Ecology and Environment ›› 2022, Vol. 31 ›› Issue (12): 2331-2340.DOI: 10.16258/j.cnki.1674-5906.2022.12.007
Previous Articles Next Articles
XUE Wenkai(), ZHU Pan, DE Ji, GUO Xiaofang(
)
Received:
2022-05-31
Online:
2022-12-18
Published:
2023-02-15
Contact:
GUO Xiaofang
通讯作者:
郭小芳
作者简介:
薛文凯(1995年生),女,硕士研究生,主要从事高原微生物及环境关系的研究。E-mail: 1978558896@qq.com
基金资助:
CLC Number:
XUE Wenkai, ZHU Pan, DE Ji, GUO Xiaofang. Study on the Temporal and Spatial Characteristics of the Dominant Species of Cultivable Filamentous Fungi in Nam Co Lake[J]. Ecology and Environment, 2022, 31(12): 2331-2340.
薛文凯, 朱攀, 德吉, 郭小芳. 纳木措水体可培养丝状真菌优势种的时空特征研究[J]. 生态环境学报, 2022, 31(12): 2331-2340.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.12.007
Figure 1 Differences of water environmental factors in different seasons in Nam Co Lake t: Temperature; TDS: Total dissolved solids; EC: Electrical conductivity; Salt: Salt concentration; NH4+-N: Ammonium nitrogen; TP: Total phosphorus; TN: Total nitrogen; n=20; **: P<0.01; *: P<0.05; ns: P>0.05
Figure 2 Comparison of diversity indices of filamentous fungi in different seasons in Nam Co Lake n=20, the same below; ****: P<0.001; ***: P<0.005; **: P<0.01; *: P<0.05; ns: P>0.05
优势种 Dominant species | 春 Spring | 夏 Summer | 秋 Autumn | |||||
---|---|---|---|---|---|---|---|---|
Y | fi/% | Y | fi/% | Y | fi/% | |||
普通青霉 Penicillium commune | 0.040 | 90 | 0.029 | 75 | 0.043 | 75 | ||
酒色青霉 Penicillium vinaceum | 0.040 | 90 | 0.024 | 75 | — | — | ||
壳青霉 Penicillium crustosum | 0.130 | 95 | — | — | 0.082 | 90 | ||
灰玫瑰青霉 Penicillium griseoroseum | 0.023 | 65 | — | — | 0.062 | 80 | ||
波兰青霉 Penicillium polonicum | 0.043 | 80 | — | — | — | — | ||
青霉菌 Penicillium goetzii | 0.030 | 85 | — | — | — | — | ||
冻土毛霉 Mucor hiemalis | 0.096 | 80 | 0.090 | 85 | — | — | ||
总状毛霉 Mucor racemosus | 0.049 | 90 | — | — | — | — | ||
格孢腔菌 Pleosporales sp.2 | 0.024 | 65 | — | — | — | — | ||
青霉菌 Penicillium sp. | — | — | 0.030 | 70 | — | — | ||
高山被孢霉 Mortierella alpina | — | — | 0.058 | 90 | — | — | ||
微糙枝孢 Cladosporium asperulatum | — | — | 0.027 | 75 | — | — | ||
芽枝状枝孢 Cladosporium pseudocladosporioides | — | — | 0.029 | 95 | — | — | ||
链格孢 Alternaria chlamydosporigena | — | — | 0.096 | 95 | — | — | ||
壳霉菌 Stagonosporopsis sp. | — | — | 0.027 | 80 | — | — | ||
Plectosphaerella plurivora | — | — | 0.036 | 80 | — | — | ||
两型蜡蚧菌 Lecanicillium dimorphum | — | — | 0.044 | 95 | — | — | ||
三线镰刀菌 Fusarium tricinctum | — | — | 0.068 | 95 | — | — | ||
微结节霉菌 Microdochium bolleyi | — | — | 0.054 | 85 | — | — | ||
比阿娄维扎青霉 Penicillium bialowiezense | — | — | — | — | 0.266 | 100 | ||
短密青霉 Penicillium brevicompactum | — | — | — | — | 0.111 | 90 | ||
枝状枝孢 Cladosporium cladosporioides | — | — | — | — | 0.035 | 70 | ||
密丛毛霉 Mucor plumbeus | — | — | — | — | 0.043 | 85 |
Table 1 Dominance (Y) and frequency (fi) of dominant species of filamentous fungi in different seasons in Nam Co Lake
优势种 Dominant species | 春 Spring | 夏 Summer | 秋 Autumn | |||||
---|---|---|---|---|---|---|---|---|
Y | fi/% | Y | fi/% | Y | fi/% | |||
普通青霉 Penicillium commune | 0.040 | 90 | 0.029 | 75 | 0.043 | 75 | ||
酒色青霉 Penicillium vinaceum | 0.040 | 90 | 0.024 | 75 | — | — | ||
壳青霉 Penicillium crustosum | 0.130 | 95 | — | — | 0.082 | 90 | ||
灰玫瑰青霉 Penicillium griseoroseum | 0.023 | 65 | — | — | 0.062 | 80 | ||
波兰青霉 Penicillium polonicum | 0.043 | 80 | — | — | — | — | ||
青霉菌 Penicillium goetzii | 0.030 | 85 | — | — | — | — | ||
冻土毛霉 Mucor hiemalis | 0.096 | 80 | 0.090 | 85 | — | — | ||
总状毛霉 Mucor racemosus | 0.049 | 90 | — | — | — | — | ||
格孢腔菌 Pleosporales sp.2 | 0.024 | 65 | — | — | — | — | ||
青霉菌 Penicillium sp. | — | — | 0.030 | 70 | — | — | ||
高山被孢霉 Mortierella alpina | — | — | 0.058 | 90 | — | — | ||
微糙枝孢 Cladosporium asperulatum | — | — | 0.027 | 75 | — | — | ||
芽枝状枝孢 Cladosporium pseudocladosporioides | — | — | 0.029 | 95 | — | — | ||
链格孢 Alternaria chlamydosporigena | — | — | 0.096 | 95 | — | — | ||
壳霉菌 Stagonosporopsis sp. | — | — | 0.027 | 80 | — | — | ||
Plectosphaerella plurivora | — | — | 0.036 | 80 | — | — | ||
两型蜡蚧菌 Lecanicillium dimorphum | — | — | 0.044 | 95 | — | — | ||
三线镰刀菌 Fusarium tricinctum | — | — | 0.068 | 95 | — | — | ||
微结节霉菌 Microdochium bolleyi | — | — | 0.054 | 85 | — | — | ||
比阿娄维扎青霉 Penicillium bialowiezense | — | — | — | — | 0.266 | 100 | ||
短密青霉 Penicillium brevicompactum | — | — | — | — | 0.111 | 90 | ||
枝状枝孢 Cladosporium cladosporioides | — | — | — | — | 0.035 | 70 | ||
密丛毛霉 Mucor plumbeus | — | — | — | — | 0.043 | 85 |
优势种 Dominant species | 空间生态位宽度 Spatial niche width | 时间生态位宽度 Temporal niche width | 时空生态位宽度 Spatial-temporal niche breadth | ||||
---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 春 Spring | 夏 Summer | 秋 Autumn | ||
普通青霉 Penicillium commune | 0.220 | 0.255 | 0.156 | 0.979 | 0.215 | 0.250 | 0.153 |
酒色青霉 Penicillium vinaceum | 0.154 | 0.254 | — | 0.665 | 0.103 | 0.169 | — |
壳青霉 Penicillium crustosum | 0.033 | — | 0.105 | 0.652 | 0.022 | — | 0.069 |
灰玫瑰青霉 Penicillium griseoroseum | 0.338 | — | 0.103 | 0.565 | 0.191 | — | 0.058 |
波兰青霉 Penicillium polonicum | 0.223 | — | — | 0.333 | 0.074 | — | — |
青霉菌 Penicillium goetzii | 0.355 | — | — | 0.333 | 0.118 | — | — |
冻土毛霉 Mucor hiemalis | 0.037 | 0.058 | — | 0.653 | 0.024 | — | — |
总状毛霉 Mucor racemosus | 0.160 | — | — | 0.333 | 0.053 | — | — |
格孢腔菌 Pleosporales sp.2 | 0.289 | — | — | 0.333 | 0.096 | — | — |
青霉菌 Penicillium sp. | — | 0.513 | — | 0.333 | — | 0.171 | — |
高山被孢霉 Mortierella alpina | — | 0.211 | — | 0.333 | — | 0.070 | — |
微糙枝孢 Cladosporium asperulatum | — | 0.398 | — | 0.333 | — | 0.133 | — |
芽枝状枝孢 Cladosporium pseudocladosporioides | — | 0.657 | — | 0.333 | — | 0.219 | — |
链格孢 Alternaria chlamydosporigena | — | 0.104 | — | 0.333 | — | 0.035 | — |
壳霉菌 Stagonosporopsis sp. | — | 0.942 | — | 0.333 | — | 0.314 | — |
小不整球壳菌 Plectosphaerella plurivora | — | 0.278 | — | 0.333 | — | 0.093 | — |
两型蜡蚧菌 Lecanicillium dimorphum | — | 0.383 | — | 0.333 | — | 0.128 | — |
三线镰刀菌 Fusarium tricinctum | — | 0.160 | — | 0.333 | — | 0.053 | — |
微结节霉属 Microdochium bolleyi | — | 0.237 | — | 0.333 | — | 0.079 | — |
比阿娄维扎青霉 Penicillium bialowiezense | — | — | 0.017 | 0.333 | — | — | 0.006 |
短密青霉 Penicillium brevicompactum | — | — | 0.077 | 0.333 | — | — | 0.026 |
枝状枝孢 Cladosporium cladosporioides | — | — | 0.105 | 0.333 | — | — | 0.035 |
密丛毛霉 Mucor plumbeus | — | — | 0.251 | 0.333 | — | — | 0.084 |
Table 2 Niche width of dominant species of filamentous fungi in different seasons in Nam Co Lake
优势种 Dominant species | 空间生态位宽度 Spatial niche width | 时间生态位宽度 Temporal niche width | 时空生态位宽度 Spatial-temporal niche breadth | ||||
---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 春 Spring | 夏 Summer | 秋 Autumn | ||
普通青霉 Penicillium commune | 0.220 | 0.255 | 0.156 | 0.979 | 0.215 | 0.250 | 0.153 |
酒色青霉 Penicillium vinaceum | 0.154 | 0.254 | — | 0.665 | 0.103 | 0.169 | — |
壳青霉 Penicillium crustosum | 0.033 | — | 0.105 | 0.652 | 0.022 | — | 0.069 |
灰玫瑰青霉 Penicillium griseoroseum | 0.338 | — | 0.103 | 0.565 | 0.191 | — | 0.058 |
波兰青霉 Penicillium polonicum | 0.223 | — | — | 0.333 | 0.074 | — | — |
青霉菌 Penicillium goetzii | 0.355 | — | — | 0.333 | 0.118 | — | — |
冻土毛霉 Mucor hiemalis | 0.037 | 0.058 | — | 0.653 | 0.024 | — | — |
总状毛霉 Mucor racemosus | 0.160 | — | — | 0.333 | 0.053 | — | — |
格孢腔菌 Pleosporales sp.2 | 0.289 | — | — | 0.333 | 0.096 | — | — |
青霉菌 Penicillium sp. | — | 0.513 | — | 0.333 | — | 0.171 | — |
高山被孢霉 Mortierella alpina | — | 0.211 | — | 0.333 | — | 0.070 | — |
微糙枝孢 Cladosporium asperulatum | — | 0.398 | — | 0.333 | — | 0.133 | — |
芽枝状枝孢 Cladosporium pseudocladosporioides | — | 0.657 | — | 0.333 | — | 0.219 | — |
链格孢 Alternaria chlamydosporigena | — | 0.104 | — | 0.333 | — | 0.035 | — |
壳霉菌 Stagonosporopsis sp. | — | 0.942 | — | 0.333 | — | 0.314 | — |
小不整球壳菌 Plectosphaerella plurivora | — | 0.278 | — | 0.333 | — | 0.093 | — |
两型蜡蚧菌 Lecanicillium dimorphum | — | 0.383 | — | 0.333 | — | 0.128 | — |
三线镰刀菌 Fusarium tricinctum | — | 0.160 | — | 0.333 | — | 0.053 | — |
微结节霉属 Microdochium bolleyi | — | 0.237 | — | 0.333 | — | 0.079 | — |
比阿娄维扎青霉 Penicillium bialowiezense | — | — | 0.017 | 0.333 | — | — | 0.006 |
短密青霉 Penicillium brevicompactum | — | — | 0.077 | 0.333 | — | — | 0.026 |
枝状枝孢 Cladosporium cladosporioides | — | — | 0.105 | 0.333 | — | — | 0.035 |
密丛毛霉 Mucor plumbeus | — | — | 0.251 | 0.333 | — | — | 0.084 |
样点Sites | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | — | |||||||||||||||||||
2 | 0.930 | — | ||||||||||||||||||
3 | 0.891 | 0.982 | — | |||||||||||||||||
4 | 0.868 | 0.974 | 0.928 | — | ||||||||||||||||
5 | 0.858 | 0.976 | 0.997 | 0.929 | — | |||||||||||||||
6 | 0.997 | 0.920 | 0.894 | 0.840 | 0.860 | — | ||||||||||||||
7 | 0.886 | 0.967 | 0.997 | 0.894 | 0.992 | 0.896 | — | |||||||||||||
8 | 0.842 | 0.981 | 0.970 | 0.982 | 0.977 | 0.826 | 0.947 | — | ||||||||||||
9 | 0.887 | 0.952 | 0.999 | 0.940 | 0.998 | 0.887 | 0.993 | 0.979 | — | |||||||||||
10 | 0.913 | 0.952 | 0.878 | 0.979 | 0.867 | 0.881 | 0.842 | 0.928 | 0.889 | — | ||||||||||
11 | 0.983 | 0.982 | 0.952 | 0.939 | 0.931 | 0.975 | 0.940 | 0.928 | 0.951 | 0.952 | — | |||||||||
12 | 0.930 | 0.971 | 0.990 | 0.893 | 0.977 | 0.940 | 0.994 | 0.931 | 0.984 | 0.862 | 0.966 | — | ||||||||
13 | 0.968 | 0.921 | 0.843 | 0.915 | 0.815 | 0.944 | 0.817 | 0.853 | 0.847 | 0.972 | 0.964 | 0.861 | — | |||||||
14 | 0.866 | 0.759 | 0.633 | 0.792 | 0.598 | 0.826 | 0.595 | 0.676 | 0.642 | 0.900 | 0.832 | 0.659 | 0.950 | — | ||||||
15 | 0.829 | 0.869 | 0.937 | 0.742 | 0.925 | 0.861 | 0.963 | 0.826 | 0.923 | 0.685 | 0.860 | 0.960 | 0.697 | 0.446 | — | |||||
16 | 0.875 | 0.895 | 0.948 | 0.772 | 0.931 | 0.903 | 0.970 | 0.841 | 0.935 | 0.732 | 0.897 | 0.975 | 0.754 | 0.521 | 0.996 | — | ||||
17 | 0.986 | 0.879 | 0.811 | 0.835 | 0.772 | 0.973 | 0.799 | 0.778 | 0.809 | 0.911 | 0.950 | 0.857 | 0.981 | 0.931 | 0.724 | 0.782 | — | |||
18 | 0.962 | 0.991 | 0.980 | 0.939 | 0.966 | 0.960 | 0.973 | 0.949 | 0.979 | 0.929 | 0.993 | 0.988 | 0.927 | 0.763 | 0.905 | 0.932 | 0.911 | — | ||
19 | 0.831 | 0.904 | 0.965 | 0.798 | 0.960 | 0.855 | 0.983 | 0.879 | 0.956 | 0.732 | 0.879 | 0.973 | 0.720 | 0.468 | 0.994 | 0.989 | 0.724 | 0.926 | — | |
20 | 0.906 | 0.918 | 0.958 | 0.805 | 0.941 | 0.929 | 0.976 | 0.862 | 0.947 | 0.775 | 0.925 | 0.986 | 0.798 | 0.580 | 0.988 | 0.998 | 0.822 | 0.954 | 0.984 | — |
Table 3 Niche overlap of filamentous fungal communities at different sites in Nam Co Lake
样点Sites | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | — | |||||||||||||||||||
2 | 0.930 | — | ||||||||||||||||||
3 | 0.891 | 0.982 | — | |||||||||||||||||
4 | 0.868 | 0.974 | 0.928 | — | ||||||||||||||||
5 | 0.858 | 0.976 | 0.997 | 0.929 | — | |||||||||||||||
6 | 0.997 | 0.920 | 0.894 | 0.840 | 0.860 | — | ||||||||||||||
7 | 0.886 | 0.967 | 0.997 | 0.894 | 0.992 | 0.896 | — | |||||||||||||
8 | 0.842 | 0.981 | 0.970 | 0.982 | 0.977 | 0.826 | 0.947 | — | ||||||||||||
9 | 0.887 | 0.952 | 0.999 | 0.940 | 0.998 | 0.887 | 0.993 | 0.979 | — | |||||||||||
10 | 0.913 | 0.952 | 0.878 | 0.979 | 0.867 | 0.881 | 0.842 | 0.928 | 0.889 | — | ||||||||||
11 | 0.983 | 0.982 | 0.952 | 0.939 | 0.931 | 0.975 | 0.940 | 0.928 | 0.951 | 0.952 | — | |||||||||
12 | 0.930 | 0.971 | 0.990 | 0.893 | 0.977 | 0.940 | 0.994 | 0.931 | 0.984 | 0.862 | 0.966 | — | ||||||||
13 | 0.968 | 0.921 | 0.843 | 0.915 | 0.815 | 0.944 | 0.817 | 0.853 | 0.847 | 0.972 | 0.964 | 0.861 | — | |||||||
14 | 0.866 | 0.759 | 0.633 | 0.792 | 0.598 | 0.826 | 0.595 | 0.676 | 0.642 | 0.900 | 0.832 | 0.659 | 0.950 | — | ||||||
15 | 0.829 | 0.869 | 0.937 | 0.742 | 0.925 | 0.861 | 0.963 | 0.826 | 0.923 | 0.685 | 0.860 | 0.960 | 0.697 | 0.446 | — | |||||
16 | 0.875 | 0.895 | 0.948 | 0.772 | 0.931 | 0.903 | 0.970 | 0.841 | 0.935 | 0.732 | 0.897 | 0.975 | 0.754 | 0.521 | 0.996 | — | ||||
17 | 0.986 | 0.879 | 0.811 | 0.835 | 0.772 | 0.973 | 0.799 | 0.778 | 0.809 | 0.911 | 0.950 | 0.857 | 0.981 | 0.931 | 0.724 | 0.782 | — | |||
18 | 0.962 | 0.991 | 0.980 | 0.939 | 0.966 | 0.960 | 0.973 | 0.949 | 0.979 | 0.929 | 0.993 | 0.988 | 0.927 | 0.763 | 0.905 | 0.932 | 0.911 | — | ||
19 | 0.831 | 0.904 | 0.965 | 0.798 | 0.960 | 0.855 | 0.983 | 0.879 | 0.956 | 0.732 | 0.879 | 0.973 | 0.720 | 0.468 | 0.994 | 0.989 | 0.724 | 0.926 | — | |
20 | 0.906 | 0.918 | 0.958 | 0.805 | 0.941 | 0.929 | 0.976 | 0.862 | 0.947 | 0.775 | 0.925 | 0.986 | 0.798 | 0.580 | 0.988 | 0.998 | 0.822 | 0.954 | 0.984 | — |
季节 Seasons | 春 Spring | 夏 Summer | 秋 Autumn |
---|---|---|---|
春 Spring | — | ||
夏 Summer | 0.772 | — | |
秋 Autumn | 0.864 | 0.838 | — |
Table 4 Niche overlap of filamentous fungal communities in different seasons in Nam Co Lake
季节 Seasons | 春 Spring | 夏 Summer | 秋 Autumn |
---|---|---|---|
春 Spring | — | ||
夏 Summer | 0.772 | — | |
秋 Autumn | 0.864 | 0.838 | — |
Figure 4 Correlation between water environmental factors and the abundance of dominant species of filamentous fungi in different seasons in Nam Co Lake
研究区域 Study areas | 物种类群 Species richness | 生态位宽度 Niche width | 生态位重叠 Niche overlap | 优势种更替率 Replacement rate of dominant species |
---|---|---|---|---|
纳木措 Nam Co Lake | 丝状真菌 | 空间0.017‒0.942 时间0.333‒0.979 时空0.006‒0.314 | 空间0.446‒0.999 时间0.772‒0.864 | 春季与夏季84% 夏季与秋季95% 春季与秋季77% |
北部湾北部 (郑挺等, Northern Beibu Gulf | 浮游动物 | 春季0.04‒0.62 夏季0.05‒0.67 秋季0.05‒0.61 冬季0.03‒0.60 | 年度0.02‒0.89 | — |
烟台近海海域 (侯朝伟等, Yantai offshore waters | 浮游动物 | 春季0.58‒0.97 夏季0.26‒0.91 | 春季0.31‒0.96 夏季0.26‒0.97 | 春季与夏季73.33% |
西藏拉萨河 (张鹏等, Lhasa River of Tibet | 原生动物 | 空间0.071‒0.354 时间0.378‒0.695 时空0.027‒0.246 | 空间0.123‒0.997 时间0.005‒0.412 时空0.001‒0.106 | 春季与夏季57.14% 夏季与秋季66.67% |
西藏麦地卡湿地 (安瑞志等, Mitika Wetland of Tibet | 原生动物 | 丰水期0.101‒0.445 枯水期0.141‒0.272 | 丰水期0.089‒0.456 枯水期0.141‒0.273 | — |
Table 5 Comparison of niche studies of microorganisms in Nam Co Lake with those in other regions
研究区域 Study areas | 物种类群 Species richness | 生态位宽度 Niche width | 生态位重叠 Niche overlap | 优势种更替率 Replacement rate of dominant species |
---|---|---|---|---|
纳木措 Nam Co Lake | 丝状真菌 | 空间0.017‒0.942 时间0.333‒0.979 时空0.006‒0.314 | 空间0.446‒0.999 时间0.772‒0.864 | 春季与夏季84% 夏季与秋季95% 春季与秋季77% |
北部湾北部 (郑挺等, Northern Beibu Gulf | 浮游动物 | 春季0.04‒0.62 夏季0.05‒0.67 秋季0.05‒0.61 冬季0.03‒0.60 | 年度0.02‒0.89 | — |
烟台近海海域 (侯朝伟等, Yantai offshore waters | 浮游动物 | 春季0.58‒0.97 夏季0.26‒0.91 | 春季0.31‒0.96 夏季0.26‒0.97 | 春季与夏季73.33% |
西藏拉萨河 (张鹏等, Lhasa River of Tibet | 原生动物 | 空间0.071‒0.354 时间0.378‒0.695 时空0.027‒0.246 | 空间0.123‒0.997 时间0.005‒0.412 时空0.001‒0.106 | 春季与夏季57.14% 夏季与秋季66.67% |
西藏麦地卡湿地 (安瑞志等, Mitika Wetland of Tibet | 原生动物 | 丰水期0.101‒0.445 枯水期0.141‒0.272 | 丰水期0.089‒0.456 枯水期0.141‒0.273 | — |
[1] | AINSWORTH G C, 2008. Ainsworth & Bisby’s dictionary of the fungi[M]. Wallingford: CAB Iternational. |
[2] | ANTUNES J T, SOUSA A G G, AZEVEDO J, et al., 2022. Distinct temporal succession of bacterial communities in early marine biofilms in a Portuguese Atlantic Port[J]. Frontiers in Mcrobiology, 11: 1938. |
[3] |
CANTRELL S A, DIANESE J C, FELL J, et al., 2011. Unusual fungal niches[J]. Mycologia, 103(6): 1161-1174.
DOI PMID |
[4] |
COLWELL R K, FUTUYMA D J, 1971. On the measurement of niche breadth and overlap[J]. Ecology, 52(4): 567-576.
DOI PMID |
[5] |
CONG Z, KANG S, GAO S, et al., 2013. Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record[J]. Environmental Science & Technology, 47(6): 2579-2586.
DOI URL |
[6] | ESSER D S, LEVEAU J H J, MEYER K M, et al., 2015. Spatial scales of interactions among bacteria and between bacteria and the leaf surface[J]. FEMS Microbiology Ecology, 91(3): fiu034. |
[7] |
GRINNELL J, 1917. The niche-relationships of the California Thrasher[J]. The Auk, 34(4): 427-433.
DOI URL |
[8] |
GLASL B, WEBSTER N S, BOURNE D G, 2017. Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems[J]. Marine Biology, 164(4): 1-18.
DOI URL |
[9] |
HABIB O A, TIPPETT R, MURPHY K J, 1997. Seasonal changes in phytoplankton community structure in relation to physico-chemical factors in Loch Lomond, Scotland[J]. Hydrobiologia, 350(1): 63-79.
DOI URL |
[10] |
HASSANI M, DURAN P, HACQUARD S, 2018. Microbial interactions within the plant holobiont[J]. Microbiome, 6(1): 1-17.
DOI URL |
[11] |
HELAOUET P, BEAUGRAND G, PHYSIOLOGY, 2009. Ecological niches and species distribution[J]. Ecosystems, 12(8): 1235-1245.
DOI URL |
[12] |
JIAO C C, ZHAO D Y, ZENG J, et al., 2020. Disentangling the seasonal co-occurrence patterns and ecological stochasticity of planktonic and benthic bacterial communities within multiple lakes[J]. Science of the Total Environment, 740: 140010.
DOI URL |
[13] | KINSEY G, PATERSON R, KELLEY J, 2003. Filamentous fungi in water systems[J]. The Handbook of Water and Wastewater Microbiology, 77: 819. |
[14] |
KIS-PAPO T, OREN A, WASSER S P, et al., 2003. Survival of filamentous fungi in hypersaline Dead Sea water[J]. Microbial Ecology, 45(2): 183-190.
DOI URL |
[15] |
LANDEWEERT R, LEEFLANG P, KUYPER T W, et al., 2003. Molecular identification of ectomycorrhizal mycelium in soil horizons[J]. Applied and Environmental Microbiology, 69(1): 327-333.
DOI PMID |
[16] |
LI Y, HE Q K, MA X W, et al., 2019. Plant traits interacting with sediment properties regulate sediment microbial composition under different aquatic DIC levels caused by rising atmospheric CO2[J]. Plant and Soil, 445(1): 497-512.
DOI URL |
[17] |
LIN Q Q, XU L, HOU J Z, et al., 2017. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming[J]. Water Research, 124: 618-629.
DOI PMID |
[18] | LIU X D, CHEN B D, 2000. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(14): 1729-1742. |
[19] | MCNAUGHTON S J, 1967. Relationships among functional properties of Californian grassland[J]. Nature, 216(5111): 168-169. |
[20] | MILNER A M, BROWN L E, HANNAH D M, 2009. Hydroecological response of river systems to shrinking glaciers[J]. Hydrological Processes: An International Journal, 23(1): 62-77. |
[21] |
PIANKA E R, 1973. The structure of lizard communities[J]. Annual Review of Ecology and Systematics, 4(1): 53-74.
DOI URL |
[22] |
SPENCER R G M, GUO W D, RAYMOND P A, et al., 2014. Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 142: 64-74.
DOI URL |
[23] |
TANG W, ZHOU T C, SUN J, et al., 2017. Accelerated urban expansion in Lhasa city and the implications for sustainable development in a plateau city[J]. Sustainability, 9(9): 1499.
DOI URL |
[24] |
WAN W, XIAO P F, FENG X Z, et al., 2014. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data[J]. Chinese Science Bulletin, 59(10): 1021-1035.
DOI URL |
[25] |
WANG C, LIU S Y, ZHANG Y, et al., 2018. Bacterial communities and their predicted functions explain the sediment nitrogen changes along with submerged macrophyte restoration[J]. Microbial Ecology, 76(3): 625-636.
DOI PMID |
[26] |
WILLIAMS H T P, LENTON T M, 2008. Environmental regulation in a network of simulated microbial ecosystems[J]. Proceedings of the National Academy of Sciences, 105(30): 10432-10437.
DOI URL |
[27] |
XU B, CAO J, HANSEN J, et al., 2009. Black soot and the survival of Tibetan glaciers[J]. Proceedings of the National Academy of Sciences, 106(52): 22114-22118.
DOI URL |
[28] |
XIA P H, YAN D B, SUN R G, et al., 2020. Community composition and correlations between bacteria and algae within epiphytic biofilms on submerged macrophytes in a plateau lake, southwest China[J]. Science of the Total Environment, 727: 138398.
DOI URL |
[29] |
ZHANG G Q, LUO W, CHEN W F, et al., 2019. A robust but variable lake expansion on the Tibetan Plateau[J]. Science Bulletin, 64(18): 1306-1309.
DOI URL |
[30] |
ZHANG G, YAO T, XIE H, et al., 2020. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms[J]. Earth-Science Reviews, 208: 103269.
DOI URL |
[31] |
ZHANG L Y, DELGADO-BAQUERIZO M, SHI Y, et al., 2021. Co-existing water and sediment bacteria are driven by contrasting environmental factors across glacier-fed aquatic systems[J]. Water Research, 198: 117139.
DOI URL |
[32] |
ZHANG X, YAN Q Y, YU Y H, et al., 2014. Spatiotemporal pattern of bacterioplankton in Donghu Lake[J]. Chinese Journal of Oceanology and Limnology, 32(3): 554-564.
DOI URL |
[33] | 安瑞志, 张鹏, 达珍, 等, 2021. 西藏麦地卡湿地不同水文期原生动物优势种生态位及其种间联结性[J]. 林业科学, 57(2): 126-138. |
AN R Z, ZHANG P, DA Z, et al., 2021. Niche and interspecific association of dominant protozoan species under different hydrologic periods in the Mitika Wetland of Tibet, China[J]. Scientia Silvae Sinicae, 57(2): 126-138. | |
[34] | 何雄波, 李军, 沈忱, 等, 2018. 闽江口主要渔获鱼类的生态位宽度与重叠[J]. 应用生态学报, 29(9): 3085-3092. |
HE X B, LI J, SHEN C, et al., 2018. The breadth and overlap of ecological niche of major fish species in the Mingjiang River estuary, China[J]. Chinese Journal of Applied Ecology, 29(9): 3085-3092. | |
[35] | 侯朝伟, 孙西艳, 刘永亮, 等, 2020. 烟台近海浮游动物优势种空间生态位研究[J]. 生态学报, 40(16): 5822-5833. |
HOU Z W, SUN X Y, LIU Y L, et al., 2020. Spatial niches of dominant zooplankton species in the Yantai offshore waters[J]. Acta Ecologica Sinica, 40(16): 5822-5833. | |
[36] | 黄保宏, 邹运鼎, 毕守东, 等, 2005. 梅园昆虫群落特征、动态及优势种生态位[J]. 应用生态学报, 16(2): 307-312. |
HUANG B H, ZOU Y D, BI S D, et al., 2005. Characteristics, dynamics and niche of insect community in plum orchard[J]. Chinese Journal of Applied Ecology, 16(2): 307-312. | |
[37] | 李德志, 石强, 臧润国, 等, 2006. 物种或种群生态位宽度与生态位重叠的计测模型[J]. 林业科学, 42(7): 95-103. |
LI D Z, SHI Q, ZANG R G, et al., 2006. Models for niche breadth and niche overlap of species or populations[J]. Scientia Silvae Sinicae, 42(7): 95-103. | |
[38] | 梁淼, 姜倩, 孙丽艳, 等, 2018. 曹妃甸近岸海域大、中型浮游动物优势种空间生态位研究[J]. 生态环境学报, 27(7): 1241-1250. |
LIANG M, JIANG Q, SUN L Y, et al., 2018. Spatial niches of dominant macro-zooplankton and meso-zooplankton species in the coastal area of Caofeidian[J]. Ecology and Environmental Sciences, 27(7): 1241-1250. | |
[39] | 马玲, 顾伟, 王利东, 等, 2012. 扎龙湿地的昆虫群落生态位[J]. 林业科学, 48(5): 81-87. |
MA L, GU W, WANG L D, et al., 2012. Insect community niche in the Zhalong Wetland[J]. Scientia Silvae Sinicae, 48(5): 81-87. | |
[40] | 彭松耀, 李新正, 王洪法, 等, 2015. 南黄海春季大型底栖动物优势种生态位[J]. 生态学报, 35(6): 1917-1928. |
PENG S Y, LI X Z, WANG H F, et al., 2015. Niche analysis of dominant species of macrozoobenthic community in the southern Yellow Sea in spring[J]. Acta Ecologica Sinica, 35(6): 1917-1928. | |
[41] | 求锦津, 王咏雪, 李铁军, 等, 2018. 舟山长白海域主要游泳动物生态位及其分化研究[J]. 生态学报, 38(18): 6759-6767. |
QIU J J, WANG Y X, LI T J, et al., 2018. Study on the niche and differentiation of major nekton species in the Zhoushan Changbai sea area[J]. Acta Ecologica Sinica, 38(18): 6759-6767. | |
[42] | 孙立夫, 张艳华, 裴克全, 2009. 一种高效提取真菌总DNA的方法[J]. 菌物学报, 28(2): 299-302. |
SUN L F, ZHANG Y H, PEI K Q, 2009. A rapid extraction of genomic DNA from fungi[J]. Mycosystema, 28(2): 299-302. | |
[43] | 王艳红, 郝兆, 郭小芳, 等, 2021. 纳木错夏季酵母菌多样性及其影响因素[J]. 中国环境科学, 41(11): 5361-5371. |
WANG Y H, HAO Z, GUO X F, et al., 2021. Analysis on yeast diversity and the influencing factors during summertime in Nam Co Lake[J]. China Environmental Science, 41(11): 5361-5371. | |
[44] | 汪志聪, 吴卫菊, 左明, 等, 2010. 巢湖浮游植物群落生态位的研究[J]. 长江流域资源与环境, 19(6): 685-691. |
WANG Z C, WU W J, ZUO M, et al., 2010. Niche analysis of phytoplankton community Lake Chaohu[J]. Resources and Environment in the Yangtze Basin, 19(6): 685-691. | |
[45] | 邢殿楼, 霍堂斌, 吴会民, 等, 2016. 总磷, 总氮联合消化的测定方法[J]. 大连海洋大学学报, 21(3): 219-225. |
XING D L, HUO T B, WU H M, et al., 2016. Simultaneous digestion for determination of total phosphorus and total nitrogen in sea water[J]. Journal of DaLian Fisheries University, 21(3): 219-225. | |
[46] | 严亚萍, 李治滢, 董明华, 等, 2013. 云南阳宗海酵母菌种群结构及产胞外酶测试[J]. 微生物学报, 53(11): 1205-1212. |
YAN Y P, LI Z Y, DONG M H, et al., 2013. Yeasts from Yangzonghai Lake in Yunnan (China): Diversity and extracellular enzymes[J]. Acta Microbiologica Sinica, 53(11): 1205-1212. | |
[47] | 张皓, 宋昌民, 闫启仑, 等, 2016. 辽河口春、夏季浮游动物空间生态位的比较[J]. 海洋环境科学, 35(6): 920-925. |
ZHANG H, SONG C M, YAN Q L, et al., 2016. Comparative studies on the spatial niche of zooplankton in the Liaohe estuary in spring and summer[J]. Marine Environmental Science, 35(6): 920-925. | |
[48] | 张鹏, 刘洋, 安瑞志, 等, 2022. 西藏拉萨河中下游原生动物优势种时空生态位[J]. 林业科学, 58(1): 78-88. |
ZHANG P, LIU Y, AN R Z, et al., 2022. Spatio-temporal niche of dominant protozoa species in the midstream and downstream of Lhasa River, Tibet, China[J]. Scientia Silvae Sinicae, 58(1): 78-88. | |
[49] | 郑挺, 林元烧, 曹文清, 等, 2014. 北部湾北部生态系统结构与功能——浮游动物空间生态位及其分化[J]. 生态学报, 34(13): 3635-3649. |
ZHENG T, LIN Y S, CAO W Q, et al., 2014. Ecosystem structure and function in northern Beibu Gulf: zooplankton spatial niche and its differentiation[J]. Acta Ecologica Sinica, 34(13): 3635-3649. | |
[50] | 郑艳艳, 郭小芳, 郝兆, 等, 2022. 纳木措春季沿岸水体可培养细菌群落特征[J]. 干旱区资源与环境, 36(3): 178-186. |
ZHENG Y Y, GUO X F, HAO Z, et al., 2022. Characteristics of culturable bacterial community in coastal water of Lake Nam Co in spring[J]. Journal of Arid Land Resources and Environment, 36(3): 178-186. |
[1] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[2] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[3] | KOU Zhu, QING Chun, YUAN Changguo, LI Ping. Diversity and Distribution of Sulfur Oxidizing Bacteria in Hot Springs of Northeast Tibet, China [J]. Ecology and Environment, 2023, 32(5): 989-1000. |
[4] | WANG Xinyu, GAO Dengzhou, LIU Bolin, WANG Bin, ZHENG Yanling, LI Xiaofei, HOU Lijun. The Tidal-cycle Variation and Influencing Factors of Dark Carbon Fixation Process in the Yangtze Estuary [J]. Ecology and Environment, 2023, 32(4): 733-743. |
[5] | HU Fang, LIU Jutao, WEN Chunyun, HAN Liu, WEN Hui. Phytoplankton Community Structure and Evaluation of Aquatic Ecological Conditions in Fu River Basin [J]. Ecology and Environment, 2023, 32(4): 744-755. |
[6] | HE Yanhu, GONG Zhenjie, WU Haibin, CAI Yanpeng, YANG Zhifeng, CHEN Xiaohong. Spatiotemporal Evolution of Urban Eco-efficiency and Its Influencing Factors in Guangdong-Hong Kong-Macao Greater Bay Area [J]. Ecology and Environment, 2023, 32(3): 469-480. |
[7] | JIANG Nihao, ZHANG Shihao, ZHANG Shihan. Interspecific Associations and Environmental Interpretation of the Dominant Species of the Communities Invaded by Ageratina adenophora in Ailao Mountains [J]. Ecology and Environment, 2022, 31(7): 1370-1382. |
[8] | XIA Kai, DENG Pengfei, MA Ruihao, WANG Fei, WEN Zhengyu, XU Xiaoniu. Changes of Soil Bacterial Community Structure and Diversity from Conversion of Masson Pine Secondary Forest to Slash Pine and Chinese Fir Plantations [J]. Ecology and Environment, 2022, 31(3): 460-469. |
[9] | LONG Jing, HUANG Yao, LIU Zhanfeng, JIAN Shuguang, WEI Liping, WANG Jun. Leaf Traits and Nutrient Resorption of Two Woody Species on A Tropical Coral Island [J]. Ecology and Environment, 2022, 31(2): 248-256. |
[10] | LI Cong, LÜ Jinghua, LU Mei, YANG Zhidong, LIU Pan, REN Yulian, DU Fan. Responses of Soil Bacterial Communities to Vertical Vegetarian Zone Changes in the Subtropical Forests, Southeastern Yunnan [J]. Ecology and Environment, 2022, 31(10): 1971-1983. |
[11] | LIU Xiaoju, CHU Jiangtao, ZHANG Yue, SHAN Qi. Effects of Environmental Factors and Fire Disturbance Factors on Distribution of Chamerion angustifolium in Kanas Taiga [J]. Ecology and Environment, 2022, 31(1): 37-43. |
[12] | CAI Xi'an, HUANG Juan, WU Tong, LIU Juxiu, JIANG Fen, WANG Senhao. Study on Methane Emission from Tree Leaves [J]. Ecology and Environment, 2021, 30(9): 1842-1847. |
[13] | YAO Shiting, LU Guangxin, DENG Ye, DANG Ning, WANG Yingcheng, ZHANG Haijuan, YAN Huilin. Effects of Simulated Warming on Soil Fungal Community Composition and Diversity [J]. Ecology and Environment, 2021, 30(7): 1404-1411. |
[14] | Xue Liyuan, Liu Zhiliang, Song Wei, An Ying, Yuan Xiaobo, Chen Xiao. Spatial Distribution of Aurelia sp. Ephyrae and Its Relationship with Environmental Factors in the Coastal Waters of Qinhuangdao in Spring, 2020 [J]. Ecology and Environment, 2021, 30(6): 1240-1248. |
[15] | ZHENG Shiyu, ZHANG Lvshui, GUO Xiaomin, HUANG Zijun, XIAO Yihua. Spatial and Temporal Variations of Negative Oxygen Ions in the Air and Environmental Influencing Factors in Forest Environment with Different Canopy Densities: A Case Study of Maofeng Mountain in Guangzhou [J]. Ecology and Environment, 2021, 30(11): 2204-2212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn