Ecology and Environment ›› 2022, Vol. 31 ›› Issue (10): 2070-2078.DOI: 10.16258/j.cnki.1674-5906.2022.10.015
• Research Articles • Previous Articles Next Articles
LIU Chang(), LUO Yanli*(
), LIU Chentong, ZHENG Yuhong, CHAO Bo, DONG Lele
Received:
2022-06-30
Online:
2022-10-18
Published:
2022-12-09
Contact:
LUO Yanli
刘畅(), 罗艳丽*(
), 刘晨通, 郑玉红, 晁博, 董乐乐
通讯作者:
罗艳丽
作者简介:
刘畅(1995年生),女,硕士研究生,研究方向为砷的迁移行为和环境效应研究。E-mail: 969070761@qq.com
基金资助:
CLC Number:
LIU Chang, LUO Yanli, LIU Chentong, ZHENG Yuhong, CHAO Bo, DONG Lele. Spatial Distribution Characteristics of Arsenic in Groundwater and Cropland Soil in the Lower Reaches of Kuitun River[J]. Ecology and Environment, 2022, 31(10): 2070-2078.
刘畅, 罗艳丽, 刘晨通, 郑玉红, 晁博, 董乐乐. 奎屯河下游区域地下水和农田土壤砷的空间分布特征[J]. 生态环境学报, 2022, 31(10): 2070-2078.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.10.015
水样类型 Water type | 样点数 Number of samples | As | pH | |||
---|---|---|---|---|---|---|
范围 Range/(μg·L-1) | 均值 Mean/(μg·L-1) | 变异系数 Coefficient of variation | 范围 Range | 均值 Mean | ||
地表水 Surface water | 2 | 7.07-8.57 | 7.82 | 0.14 | 8.13-8.03 | 8.08 |
地下水 Groundwater | 50 | 0.76-410.00 | 116.38 | 1.00 | 6.76-9.33 | 8.39 |
Table 1 Statistical characteristics of arsenic mass concentration in water samples
水样类型 Water type | 样点数 Number of samples | As | pH | |||
---|---|---|---|---|---|---|
范围 Range/(μg·L-1) | 均值 Mean/(μg·L-1) | 变异系数 Coefficient of variation | 范围 Range | 均值 Mean | ||
地表水 Surface water | 2 | 7.07-8.57 | 7.82 | 0.14 | 8.13-8.03 | 8.08 |
地下水 Groundwater | 50 | 0.76-410.00 | 116.38 | 1.00 | 6.76-9.33 | 8.39 |
土层深度 Soil depth/cm | 样点数 Number of samples | As | pH | |||
---|---|---|---|---|---|---|
范围 Range/(mg·kg-1) | 均值 Mean/(g·kg-1) | 变异系数 Coefficient of variation | 范围 Range | 均值 Mean | ||
0-10 | 50 | 6.67-20.67 | 12.45 | 0.28 | 7.06-9.68 | 7.98 |
10-20 | 50 | 4.42-18.49 | 10.97 | 0.30 | 7.32-9.71 | 8.06 |
Table 2 Statistical characteristics of arsenic mass fraction in soil samples
土层深度 Soil depth/cm | 样点数 Number of samples | As | pH | |||
---|---|---|---|---|---|---|
范围 Range/(mg·kg-1) | 均值 Mean/(g·kg-1) | 变异系数 Coefficient of variation | 范围 Range | 均值 Mean | ||
0-10 | 50 | 6.67-20.67 | 12.45 | 0.28 | 7.06-9.68 | 7.98 |
10-20 | 50 | 4.42-18.49 | 10.97 | 0.30 | 7.32-9.71 | 8.06 |
特征椭圆 Eigenellipse | 周长 Circumference/ km | 面积 Area/km2 | 重心坐标 Barycentric coordinates | 短半轴 Semi-minor axis/ km | 长半轴 Semi-major axis/ km | 短长轴之比 Ratio of short-long axis | 方位角 Rotation/ (°) |
---|---|---|---|---|---|---|---|
地下水As As in groundwater | 90.93 | 234.56 | (84°22'52″, 45°01'33″) | 3.39 | 22.02 | 0.15 | 94.98 |
土壤As As in soil (0-10 cm) | 97.35 | 450.82 | (84°28'03″, 45°02'22″) | 6.43 | 22.32 | 0.29 | 95.48 |
土壤As As in soil (10-20 cm) | 97.87 | 458.39 | (84°26'17″, 45°02'35″) | 6.51 | 22.42 | 0.29 | 95.00 |
Table 3 Parameters of the standard deviation ellipse of arsenic in groundwater and soil
特征椭圆 Eigenellipse | 周长 Circumference/ km | 面积 Area/km2 | 重心坐标 Barycentric coordinates | 短半轴 Semi-minor axis/ km | 长半轴 Semi-major axis/ km | 短长轴之比 Ratio of short-long axis | 方位角 Rotation/ (°) |
---|---|---|---|---|---|---|---|
地下水As As in groundwater | 90.93 | 234.56 | (84°22'52″, 45°01'33″) | 3.39 | 22.02 | 0.15 | 94.98 |
土壤As As in soil (0-10 cm) | 97.35 | 450.82 | (84°28'03″, 45°02'22″) | 6.43 | 22.32 | 0.29 | 95.48 |
土壤As As in soil (10-20 cm) | 97.87 | 458.39 | (84°26'17″, 45°02'35″) | 6.51 | 22.42 | 0.29 | 95.00 |
Figure 3 The relationship between arsenic mass fraction in soil and arsenic mass concentration in groundwater “**” indicates highly significant differences at the 0.01 level, n=25
Figure 4 Arsenic mass fraction in soil under different irrigation methods n1=13; n2=7 (n1 is the sample size of well irrigation; n2 is the sample size of mixed irrigation)
[1] |
CASENTINI B, HUG S J, NIKOLAIDIS N P, 2011. Arsenic accumulation in irrigated agricultural soils in northern Greece[J]. Science of the Total Environment, 409(22): 4802-4810.
DOI URL |
[2] |
DITTMAR J, VOEGELIN A, ROBERTS L C, et al., 2007. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil[J]. Environmental Science & Technology, 41(17): 5967-5972.
DOI URL |
[3] |
FAROOQ S H, CHANDRASEKHARAM D, DHANACHANDRA W, et al., 2019. Relationship of arsenic accumulation with irrigation practices and crop type in agriculture soils of Bengal Delta, India[J]. Applied Water Science, 9(5): 1-11.
DOI URL |
[4] |
GARG N, SINGLA P, 2011. Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms[J]. Environmental Chemistry Letters, 9(3): 303-321.
DOI URL |
[5] |
GILLISPIE E C, SOWERS T D, DUCKWORTH O W, et al., 2015. Soil pollution due to irrigation with arsenic-contaminated groundwater: current state of science[J]. Current Pollution Reports, 1(1): 1-12.
DOI URL |
[6] |
HOSSAIN M B, JAHIRUDDIN M, PANAULLAH G M, et al., 2008. Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus[J]. Environmental Pollution, 156(3): 739-744.
DOI PMID |
[7] |
HUANG Y, MIYAUCHI K, ENDO G, et al., 2016. Arsenic contamination of groundwater and agricultural soil irrigated with the groundwater in Mekong Delta, Vietnam[J]. Environmental Earth Sciences, 75(9): 757.
DOI URL |
[8] |
JAVED A, FAROOQI A, BAIG Z U, et al., 2020. Soil arsenic but not rice arsenic increasing with arsenic in irrigation water in the Punjab plains of Pakistan[J]. Plant and Soil, 450(1-2): 601-611.
DOI PMID |
[9] |
LEFEVER D W, 1926. Measuring geographic concentration by means of the standard deviational ellipse[J]. American Journal of Sociology, 32(1): 88-94.
DOI URL |
[10] |
MCARTHUR J M, NATH B, BANERJEE D M, et al., 2011. Palaeosol control on groundwater flow and pollutant distribution: the example of arsenic[J]. Environmental Science & Technology, 45(4): 1376-1383.
DOI URL |
[11] |
MEHARG A A, RAHMAN M M, 2003. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption[J]. Environmental Science & Technology, 37(2): 229-234.
DOI URL |
[12] |
MUKHERJEE A, KUNDU M, BASU B, et al., 2017. Arsenic load in rice ecosystem and its mitigation through deficit irrigation[J]. Journal of Environmental Management, 197: 89-95.
DOI PMID |
[13] |
QUICKSALL A N, BOSTICK B C, SAMPSON M L, 2008. Linking organic matter deposition and iron mineral transformations to groundwater arsenic levels in the Mekong delta, Cambodia[J]. Applied Geochemistry, 23(11): 3088-3098.
DOI URL |
[14] |
SAHA G C, ALI M A, 2007. Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh[J]. Science of the Total Environment, 379(2-3): 180-189.
PMID |
[15] | SHRIVASTAVA A, BARLA A, YADAV H, et al., 2014. Arsenic contamination in shallow groundwater and agricultural soil of Chakdaha block, West Bengal, India[J]. Frontiers in Environmental Science, 2(50): 1-9. |
[16] |
SU C L, ZHU Y P, ABBAS Z, et al., 2016. Sources and controls for elevated arsenic concentrations in groundwater of Datong basin, northern China[J]. Environmental Earth Sciences, 75(7): 570.
DOI URL |
[17] |
WANG Y X, LI J X, MA T, et al., 2021. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 51(24): 2895-2933.
DOI URL |
[18] |
ZHOU Y T, NIU L L, LIU K, et al., 2018. Arsenic in agricultural soils across China: Distribution pattern, accumulation trend, influencing factors, and risk assessment[J]. Science of the Total Environment, 616-617: 156-163.
DOI URL |
[19] | 白冰, 赵作权, 张佩, 2021. 中国南北区域经济空间融合发展的趋势与布局[J]. 经济地理, 41(2): 1-10. |
BAI B, ZHAO Z Q, ZHANG P, 2021. Trends and layout of economic integration between north and south China[J]. Economic Geography, 41(2): 1-10.
DOI URL |
|
[20] | 陈云飞, 周金龙, 曾妍妍, 等, 2020. 塔里木盆地东南缘绿洲区土壤砷空间分布及农作物砷富集特征[J]. 环境科学, 41(1): 438-448. |
CHEN Y F, ZHOU J L, ZENG Y Y, et al., 2020. Spatial distribution of soil arsenic and arsenic enrichment in crops in the oasis region of the southeastern Tarim basin[J]. Environmental Science, 41(1): 438-448. | |
[21] | 戴志鹏, 罗艳丽, 王翔, 2019. 新疆奎屯河流域高砷、高氟地下水的分布特征[J]. 环境保护科学, 45(4): 81-86. |
DAI Z P, LUO Y L, WANG X, 2019. Distribution characteristics of high arsenic and fluorine in groundwater of Kuitun River basin in Xinjiang[J]. Environmental Protection Science, 45(4): 81-86. | |
[22] | 邓雯文, 罗艳丽, 王翔, 等, 2021. 地下水-土壤系统中砷含量及健康风险评价[J]. 环境科学与技术, 44(4): 204-211. |
DENG W W, LUO Y L, WANG X, et al., 2021. Arsenic content and health risk assessment in groundwater-soil system[J]. Environmental Science & Technology, 44(4): 204-211.
DOI URL |
|
[23] | 董立宽, 方斌, 王晨歌, 2018. 基于Copula函数的茶园土壤铜锌空间协同效应研究[J]. 自然资源学报, 33(5): 867-878. |
DONG L K, FANG B, WANG C G, 2018. Study on the spatial synergistic effect of copper and zinc in tea garden soil based on copula function[J]. Journal of Natural Resources, 33(5): 867-878. | |
[24] |
冯子钰, 施润和, 2021. 中国近地面PM2.5浓度与排放的时空分布及其关联分析[J]. 地球信息科学学报, 23(7): 1221-1230.
DOI |
FENG Z Y, SHI R H, 2021. Spatio-temporal features and the association of ground-level PM2.5 concentration and its emission in China[J]. Journal of Geo-Information Science, 23(7): 1221-1230. | |
[25] | 郭华明, 郭琦, 贾永锋, 等, 2013. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 35(3): 83-96. |
GUO H M, GUO Q, JIA Y F, et al., 2013. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China[J] Journal of Earth Sciences and Environment, 35(3): 83-96. | |
[26] | 滑小赞, 程滨, 赵瑞芬, 等, 2021. 太原市农田土壤重金属污染评价与空间分布特征[J]. 灌溉排水学报, 40(3): 101-109. |
HUA X Z, CHENG B, ZHAO R F, et al., 2021. Pollution assessment and spatial distribution of heavy metals in the farmland soils of Taiyuan city[J]. Journal of Irrigation and Drainage, 40(3): 101-109. | |
[27] | 江军, 鲜虎胜, 李巧, 等, 2021. 奎屯河流域地下水地球化学特征及其对砷运移的影响[J]. 环境化学, 40(6): 1775-1786. |
JIANG J, XIAN H S, LI Q, et al., 2021. Groundwater geochemistry and its implications for arsenic mobilization in Kuitun River basin, Xinjiang[J]. Environmental Chemistry, 40(6): 1775-1786. | |
[28] | 李晶, 2016. 砷在新疆奎屯地下水中的分布及其在农田土壤中的迁移[D]. 乌鲁木齐: 新疆农业大学: 38-39. |
LI J, 2016. Study on the distribution of arsenic in groundwater and its transport in farmland soil in Kuitun Xinjiang[D]. Urumqi: Xinjiang Agricultural University: 38-39. | |
[29] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社: 12-14. |
LU R K, 2000. Soil agrochemical analysis methods[M]. Beijing: China Agricultural Science and Technology Press: 12-14. | |
[30] | 罗艳丽, 蒋平安, 余艳华, 等, 2007. 新疆奎屯123团土壤砷污染研究[J]. 土壤通报, 38(3): 558-561. |
LUO Y L, JIANG P A, YU Y H, et al., 2007. Arsenic pollution of soil in Kuitun No.123 state farm, Xinjiang[J]. Chinese Journal of Soil Science, 38(3): 558-561. | |
[31] | 罗艳丽, 李晶, 蒋平安, 等, 2017. 新疆奎屯原生高砷地下水的分布、类型及成因分析[J]. 环境科学学报, 37(8): 2897-2903. |
LUO Y L, LI J, JIANG P A, et al., 2017. Distribution, classification and cause analysis of geogenic high-arsenic groundwater in Kuitun, Xinjiang[J]. Acta Scientiae Circumstantiae, 37(8): 2897-2903. | |
[32] | 宿彦鹏, 李巧, 陶洪飞, 等, 2022. 奎屯河流域高砷地下水砷含量空间分布异常的影响因素[J]. 长江科学院院报, 39(2): 43-49, 55. |
SU Y P, LI Q, TAO H F, et al., 2022. Factors influencing the abnormal spatial distribution of arsenic content in groundwater in Kuitun River basin[J]. Journal of Yangtze River Scientific Research Institute, 39(2): 43-49, 55. | |
[33] | 汪花, 刘秀明, 刘方, 等, 2019. 喀斯特地区小尺度农业土壤砷的空间分布及污染评价[J]. 环境科学, 40(6): 2895-2903. |
WANG H, LIU X M, LIU F, et al., 2019. Spatial distribution and pollution assessment of As at a small scale in agricultural soils of the Karst region[J]. Environmental Science, 40(6): 2895-2903.
DOI URL |
|
[34] | 王连方, 刘鸿德, 徐训风, 等, 1983. 新疆奎屯垦区慢性地方性砷中毒调查报告[J]. 中国地方病学杂志, 2(2): 71. |
WANG L F, LIU H D, XU X F, et al., 1983. Investigation report on chronic endemic arsenic poisoning in Kuitun reclamation area, Xinjiang[J]. Chinese Journal of Endemiology, 2(2): 71. | |
[35] | 王翔, 2021. 奎屯河下游区域地下水中砷的释放过程研究[D]. 乌鲁木齐: 新疆农业大学:20. |
WANG X, 2021. Mobilization processes of arsenic in groundwater of Kuitun River downsteam[D]. Urumqi: Xinjiang Agricultural University:20. | |
[36] | 王翔, 罗艳丽, 邓雯文, 等, 2020. 新疆奎屯地区高砷地下水DOM三维荧光特征[J]. 中国环境科学, 40(11): 4974-4981. |
WANG X, LUO Y L, DENG W W, et al., 2020. The 3D-EEM characteristics of DOM in high arsenic groundwater of Kuitun, Xinjiang[J]. China Environmental Science, 40(11): 4974-4981. | |
[37] | 谢正苗, 1989. 砷的土壤化学[J]. 农业环境科学学报, 8(1): 36-38. |
XIE Z M, 1989. Soil chemistry of arsenic[J]. Journal of Agro- Environment Science, 8(1): 36-38. | |
[38] | 严怡君, 谢先军, 郑文君, 等, 2017. 灌溉活动对大同盆地表层土壤中砷迁移的影响[J]. 地质科技情报, 36(3): 235-241. |
YAN Y J, XIE X J, ZHENG W J, et al., 2017. Influence of irrigation practices on arsenic mobilization in near-surface soil of Datong basin, northern China[J]. Geological Science and Technology Information, 36(3): 235-241. | |
[39] | 袁翰卿, 李巧, 陶洪飞, 等, 2020. 新疆奎屯河流域地下水砷富集因素[J]. 环境化学, 39(2): 524-530. |
YUAN H Q, LI Q, TAO H F, et al., 2020. Groundwater arsenic enrichment factors of Kuitun River basin, Xinjiang[J]. Environmental Chemistry, 39(2): 524-530. | |
[40] |
张杰, 唐根年, 2018. 浙江省制造业空间分异格局及其影响因素[J]. 地理科学, 38(7): 1107-1117.
DOI |
ZHANG J, TANG G N, 2018. Spatial differentiation pattern of manufacturing industry in Zhejiang and its influencing factors[J]. Scientia Geographica Sinica, 38(7): 1107-1117.
DOI |
|
[41] | 张维, 齐丽娟, 宁钧宇, 等, 2021. 砷的健康危害评估[J]. 毒理学杂志, 35(5): 367-372, 378. |
ZHANG W, QI L J, NING J Y, et al., 2021. Health hazard assessment of arsenic[J]. Journal of Toxicology, 35(5): 367-372, 378. | |
[42] |
赵璐, 赵作权, 2014. 基于特征椭圆的中国经济空间分异研究[J]. 地理科学, 34(8): 979-986.
DOI |
ZHAO L, ZHAO Z Q, 2014. Projecting the spatial variation of economic based on the specific ellipses in China[J]. Scientia Geographica Sinica, 34(8): 979-986.
DOI |
|
[43] | 中国环境监测总站, 1990. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社:331. |
China National Environmental Monitoring Centre, 1990. Background value of soil elements in China[M]. Beijing: China Environmental Science Press:331. | |
[44] | 中华人民共和国环境保护部, 2013. 土壤和沉积物汞、砷、硒、铋、锑的测定微波消解/原子荧光法: HJ 680—2013[S]. 北京: 中国环境科学出版社. |
Ministry of Environmental Protection of the People’s Republic of China, 2013. Soil and sedimen-Determination of mercury, arsenic, selenium, bismuth, antimony-Microwave dissolution/Atomic Fluorescence Spectrometry: HJ 680—2013 [S]. Beijing: China Environmental Science Press. | |
[45] | 中华人民共和国生态环境部, 2018. 土壤环境质量农用地土壤污染风险管控标准 (试行): GB 15618—2018[S]. 北京: 中国环境出版集团. |
Ministry of Ecology and Environment of the People’s Republic of China, 2018. Soil environmental quality-Risk control standard for soil contamination of agricultural land: GB 15618—2018 [S]. Beijing: China Environment Publishing Group. | |
[46] | 中华人民共和国生态环境部, 2021. 农田灌溉水质标准: GB 5084—2021[S]. 北京: 中国环境出版集团. |
Ministry of Ecology and Environment of the People’s Republic of China, 2021. Standard for irrigation water quality: GB 5084—2021 [S]. Beijing: China Environment Publishing Group. | |
[47] | 左岍, 周勇, 李晴, 等, 2022. 鄂西南地区土地利用格局时空变化及轨迹特征分析[J]. 水土保持学报, 36(1): 161-169. |
ZUO Q, ZHOU Y, LI Q, et al., 2022. Analysis of spatial and temporal changes and trajectory characteristics of land use pattern in the southwest Hubei[J]. Journal of Soil and Water Conservation, 36(1): 161-169. |
[1] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[2] | YANG Chunliang, LIU Minxia, WANG Qianyue, MIAO Lele, XIAO Yindi, WANG Min. Spatial Pattern and Correlation of Populations of Anemone rivularis and Kobresia myosuroides under Single-household Management and Multi-household Management Grazing Patterns [J]. Ecology and Environment, 2023, 32(4): 651-659. |
[3] | WU Yarui, WANG Meijing, WANG Tao, YANG Meihuan. Effect of COVID-19 on Temporal and Spatial Distribution of NO2 Concentration and Socio-Economic Life: A Case Study of Shaanxi Province [J]. Ecology and Environment, 2023, 32(3): 514-524. |
[4] | YANG Yu, DENG Renjian, LONG Pei, HUANG Zhongjie, Ren Bozhi, WANG Zhenghua. Isolation and Identification of Arsenic-oxidizing Bacterium Pseudomonas sp. AO-1 and Its Oxidation Properties for As(Ⅲ) [J]. Ecology and Environment, 2023, 32(3): 619-626. |
[5] | YANG Qiu, CAO Yingjie, ZHANG Yu, CHEN Jianyao, WANG Shizhong, TIAN Di. Hydrochemical Characteristics and Its Cause Analysis of Groundwater and Mine Water in Closed Lead Zinc Mining Area [J]. Ecology and Environment, 2023, 32(2): 361-371. |
[6] | YIN Haojun, LONG Mingliang, LIU Wei, NI Chunlin, LI Fangbai, WU Yundang. Dissolved Oxygen Concentration Regulates Arsenic Reduction in Aeromonas hydrophila: Effects and Mechanisms [J]. Ecology and Environment, 2023, 32(2): 381-387. |
[7] | XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice [J]. Ecology and Environment, 2023, 32(1): 150-157. |
[8] | WU Shengyi, WANG Fei, XU Ganjun, MA Hao, DANG Yujie, WU Fei. Study on Forest Carbon Storage and Spatial Distribution in the Alpine Gorge Region of Northwest Sichuan: Take Sichuan Luoxu Nature Reserve as An Example [J]. Ecology and Environment, 2022, 31(9): 1735-1744. |
[9] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[10] | GAO Peng, GAO Pin, SUN Weimin, KONG Tianle, HUANG Duanyi, LIU Huaqing, SUN Xiaoxun. Response of the Endosphere and Rhizosphere Microbial Community in Petris vittata L. to Arsenic Stress [J]. Ecology and Environment, 2022, 31(6): 1225-1234. |
[11] | XU Meihua, GU Minghua, WANG Chengzhen, LEI Jing, WEI Yanyan, SHEN Fangke. Effect of Manganese on Arsenic Speciation in Soil and Arsenic Migration to Rice [J]. Ecology and Environment, 2022, 31(4): 802-813. |
[12] | WEN Zhifeng, WEI Shiguang, LI Lin, YE Wanhui, LIAN Juyu. Spatial Distribution Patterns and Spatial Associations of Evergreen Broad-leaved Forest Plants in Tropical South Asia at Different Taxonomic Levels [J]. Ecology and Environment, 2022, 31(3): 440-450. |
[13] | LIU Di, SU Chao, ZHANG Hong, QIN Guanyu. Pollution Characteristics and Risk Assessment of Heavy Metal Pollution in A Typical Coal-based Industrial Cluster Zone [J]. Ecology and Environment, 2022, 31(2): 391-399. |
[14] | ZHANG Licong, XIAO Kai, ZHANG Peng, LI Hailong, WANG Junjian, LI Zhenyang, WANG Fangfang, XU Hualin, GUO Yuehua. Tidal Variation Characteristics of Heavy Metals and Dissolved Organic Matter and Environmental Impact in a Silt Tidal Flat [J]. Ecology and Environment, 2022, 31(11): 2169-2179. |
[15] | ZHANG Kaiyue, LIU Zhenghui, WANG Yanhao, WANG Jingkuan, CUI Dejie, LIU Xinwei. Risk Assessment and Spatial Characteristics of PAHs in Soils in the Yellow River Delta Nature Reserve [J]. Ecology and Environment, 2022, 31(11): 2198-2205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn