Ecology and Environment ›› 2022, Vol. 31 ›› Issue (11): 2263-2274.DOI: 10.16258/j.cnki.1674-5906.2022.11.018
• Reviews • Previous Articles
JIANG Jing1,2(), RUAN Chengjie1, CHEN Xiaoyu1,2, WU Yi1, WANG Yongchuang1
Received:
2022-09-09
Online:
2022-11-18
Published:
2022-12-22
姜晶1,2(), 阮呈杰1, 陈霄宇1,2, 吴仪1, 汪永创1
作者简介:
姜晶(1986年生),男,讲师,博士,研究方向为重金属污染修复研究。E-mail: jiangjing@usts.edu.cn
基金资助:
CLC Number:
JIANG Jing, RUAN Chengjie, CHEN Xiaoyu, WU Yi, WANG Yongchuang. Research Progress on Simulated Aging of Microplastics and Its Effects on Pollutant Adsorption[J]. Ecology and Environment, 2022, 31(11): 2263-2274.
姜晶, 阮呈杰, 陈霄宇, 吴仪, 汪永创. 微塑料模拟老化及其对污染物吸附行为影响研究进展[J]. 生态环境学报, 2022, 31(11): 2263-2274.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.11.018
微塑料种类 Types of microplastics | 老化方式 Aging methods | 老化前形貌特征 Pre-aging morphological features | 老化后形貌特征 Morphological characteristics after aging | 参考文献 References |
---|---|---|---|---|
聚乙烯 Polyethylene (PE) | 酸处理 | 表面较光滑,褶皱较少 | 堆叠的褶皱和沟壑 | 2020 |
碱处理 | 线状褶皱,有少许微小残屑 | |||
氧化处理 | 高低不平的片状凸起,有较多细小颗粒残屑 | |||
高温冻融处理 | 堆叠的褶皱和沟壑 | |||
聚苯乙烯 Polystyrene (PS) | 酸处理 | 表面光滑,结构紧凑, 褶皱较少 | 腐蚀较轻,褶皱增多 | 2019 |
碱处理 | 严重腐蚀,出现大范围残屑,且表面粗糙程度明显增加 | |||
氧化处理 (H2O2) | 表面粗糙,无明显腐蚀 | |||
UV处理 | 表面出现空隙,更加粗糙 | 2020 | ||
滩涂自然风化 | 表面粗糙且不均匀,空隙更大 | 2018 | ||
芬顿处理 | 表面粗糙,部分粒子的表面有不同程度的折叠,甚至破碎 | 2020 | ||
聚丙烯 Polypropylene (PP) | 酸处理 | 表面光滑,褶皱较少 | 腐蚀较轻,褶皱增多 | 2019 |
碱处理 | 层状褶皱 | |||
氧化处理 (H2O2) | 褶皱增多,出现空隙 | |||
海水/淡水中UV处理 | 线状裂纹 | 2021 | ||
陆地/河口中UV处理 | 褶皱增多,发生老化侵蚀,但未解体 | |||
聚氯乙烯 polyvinyl chloride (PVC) | 破碎处理 | 表面光滑,褶皱较少 | 褶皱增多,更加粗糙,有更多的凸起和断裂 | 2021b |
放电等离子体处理 | 表面变得粗糙,塑料分解,产生大量小颗粒 | 2020 | ||
有机酸下UV老化 | 褶皱增多,表面粗糙 | 2020a | ||
粘土矿物下UV老化 | 表面出现裂纹和凹坑,更加粗糙 | 2022 | ||
聚对苯二甲酸 乙二醇酯 Polyethylene terephthalate (PET) | 过硫酸盐老化 | 表面平滑,没有裂纹 | 表面腐蚀、剥落,破碎出更加细小的颗粒 | 2021 |
酸处理 | 表面相对平滑 | 2019 | ||
碱处理 | 表面粗糙,遭受腐蚀,出现空隙 | |||
UV处理 | 表面出现褶皱,且随时间的延长,褶皱逐渐加深 | 2020b |
Table 1 Morphological characteristics of different types of microplastics after different aging treatments
微塑料种类 Types of microplastics | 老化方式 Aging methods | 老化前形貌特征 Pre-aging morphological features | 老化后形貌特征 Morphological characteristics after aging | 参考文献 References |
---|---|---|---|---|
聚乙烯 Polyethylene (PE) | 酸处理 | 表面较光滑,褶皱较少 | 堆叠的褶皱和沟壑 | 2020 |
碱处理 | 线状褶皱,有少许微小残屑 | |||
氧化处理 | 高低不平的片状凸起,有较多细小颗粒残屑 | |||
高温冻融处理 | 堆叠的褶皱和沟壑 | |||
聚苯乙烯 Polystyrene (PS) | 酸处理 | 表面光滑,结构紧凑, 褶皱较少 | 腐蚀较轻,褶皱增多 | 2019 |
碱处理 | 严重腐蚀,出现大范围残屑,且表面粗糙程度明显增加 | |||
氧化处理 (H2O2) | 表面粗糙,无明显腐蚀 | |||
UV处理 | 表面出现空隙,更加粗糙 | 2020 | ||
滩涂自然风化 | 表面粗糙且不均匀,空隙更大 | 2018 | ||
芬顿处理 | 表面粗糙,部分粒子的表面有不同程度的折叠,甚至破碎 | 2020 | ||
聚丙烯 Polypropylene (PP) | 酸处理 | 表面光滑,褶皱较少 | 腐蚀较轻,褶皱增多 | 2019 |
碱处理 | 层状褶皱 | |||
氧化处理 (H2O2) | 褶皱增多,出现空隙 | |||
海水/淡水中UV处理 | 线状裂纹 | 2021 | ||
陆地/河口中UV处理 | 褶皱增多,发生老化侵蚀,但未解体 | |||
聚氯乙烯 polyvinyl chloride (PVC) | 破碎处理 | 表面光滑,褶皱较少 | 褶皱增多,更加粗糙,有更多的凸起和断裂 | 2021b |
放电等离子体处理 | 表面变得粗糙,塑料分解,产生大量小颗粒 | 2020 | ||
有机酸下UV老化 | 褶皱增多,表面粗糙 | 2020a | ||
粘土矿物下UV老化 | 表面出现裂纹和凹坑,更加粗糙 | 2022 | ||
聚对苯二甲酸 乙二醇酯 Polyethylene terephthalate (PET) | 过硫酸盐老化 | 表面平滑,没有裂纹 | 表面腐蚀、剥落,破碎出更加细小的颗粒 | 2021 |
酸处理 | 表面相对平滑 | 2019 | ||
碱处理 | 表面粗糙,遭受腐蚀,出现空隙 | |||
UV处理 | 表面出现褶皱,且随时间的延长,褶皱逐渐加深 | 2020b |
项目 Project | BET Specific surface area/ (m2·g-1) | PV Pore volume/ (cm3·g-1) | 参考文献 References |
---|---|---|---|
PE | 0.1300 | 0.0006 | 2012 |
自然老化PENatural aged PE | 0.1700 | 0.0005 | |
PP | 0.1100 | 0.0003 | |
自然老化PPNatural aged PP | 0.1500 | 0.0006 | |
PS | 2.0300 | 0.0200 | 2018 |
自然老化PSNatural aged PS | 7.9100 | 0.0100 | |
PVC | 0.0418 | - | 2020 |
放电等离子体老化15 min后PVC Discharge plasma after 15 min aged PVC | 0.0430 | - | |
放电等离子体老化30 min后PVC Discharge plasma after 30 min aged PVC | 0.0437 | - | |
放电等离子体老化60 min后PVC Discharge plasma after 60 min aged PVC | 0.0443 | - | |
PVC | 0.0912 | - | 2021a |
UV老化PVC UV aged PE | 0.1698 | - | |
PET | 0.1500 | - | 2021 |
自然光老化PET Natural light aged PET | 0.1700 | - | |
PE | 0.2300 | 0.0027 | 2021b |
空气介质-UV老化PE Air - UV aged PE | 0.3500 | 0.0044 | |
水体介质-UV老化PE Water - UV aged PE | 0.7600 | 0.0017 | |
土壤介质-UV老化PE Soil - UV aged PE | 1.1600 | 0.0020 |
Table 2 Specific surface area (BET) and pore volume (PV) of microplastic particles before and after aging
项目 Project | BET Specific surface area/ (m2·g-1) | PV Pore volume/ (cm3·g-1) | 参考文献 References |
---|---|---|---|
PE | 0.1300 | 0.0006 | 2012 |
自然老化PENatural aged PE | 0.1700 | 0.0005 | |
PP | 0.1100 | 0.0003 | |
自然老化PPNatural aged PP | 0.1500 | 0.0006 | |
PS | 2.0300 | 0.0200 | 2018 |
自然老化PSNatural aged PS | 7.9100 | 0.0100 | |
PVC | 0.0418 | - | 2020 |
放电等离子体老化15 min后PVC Discharge plasma after 15 min aged PVC | 0.0430 | - | |
放电等离子体老化30 min后PVC Discharge plasma after 30 min aged PVC | 0.0437 | - | |
放电等离子体老化60 min后PVC Discharge plasma after 60 min aged PVC | 0.0443 | - | |
PVC | 0.0912 | - | 2021a |
UV老化PVC UV aged PE | 0.1698 | - | |
PET | 0.1500 | - | 2021 |
自然光老化PET Natural light aged PET | 0.1700 | - | |
PE | 0.2300 | 0.0027 | 2021b |
空气介质-UV老化PE Air - UV aged PE | 0.3500 | 0.0044 | |
水体介质-UV老化PE Water - UV aged PE | 0.7600 | 0.0017 | |
土壤介质-UV老化PE Soil - UV aged PE | 1.1600 | 0.0020 |
微塑料种类 Types of microplastics | 老化方式 Aging methods | 污染物 Contaminant | 老化对吸附的影响 Effects of aging on pollutants adsorption | 参考文献 References |
---|---|---|---|---|
PS | UV处理 | Pb(Ⅱ)、Cu(Ⅱ)、Cd(Ⅱ)、Ni(Ⅱ)、Zn(Ⅱ) | 老化可以显著增加PS对重金属的吸附,且吸附量随老化时间的延长而增加 | 2020 |
PE | UV处理 | TC、Cu(Ⅱ) | 老化PE微塑料对Cu(Ⅱ)、TC的吸附量皆大于未老化塑料 | 2021d |
PS | UV处理 | Cu(Ⅱ)、Cd(Ⅱ) | 老化PS对Cu(Ⅱ)、Cd(Ⅱ)的吸附能力分别比原始PS分别高101.6%和185.0% | Gao et al., |
PS、PVC、 PP、PET | UV处理 | Cd(Ⅱ) | 老化作用增加了微塑料对Cd(Ⅱ)的吸附能力,老化PS增幅最大,达到115% | 2022 |
PA、PS、PE | UV处理 | Cr(VI) | PA、PS、PE对Cr(VI)的平均饱和吸附量从730.69、146.11、75.61 μg·g-1分别增加到736.31、318.75、136.78 μg·g-1 | Li et al., |
PS、PVC | UV处理 | CIP | 老化PS和PVC对CIP吸附能力分别比相应的原始微塑料高123.3%和20.4% | Liu et al., |
PE、PS | UV处理 | TC | 老化前后PE对TC的平衡吸附量分别为0.388 mg·g-1和0.651 mg·g-1,老化前后PS对TC的平衡吸附量分别为0.730 mg·g-1和0.804 mg·g-1 | 王林等, |
PE | 自然老化 | Pb(Ⅱ) | 自然老化的PE由于表面有机薄膜的生成,比原始微塑料具有更强的吸附效率,其最大吸附量为13.60 mg·g-1,且当薄膜被破坏时,吸附效率显著降低 | Fu et al., |
HDPE | UV处理/人工风化 | PAHs | UV老化轻微增强了微塑料对PAHs的吸附,而人工风化过程显著增强了吸附 | Li et al., |
PE、PP | 介质阻挡放电 (DBD) 等离子体老化处理 | Zn(Ⅱ) | 老化后的PE和PP对Zn(Ⅱ)的吸附容量分别提高了22.7%和14.8% | 卢伟等, |
Table 3 Effects of aging on the adsorption of pollutants by microplastics
微塑料种类 Types of microplastics | 老化方式 Aging methods | 污染物 Contaminant | 老化对吸附的影响 Effects of aging on pollutants adsorption | 参考文献 References |
---|---|---|---|---|
PS | UV处理 | Pb(Ⅱ)、Cu(Ⅱ)、Cd(Ⅱ)、Ni(Ⅱ)、Zn(Ⅱ) | 老化可以显著增加PS对重金属的吸附,且吸附量随老化时间的延长而增加 | 2020 |
PE | UV处理 | TC、Cu(Ⅱ) | 老化PE微塑料对Cu(Ⅱ)、TC的吸附量皆大于未老化塑料 | 2021d |
PS | UV处理 | Cu(Ⅱ)、Cd(Ⅱ) | 老化PS对Cu(Ⅱ)、Cd(Ⅱ)的吸附能力分别比原始PS分别高101.6%和185.0% | Gao et al., |
PS、PVC、 PP、PET | UV处理 | Cd(Ⅱ) | 老化作用增加了微塑料对Cd(Ⅱ)的吸附能力,老化PS增幅最大,达到115% | 2022 |
PA、PS、PE | UV处理 | Cr(VI) | PA、PS、PE对Cr(VI)的平均饱和吸附量从730.69、146.11、75.61 μg·g-1分别增加到736.31、318.75、136.78 μg·g-1 | Li et al., |
PS、PVC | UV处理 | CIP | 老化PS和PVC对CIP吸附能力分别比相应的原始微塑料高123.3%和20.4% | Liu et al., |
PE、PS | UV处理 | TC | 老化前后PE对TC的平衡吸附量分别为0.388 mg·g-1和0.651 mg·g-1,老化前后PS对TC的平衡吸附量分别为0.730 mg·g-1和0.804 mg·g-1 | 王林等, |
PE | 自然老化 | Pb(Ⅱ) | 自然老化的PE由于表面有机薄膜的生成,比原始微塑料具有更强的吸附效率,其最大吸附量为13.60 mg·g-1,且当薄膜被破坏时,吸附效率显著降低 | Fu et al., |
HDPE | UV处理/人工风化 | PAHs | UV老化轻微增强了微塑料对PAHs的吸附,而人工风化过程显著增强了吸附 | Li et al., |
PE、PP | 介质阻挡放电 (DBD) 等离子体老化处理 | Zn(Ⅱ) | 老化后的PE和PP对Zn(Ⅱ)的吸附容量分别提高了22.7%和14.8% | 卢伟等, |
[1] |
AGHILINASROLLAHABADI K, SALEHI M, FUJIWARA T, 2021. Investigate the influence of microplastics weathering on their heavy metals uptake in stormwater[J]. Journal of Hazardous Materials, 408: 124439.
DOI URL |
[2] |
ALEXANDER S T, SAPP M, HAEEISON J P, et al., 2015. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging[J]. Analytical Chemistry, 87(12): 6032-6040.
DOI PMID |
[3] |
ALIMI O S, FARNER B J, HERNANDEZ L M, et al., 2018. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 52:1704-1724.
DOI URL |
[4] |
ALMEIDA C M R, MANJATE E, RAMOS S, 2020. Adsorption of Cd and Cu to different types of microplastics in estuarine salt marsh medium[J]. Marine Pollution Bulletin, 151: 110797.
DOI URL |
[5] | BAJT O, 2021. From plastics to microplastics and organisms[J]. Federation of European Biochemical Societies, 11(4): 954-966. |
[6] |
CHEN C, WEI F, YE L, et al., 2022. Adsorption of Cu2+ by UV aged polystyrene in aqueous solution[J]. Ecotoxicology and Environmental Safety, 232: 113292.
DOI URL |
[7] |
CHEN Q D, WANG Q, ZHANG C, et al., 2021. Aging simulation of thin-film plastics in different environments to examine the formation of microplastic[J]. Water Research, 202: 117462.
DOI URL |
[8] |
COMTE S, GUIBAUD G, BAUDU M, 2008. Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values[J]. Journal of Hazardous Materials, 151(1): 185-193.
PMID |
[9] |
DEY A S, BOSE H, MOHAPATRA B, et al., 2020. Biodegradation of unpretreated low-density polyethylene (LDPE) by Stenotrophomonas sp. and Achromobacter sp., isolated from waste dumpsite and drilling fluid[J]. Frontiers in Microbiology, 11: 603210.
DOI URL |
[10] |
DING L, YU X Q, GUO X T, et al., 2022. The photodegradation processes and mechanisms of polyvinyl chloride and polyethylene terephthalate microplastic in aquatic environments: Important role of clay minerals[J]. Water research, 208: 117879.
DOI URL |
[11] |
DONG Y M, GAO M L, SONG Z G, et al., 2020. As(Ⅲ) adsorption onto different-sized polystyrene microplastic particles and its mechanism[J]. Chemosphere, 239: 124792.
DOI URL |
[12] |
FOTOPOULOU K N, KARAPANAGIOTI H K, 2012. Surface properties of beached plastic pellets[J]. Marine Environmental Research, 81: 70-77.
DOI PMID |
[13] |
FU Q M, TAN X F, YE S J, et al., 2021. Mechanism analysis of heavy metal lead captured by natural-aged microplastics[J]. Chemosphere, 270: 128624.
DOI URL |
[14] |
FYTIANOS G, IOANNIDOU E, THYSIADOU A, et al., 2021. Microplastics in Mediterranean coastal countries: A recent overview[J]. Journal of Marine Science and Engineering, 9(1): 98.
DOI URL |
[15] |
GAO L, FU D D, ZHAO J J, et al., 2021. Microplastics aged in various environmental media exhibited strong sorption to heavy metals in seawater[J]. Marine Pollution Bulletin, 169: 112480.
DOI URL |
[16] | GEWERT B, PLASSMANN M, SANDBLOM O, et al., 2018. Identification of chain scission products released to water by plastic exposed to ultraviolet light[J]. Environmental Science & Technology Letters, 5(5): 272-276. |
[17] |
GILBERTO B, GIORGIO Z, ARIANNA B, et al., 2022. Physicochemical and biological ageing processes of (micro) plastics in the environment: A multi-tiered study on polyethylene[J]. Journal of Hazardous Materials, 407: 124357.
DOI URL |
[18] |
GUIBAUD G, HULLEBUSCH E V, BORDAS F, et al., 2009. Sorption of Cd(Ⅱ) and Pb(Ⅱ) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains: Modeling of the metal/ ligand ratio effect and role of the mineral fraction[J]. Bioresource Technology, 100(12): 2959-2968.
DOI URL |
[19] |
HANUN J N, HASSAN F, JIANG J J, 2021. Occurrence, fate, and sorption behavior of contaminants of emerging concern to microplastics: Influence of the weathering/aging process[J]. Journal of Environmental Chemical Engineering, 9(5): 106290.
DOI URL |
[20] |
HOLMES L A, TURNER A, THOMPSON R C, 2012. Adsorption of trace metals to plastic resin pellets in the marine environment[J]. Environmental Pollution, 160(1): 42-48.
DOI PMID |
[21] |
HOLMES L A, TURNER A, THOMPSON R C, 2014. Interactions between trace metals and plastic production pellets under estuarine conditions[J]. Marine Chemistry, 167: 25-32.
DOI URL |
[22] | HUANG Y, ZHAO Y R, WANG J, et al., 2019. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 254(Part A): 112983. |
[23] |
HÜFFER T, WENIGER A K, HOFMANN T, 2018. Sorption of organic compounds by aged polystyrene microplastic particles[J]. Environmental Pollution, 236: 218-225.
DOI PMID |
[24] |
KARLSSON T, PERSSON P, SKYLLBERG U, 2005. Extended X-ray absorption fine structure spectroscopy evidence for the complexation of cadmium by reduced sulfur groups in natural organic matter[J]. Environmental Science & Technology, 39(9): 3048-3055.
DOI URL |
[25] |
LAN T, WANG T, CAO F, et al., 2021. A comparative study on the adsorption behavior of pesticides by pristine and aged microplastics from agricultural polyethylene soil films[J]. Ecotoxicology and Environmental Safety, 209: 111781.
DOI URL |
[26] |
LANG M F, YU X Q, LIU J H, et al., 2020. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics[J]. Science of the Total Environment, 722: 137762.
DOI URL |
[27] |
LEE Y K, HUR J, 2020. Adsorption of microplastic-derived organic matter onto minerals[J]. Water Research, 187: 116426.
DOI URL |
[28] |
LI Y H, ZHANG Y, SU F, et al., 2022. Adsorption behavior of microplastics on the heavy metal Cr(VI) before and after ageing[J]. Chemosphere, 302: 134865.
DOI URL |
[29] |
LI J, SONG Y, CAI Y B, 2020. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks[J]. Environmental Pollution, 257: 113570.
DOI URL |
[30] |
LI X W, MEI Q Q, CHEN L B, et al., 2019. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process[J]. Water Research, 157: 228-237.
DOI PMID |
[31] |
LI Z W, HU X L, QIN L X, et al., 2020. Evaluating the effect of different modified microplastics on the availability of polycyclic aromatic hydrocarbons[J]. Water Research, 170: 115290.
DOI URL |
[32] |
LIU G Z, ZHU Z L, YANG Y X, et al., 2019. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater[J]. Environmental Pollution, 246: 26-33.
DOI PMID |
[33] |
MA J L, NIU X J, ZHANG D Q, et al., 2020. High levels of microplastic pollution in aquaculture water of fish ponds in the Pearl River Estuary of Guangzhou, China[J]. Science of The Total Environment, 744: 140679.
DOI URL |
[34] |
MA X Y, YANG C, JIANG Y, et al., 2019. Desorption of heavy metals and tetracycline from goethite-coated sands: The role of complexation[J]. Colloids and Surfaces A, 573: 88-94.
DOI URL |
[35] |
MACLEOD M, ARP H P, TEKMAN M B, et al., 2021. The global threat from plastic pollution[J]. Science, 373(6550): 61-65.
DOI PMID |
[36] |
MAO R F, LANG M F, YU X Q, et al., 2020. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals[J]. Journal of Hazardous Materials, 393: 122515.
DOI URL |
[37] |
MELANIE B, WULF A, 2018. Plastics in soil: Analytical methods and possible sources[J]. Science of the Total Environment, 612: 422-435.
DOI URL |
[38] |
MOHAMED NOR N H, KOOI M, DIEPENS N J, et al., 2021. Lifetime accumulation of microplastic in children and adults[J]. Environmental Science & Technology, 55(8): 5084-5096.
DOI URL |
[39] |
MONIKH F A, VIJVER M G, GUO Z, et al., 2020. Metal sorption onto nanoscale plastic debris and trojan horse effects in Daphnia magna: Role of dissolved organic matter[J]. Water Research, 186: 116410.
DOI URL |
[40] |
ORDEN M U, MONTES J M, URREAGA J M, et al., 2015. Thermo and photo-oxidation of functionalized metallocene high density polyethylene: Effect of hydrophilic groups[J]. Polymer Degradation and Stability, 111: 78-88.
DOI URL |
[41] |
PAYTON T G, BECKINGHAM B A, DUSTAN P, 2020. Microplastic exposure to zooplankton at tidal fronts in Charleston Harbor, SC USA[J]. Estuarine, Coastal and Shelf Science, 232: 106510.
DOI URL |
[42] |
PURWIYANTO A I S, SUTEJA Y, TRISNO, et al., 2020. Concentration and adsorption of Pb and Cu in microplastics: Case study in aquatic environment[J]. Marine Pollution Bulletin, 158: 111380.
DOI URL |
[43] |
ROUILLON C, BUSSIERE P O, DESNOUX E, et al., 2016. Is carbonyl index a quantitative probe to monitor polypropylene photodegradation?[J]. Polymer Degradation and Stability, 128: 200-208.
DOI URL |
[44] |
SONG Y K, HONG S H, JANG M, et al., 2018. Corrections to “Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type”[J]. Environmental Science & Technology, 52(6): 3831-3832.
DOI URL |
[45] |
SUN J, ZHU Z R, LI W H, et al., 2021. Revisiting Microplastics in landfill leachate: Unnoticed tiny microplastics and their fate in treatment works[J]. Water Research, 190: 116784.
DOI URL |
[46] | SUN Y R, YUAN J H, ZHOU T, et al., 2020. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: A systematic review[J]. Environmental Pollution, 265(Part B): 114864. |
[47] |
TANG S, LIN L J, WANG X S, et al., 2020. Pb(Ⅱ) uptake onto nylon microplastics: Interaction mechanism and adsorption performance[J]. Journal of Hazardous Materials, 386: 121960.
DOI URL |
[48] |
TESÁN ONRUBIA J A, DJAOUDI K, BORGOGNO F, et al., 2021. Quantification of microplastics in North-Western Mediterranean harbors: Seasonality and biofilm-related metallic contaminants[J]. Journal of Marine Science and Engineering, 9(3): 337.
DOI URL |
[49] |
THOMPSON R C, OLSEN Y, MITCHELL R P, et al., 2004. Lost at sea: Where is all the plastic[J]. Science, 304(5672): 838-838.
DOI URL |
[50] | VASCONCELOS G C M S, CARVALHO L H, BARBOSA R, et al., 2020. Effects of weathering on mechanical and morphological properties cork filled green polyethylene eco-composites[J]. Polímeros: Ciência e Tecnologia, 30(1): e202011. |
[51] |
WANG C H, ZHAO J, XING B S, 2021a. Environmental source, fate, and toxicity of microplastics[J]. Journal of Hazardous Materials, 407: 124357.
DOI URL |
[52] |
WANG C, XIAN Z Y, JIN X, et al., 2020a. Photo-aging of polyvinyl chloride microplastic in the presence of natural organic acids[J]. Water Research, 183: 116082.
DOI URL |
[53] |
WANG H, HUANG W, ZHANG Y S, et al., 2021b. Unique metalloid uptake on microplastics: The interaction between boron and microplastics in aquatic environment[J]. Science of the Total Environment, 800: 149668.
DOI URL |
[54] |
WANG K, HAN T, CHEN X D, et al., 2022. Insights into behavior and mechanism of tetracycline adsorption on virgin and soil-exposed microplastics[J]. Journal of Hazardous Materials, 440: 129770.
DOI URL |
[55] |
WANG Q J, ZHANG Y, WANGJIN X X, et al., 2020b. The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation[J]. Journal of Environmental Sciences, 87: 272-280.
DOI URL |
[56] |
WANG Y, HUANG J, ZHU F X, et al., 2021c. Airborne Microplastics: A review on the occurrence, migration and risks to humans[J]. Bulletin of Environmental Contamination and Toxicology, 107: 657-664.
DOI URL |
[57] |
WANG Y, WANG X J, LI Y, et al., 2021d. Effects of exposure of polyethylene microplastics to air, water and soil on their adsorption behaviors for copper and tetracycline[J]. Chemical Engineering Journal, 404: 126412.
DOI URL |
[58] |
XIONG X, LIU Q, CHEN X C, et al., 2021. Occurrence of microplastic in the water of different types of aquaculture ponds in an important lakeside freshwater aquaculture area of China[J]. Chemosphere, 282: 131126.
DOI URL |
[59] |
XU P C, GE W, CHAI C, et al., 2019. Sorption of polybrominated diphenyl ethers by microplastics[J]. Marine Pollution Bulletin, 145: 260-269.
DOI PMID |
[60] |
YANG L, ZHANG Y L, KANG S C, et al., 2021. Microplastics in soil: A review on methods, occurrence, sources, and potential risk[J]. Science of The Total Environment, 780: 146546.
DOI URL |
[61] |
YOU H M, HUANG B Q, CAO C L, et al., 2021. Adsorption-desorption behavior of methylene blue onto aged polyethylene microplastics in aqueous environments[J]. Marine Pollution Bulletin, 167: 112287.
DOI URL |
[62] |
YOUSIF E, HADDAD R, 2013. Photodegradation and photostabilization of polymers, especially polystyrene: Review[J]. Springer Plus, 2(1): 398.
DOI URL |
[63] |
YU F, LI Y, HUANG G Q, et al., 2020. Adsorption behavior of the antibiotic levofloxacin on microplastics in the presence of different heavy metals in an aqueous solution[J]. Chemosphere, 260: 127650.
DOI URL |
[64] |
ZETTLER E R, MINCER T J, AMARAL-ZETTLER L A, 2013. Life in the “plastisphere”: Microbial communities on plastic marine debris[J]. Environmental Science & Technology, 47(13): 7137-7146.
DOI URL |
[65] |
ZHANG H B, WANG J Q, ZHOU B Y, et al., 2018. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors[J]. Environmental Pollution, 243(Part B): 1550-1557.
DOI PMID |
[66] |
ZHANG Y L, KANG S C, ALLEN S, et al., 2020a. Atmospheric microplastics: A review on current status and perspectives[J]. Earth-Science Reviews, 203: 103118.
DOI URL |
[67] |
ZHANG Y, PU S Y, LV X, et al., 2020b. Global trends and prospects in microplastics research: A bibliometric analysis[J]. Journal of Hazardous Materials, 400: 123110.
DOI URL |
[68] |
ZHAO X L, WANG J Y, LEUNG K M Y, et al., 2022. Color: An important but overlooked factor for plastic photoaging and microplastic formation[J]. Environmental Science & Technology, 56: 9161-9163.
DOI URL |
[69] |
ZHOU L L, WANG T C, QU G Z, et al., 2020. Probing the aging processes and mechanisms of microplastic under simulated multiple actions generated by discharge plasma[J]. Journal of Hazardous Materials, 398: 122956.
DOI URL |
[70] |
ZHOU Y F, LIU X N, WANG J, 2019. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China[J]. Science of The Total Environment, 694: 133798.
DOI URL |
[71] |
ZHOU Z Q, SUN Y R, WANG Y Y, et al., 2021. Adsorption behavior of Cu(Ⅱ) and Cr(Ⅵ) on aged microplastics in antibiotics-heavy metals coexisting system[J]. Chemosphere, 291(Part 1): 132794.
DOI URL |
[72] |
ZOU J Y, LIU X P, ZHANG D M, et al., 2020. Adsorption of three bivalent metals by four chemical distinct microplastics[J]. Chemosphere, 248: 126064.
DOI URL |
[73] | 陈国栋, 刘海成, 孟无霜, 等, 2022. 微塑料老化的人工干预及理化特性表征研究进展[J/OL]. 化工进展. [2022-05-24]. https://kns.cnki.net/kcms/detail/11.1954.TQ.20220524.1046.002.html. |
CHEN G D, LIU H C, MENG W S, et al., 2022. Research progress on artificial intervention and characterization of physicochemical properties of microplastics aging[J/OL]. Chemical Industry and Engineering Progress. [2022-05-24]. https://kns.cnki.net/kcms/detail/11.1954.TQ.20220524.1046.002.html. | |
[74] | 陈蕾, 高山雪, 徐一卢, 2021. 塑料添加剂向生态环境中的释放与迁移研究进展[J]. 生态学报, 41(8): 3315-3324. |
CHEN L, GAO S X, XU Y L, 2021. Progress on release and migration of plastic additives to ecological environment[J]. Acta Ecologoca Sinica, 41(8): 3315-3324. | |
[75] | 陈兴兴, 刘敏, 陈滢, 2020. 淡水环境中微塑料污染研究进展[J]. 化工进展, 39(8): 3333-3343. |
CHEN X X, LIU M, CHEN Y, 2020. Microplastics pollution in freshwater environment[J]. Chemical Industry and Engineering Progress, 39(8): 3333-3343. | |
[76] | 陈雅兰, 孙可, 高博, 2021. 微塑料吸附机制研究进展[J]. 环境化学, 40(8): 2271-2287. |
CHEN Y L, SUN K, GAO B, 2021. Sorption behavior, mechanisms, and models of organic pollutants and metals on microplastics: A review[J]. Environmental Chemistry, 40(8): 2271-2287. | |
[77] | 代朝猛, 李思, 段艳平, 等, 2020. 微塑料对水体中有机污染物迁移转化及生物有效性的影响研究进展[J]. 材料导报, 34(21): 21033-21037. |
DAI C M, LI S, DUAN Y P, et al., 2020. Advances in research on effects of microplastics on migration, transformation and bioavailability of organic pollutants in water[J]. Materials Reports, 34(21): 21033-21037. | |
[78] | 丁剑楠, 张闪闪, 邹华, 等, 2017. 淡水环境中微塑料的赋存、来源和生态毒理效应研究进展[J]. 生态环境学报, 26(9): 1619-1626. |
DING J N, ZHANG S S, ZOU H, et al., 2017. Occurrence, source and ecotoxicological effect of microplastics in freshwater environment[J]. Ecology and Environmental Sciences, 26(9): 1619-1626. | |
[79] | 孔凡星, 许霞, 薛银刚, 等, 2021. 微塑料老化对四环素吸附行为的影响[J]. 环境科学研究, 34(9): 2182-2190. |
KONG F X, XU X, XUE Y G, et al., 2021. Effects of aging on adsorption of tetracycline by microplastics[J]. Research of Environmental Sciences, 34(9): 2182-2190. | |
[80] | 李明媛, 陈启晴, 刘学敏, 等, 2022. 微塑料吸附有机污染物的研究进展[J]. 环境化学, 41(4): 1-13. |
LI M Y, CHEN Q Q, LIU X M, et al., 2022. Research progress on sorption of organic pollutants by microplastics[J]. Environmental Chemistry, 41(4): 1-13. | |
[81] | 林陆健, 汤帅, 孙璇, 等, 2021. 铅离子和四环素在微塑料表面的吸附机理与协同效应[J]. 环境科学学报, 41(9): 4022-4031. |
LIN L J, TANG S, SUN X, et al., 2021. Adsorption of Pb(Ⅱ) ions and tetracycline onto microplastics: Interaction mechanisms and synergistic effects[J]. Acta Scientiae Circumstantiae, 41(9): 4022-4031. | |
[82] | 刘迪, 童非, 高岩, 等, 2021. 重金属存在下微塑料对环丙沙星的吸附特征及机制研究[J]. 农业环境科学学报, 40(5): 1017-1025. |
LIU D, TONG F, GAO Y, et al., 2021. The characteristics and mechanisms of microplastic adsorption by ciprofloxacin in the presence of heavy metals[J]. Journal of Agro-Environment Science, 40(5): 1017-1025. | |
[83] | 刘鹏, 高士祥, 2018. 常用高级氧化技术加速微塑料老化的研究[C]// 持久性有机污染物论坛2018暨化学品环境安全大会. 成都: 中国化学会, 中国环境科学学会, 清华大学: 503-505. |
LIU P, GAO S X, 2018. Research on the aging of microplastics accelerated by common advanced oxidation techniques[C]// Persistent Organic Pollutants Forum 2018 & Conference on Environmental Safety of Chemicals. Chengdu: Chinese Chemical Society, Chinese Society of Environmental Sciences, Tsinghua University: 503-505. | |
[84] | 刘沙沙, 陈诺, 杨晓茵, 2022. 微塑料对有机污染物的吸附-解吸特性及其复合毒性效应研究进展[J]. 生态环境学报, 31(3): 610-620. |
LIU S S, CHEN N, YANG X L, 2022. Research progress on adsorption-desorption characteristics of organic pollutants by microplastics and their combined toxic effects[J]. Ecology and Environmental Sciences, 31(3): 610-620. | |
[85] | 刘鑫蓓, 董旭晟, 解志红, 等, 2022. 土壤中微塑料的生态效应与生物降解[J]. 土壤学报, 59(2): 349-363. |
LIU X B, DONG X S, XIE Z H, et al., 2022. Ecological effects and biodegradation of microplastics in soils[J]. Acta Pedologica Sinica, 59(2): 349-363. | |
[86] | 刘晓红, 刘柳青青, 栗敏, 等, 2022. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 31(6): 1263-1271. |
LIU X H, LIU L Q Q, LI M., et al., 2022. Effects of polyethylene microplastics with different particle sizes on seed germination and seedling growth of maize and cucumber[J]. Ecology and Environmental Sciences, 31(6): 1263-1271. | |
[87] | 卢伟, 桑稳姣, 李敏, 等, 2022. 介质阻挡放电等离子体老化微塑料及对Zn(Ⅱ)吸附的影响[J]. 中国环境科学, 42(8): 3744-3754. |
LU W, SANG W J, LI M, et al., 2022. Dielectric barrier discharge plasma aging of microplastics and its effect on Zn(Ⅱ) adsorption[J]. China Environmental Science, 42(8): 3744-3754. | |
[88] | 马思睿, 李舒行, 郭学涛, 2020. 微塑料的老化特性、机制及其对污染物吸附影响的研究进展[J]. 中国环境科学, 40(9): 3992-4003. |
MA S R, LI S X, GUO X T, 2020. A review on aging characteristics, mechanism of microplastics and their effects on the adsorption behaviors of pollutants[J]. China Environmental Science, 40(9): 3992-4003. | |
[89] | 单威, 张正豪, 黄大伟, 等, 2022. 聚酰胺微塑料对大肠杆菌和脱氮副球菌的毒性[J]. 环境科学学报, 42(2): 468-475. |
SHAN W, ZHANG Z H, HUANG D W, et al., 2022. Toxicities of polyamide microplastics toward Escherichia coli and Paracoccus denitrificans[J]. Acta Scientiae Circumstantiae, 42(2): 468-475. | |
[90] | 邵媛媛, 张帆, 梁庆霞, 2020. 陆地-海洋生态系统微塑料污染现状研究[J]. 生态环境学报, 29(10): 2118-2129. |
SHAO Y Y, ZHANG F, LIANG Q X, 2022. Research on microplastic pollution in terrestrial-marine ecosystems[J]. Ecology and Environmental Sciences, 29(10): 2118-2129. | |
[91] | 王俊杰, 陈晓晨, 李权达, 等, 2022. 老化作用对微塑料吸附镉的影响及其机制[J]. 环境科学, 43(4): 2030-2038. |
WANG J J, CHEN X C, LI Q D, et al., 2022. Effects of aging on the Cd adsorption by microplastics and the relevant mechanisms[J]. Environmental Science, 43(4): 2030-2038. | |
[92] | 王林, 王姝歆, 曾祥英, 等, 2022. 老化作用对微塑料吸附四环素的影响及其机制[J]. 环境科学, 43(10): 4511-4521. |
WANG L, WANG S X, ZENG X Y, et al., 2022. Effect of aging on adsorption of tetracycline by microplastic and the mechanisms[J]. Environmental Science, 43(10): 4511-4521. | |
[93] | 王琼杰, 张勇, 陈雨, 等, 2020. 水体中微塑料的环境影响行为研究进展[J]. 化工进展, 39(4): 1500-1510. |
WANG Q J, ZHANG Y, CHEN Y, et al., 2020. Research progress on environmental influence behavior of microplastics in water[J]. Chemical Industry and Engineering Progress, 39(4): 1500-1510. | |
[94] | 王琼杰, 张勇, 张阳阳, 等, 2021. 老化微塑料对水体中重金属铜和锌的吸附行为研究[J]. 环境科学学报, 41(7): 2712-2726. |
WANG Q J, ZHANG Y, ZHANG Y Y, et al., 2021. Adsorption of heavy metal ions Cu2+ and Zn2+ onto UV-aged microplastics in aquatic system[J]. Journal of Environmental Science, 41(7): 2712-2726. | |
[95] | 谢晨敏, 隆楚月, 黎大宁, 等, 2022. 南海永兴岛和东岛土壤中微塑料和卤代阻燃剂的分布特征[J]. 生态环境学报, 31(5): 1008-1014. |
XIE C M, LONG C Y, LI D N, et al., 2022. Distribution of microplastics and halogenated flame retardants in soils from Yongxing Island and East Island, South China Sea[J]. Ecology and Environmental Sciences, 31(5): 1008-1014. | |
[96] | 谢洁芬, 章家恩, 危晖, 等, 2022. 土壤中微塑料复合污染研究进展与展望[J/OL]. 生态环境学报, [2022-09-19]. https://kns.cnki.net/kcms/detail/44.1661.X.20220916.1628.004.html. |
XIE J F, ZHANG J E, WEI H, et al., 2022. Microplastic combined pollution in soil: An overview[J/OL]. Ecology and Environmental Sciences, [2022-09-19]. https://kns.cnki.net/kcms/detail/44.1661.X.20220916.1628.004.html. | |
[97] | 徐鹏程, 郭健, 马东, 等, 2020. 新制和老化微塑料对多溴联苯醚的吸附[J]. 环境科学, 41(3): 1329-1337. |
XU P C, GUO J, MA D, et al., 2020. Sorption of polybrominated diphenyl ethers by virgin and aged microplastics[J]. Environmental Science, 41(3): 1329-1337. | |
[98] | 薛向东, 王星源, 梅雨晨, 等, 2020. 微塑料对水中铜离子和四环素的吸附行为[J]. 环境科学, 41(8): 3675-3683. |
XUE X D, WANG X Y, MEI Y C, et al., 2020. Sorption behaviors of copper ions and tetracycline on microplastics in aqueous solution[J]. Environmental Science, 41(8): 3675-3683. | |
[99] | 张瑞昌, 李泽林, 魏学锋, 等, 2020. 模拟环境老化对PE微塑料吸附Zn(Ⅱ)的影响[J]. 中国环境科学, 40(7): 3135-3142. |
ZHANG R C, LI Z L, WEI X F, et al., 2020. Effects of simulated environmental aging on the adsorption of Zn(Ⅱ) onto PE microplastics[J]. China Environmental Science, 40(7): 3135-3142. | |
[100] | 张羽西, 缪爱军, 2020. 微塑料对人体健康的影响概述[J]. 南京大学学报(自然科学), 56(5): 729-736. |
ZHANG Y X, MIAO A J, 2020. The impact of microplastics on human health: A review[J]. Journal of Nanjing University (Natural Science), 56(5): 729-736. | |
[101] | 赵楚云, 李小伟, 张鸿元, 等, 2019. 化学预处理对微塑料Pb吸附潜力的影响及机理研究[J]. 环境科学学报, 39(10): 3387-3394. |
ZHAO C Y, LI X W, ZHANG H Y, et al., 2019. Effect of chemical pretreatment on adsorption of microplastics to Pb[J]. Acta Scientiae Circumstantiae, 39(10): 3387-3394. | |
[102] | 赵梦婷, 秦艺源, 邱野, 等, 2022. 微塑料的环境老化机制及效应研究进展[J]. 环境化学, 41(8): 1-13. |
ZHAO M T, QIN Y Y, QIU Y, et al., 2022. Environmental aging of microplastic: Processes, mechanisms and implications[J]. Environmental Chemistry, 41(8): 1-13. | |
[103] |
赵伟高, 田一梅, 赵鹏, 等, 2022. 淡水环境中微塑料与重金属的“木马效应”研究进展[J/OL]. 环境科学. [2022-07-21]. https://doi.org/10.13227/j.hjkx.202202118.
DOI |
ZHAO W G, TIAN Y M, ZHAO P, et al., 2022. Research progress on trojan-horse effect of microplastics and heavy metals in freshwater environment[J/OL]. Environmental Science. [2022-07-21]. https://doi.org/10.13227/j.hjkx.202202118.
DOI |
|
[104] | 周崇胜, 范铭煜, 丁云浩, 等, 2021. 常见微塑料的自然光解老化[J]. 环境化学, 40(6): 1741-1748. |
ZHOU C S, FAN M Y, DING Y H, et al., 2021. Insights into natural photo-aging of common-used microplastics[J]. Environmental Chemistry, 40(6): 1741-1748. | |
[105] | 朱志林, 2019. 典型微塑料与水环境中PPCPs的复合毒性及吸附行为研究[D]. 济南: 山东大学. |
ZHU Z L, 2019. The joint toxicity and adsorption behavior between typical microplastics and PPCPs in aquatic environment[D]. Ji’nan: Shandong University. |
[1] | LI Haipeng, HUANG Yuehua, SUN Xiaodong, CAO Qimin, FU Fangxing, SUN Chuhan. Correlation Analysis of the Occurrence of the Tomato Bacterial Wilt and Different Types of Texture of Latosols and Its Bacterial Community in Cropland in Hainan [J]. Ecology and Environment, 2023, 32(6): 1062-1069. |
[2] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[3] | LI Haiyan, YANG Xiaoqin, JAN Meipeng, ZHANG Xiaoran. [J]. Ecology and Environment, 2023, 32(2): 407-420. |
[4] | RUAN Huihua, XU Jianhui, ZHANG Feifei. Spatiotemporal Changes of Vegetation and Land Surface Temperature during 2001 and 2020 in the Guangdong-Hong Kong-Macao Greater Bay Area of China [J]. Ecology and Environment, 2022, 31(8): 1510-1520. |
[5] | FAN Keyu, GAO Yuan, LAI Zini, ZENG Yanyi, LIU Qianfu, LI Haiyan, MAI Yongzhan, YANG Wanling, WEI Jingxin, SUN Jinhui, WANG Chao. Characteristics of Microplastic Pollution in Fish in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1590-1598. |
[6] | WANG Lei, WEN Yuanguang, ZHOU Xiaoguo, ZHU Hongguang, SUN Dongjing. Effects of Mixing Eucalyptus urophylla×E. grandis with Castanopsis hystrix on Understory Vegetation and Soil Properties [J]. Ecology and Environment, 2022, 31(7): 1340-1349. |
[7] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[8] | LIU Xiaohong, LIU Liuqingqing, LI Min, LIU Qiang, CAO Dongdong, ZHENG Hao, LUO Xianxiang. Effects of Polyethylene Microplastics with Different Particle Sizes on Seed Germination and Seedling Growth of Maize and Cucumber [J]. Ecology and Environment, 2022, 31(6): 1263-1271. |
[9] | XIE Chenmin, LONG Chuyue, LI Daning, ZHU Chunyou, PENG Xianzhi, SUN Yuxin, LUO Xiaojun, ZHANG Li, MAI Bixian. Distribution of Microplastics and Halogenated Flame Retardants in Soils from Yongxing Island and East Island, South China Sea [J]. Ecology and Environment, 2022, 31(5): 1008-1014. |
[10] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[11] | LIU Shasha, CHEN Nuo, YANG Xiaoyin. Research Progress on Adsorption-Desorption Characteristics of Organic Pollutants by Microplastics and Their Combined Toxic Effects [J]. Ecology and Environment, 2022, 31(3): 610-620. |
[12] | CONG Xin, WANG Yu, LI Yao, HE Yangyang. Adsorption Characteristics of Biochars and Graphene Oxide/biochar Composites for Antibiotics from Aqueous Solution [J]. Ecology and Environment, 2022, 31(2): 326-334. |
[13] | TANG Jiaxi, XIANG Biao, LI Yu, TAN Ting, ZHU Yongle, GAN Jianping. Study on Adsorption Characteristics of Fluoride in Water by Diatomite [J]. Ecology and Environment, 2022, 31(2): 335-343. |
[14] | QIN Kun, WANG Zhikang, WANG Zhanghong, YANG Cheng, LIU Jiegang, SHEN Dekui. Cd(II) Adsorption Capability of the Biochar Derived from Co-pyrolysis of Lignin and Polyethylene [J]. Ecology and Environment, 2022, 31(2): 344-353. |
[15] | CHEN Fuqiuxue, TANG Siqi, YUAN Hao, MA Zixuan, CHEN Tan, YANG Ting, ZHANG Bing, LIU Ying. Impacts of Polystyrene Microplastics on Seed Germination and Seedling Growth of Typical Crops [J]. Ecology and Environment, 2022, 31(12): 2382-2392. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn