2009. Behavior and structural transformation of palygorskite in NaOH solution under hydrothermal conditions[J]. Chinese Journal of Inorganic Chemistry, 25(9): 1545-1550. | |
[44] | 章绍康, 弓晓峰, 申钊颖, 等, 2019. 改性凹凸棒土对土壤中Cd2+吸附解吸及钝化效果影响[J]. 环境工程, 37(3): 192-197. |
ZHANG S K, GONG X F, SHEN Z Y, et al., 2019. Effect of modified attpulgite on the adsorption, desorption and immobilization of Cd2+ in soil[J]. Environmental Engineering, 37(3): 192-197. | |
[45] | 周杰, 刘宁, 李云, 等, 1999. 凹凸棒石粘土的显微结构特征[J]. 硅酸盐通报, 18(6): 50-55. |
ZHOU J, LIU N, LI Y, et al., 1999. Microscopic structure characteristics of attapulgite[J]. Bulletin of the Chinese Ceramic Society, 18(6): 50-55. |
[1] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[2] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[3] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[4] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[5] | ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland [J]. Ecology and Environment, 2023, 32(4): 660-667. |
[6] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[7] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[8] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[9] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[10] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[11] | QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain [J]. Ecology and Environment, 2023, 32(3): 459-468. |
[12] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
[13] | LIU Kanghan, ZHENG Liugen, ZHANG Liqun, DING Dan, SHAN Shifeng. Effect of Complex Plant Derived Activator on the Remediation of As Contaminated Soil by Pteris vittata [J]. Ecology and Environment, 2023, 32(3): 635-642. |
[14] | FAN Huilin, ZHANG Jiamin, LI Huan, WANG Yanling. Study on the Profile Storage Pattern and Loss Risk of Phosphorus in Sloping Paddy Red Soil [J]. Ecology and Environment, 2023, 32(2): 283-291. |
[15] | SONG Xiaoshuai, DING Wuquan, LIU Xinmin, LI Tingzhen. Study on the Mechanism of Ion Specificity Effect on the Pore Condition of Purple Soil [J]. Ecology and Environment, 2023, 32(2): 292-298. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn