Ecology and Environment ›› 2021, Vol. 30 ›› Issue (6): 1121-1128.DOI: 10.16258/j.cnki.1674-5906.2021.06.002
• Research Articles • Previous Articles Next Articles
LIAO Yingchun1,2(), DUAN Honglang1,2, SHI Xingxing1, MENG Qingyin3, LIU Wenfei1,2, SHEN Fangfang1,2, FAN Houbao1,2,*(
), ZHU Tao1
Received:
2021-02-27
Online:
2021-06-18
Published:
2021-09-10
Contact:
FAN Houbao
廖迎春1,2(), 段洪浪1,2, 施星星1, 孟庆银3, 刘文飞1,2, 沈芳芳1,2, 樊后保1,2,*(
), 朱涛1
通讯作者:
樊后保
作者简介:
廖迎春(1977年生),女,副教授,博士,主要从事森林生态研究。E-mail: liaoyingc@163.com
基金资助:
CLC Number:
LIAO Yingchun, DUAN Honglang, SHI Xingxing, MENG Qingyin, LIU Wenfei, SHEN Fangfang, FAN Houbao, ZHU Tao. The Relationship between the Stand Growth and Root Biomass of Cunninghamia lanceolate Plantations[J]. Ecology and Environment, 2021, 30(6): 1121-1128.
廖迎春, 段洪浪, 施星星, 孟庆银, 刘文飞, 沈芳芳, 樊后保, 朱涛. 杉木(Cunninghamia lanceolate)人工林生长状况与根系生物量相关性研究[J]. 生态环境学报, 2021, 30(6): 1121-1128.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.06.002
造林时间 Planting time | 造林密度 D/(trees∙hm-2) | 平均胸径 DBH/cm | 林分生物量 B/(t∙hm-2) | 林分 Plantation |
---|---|---|---|---|
2008 | 3086 | 15.8±3.0a | 192.4±21.8a | CH |
2007 | 3086 | 14.5±2.7b | 151.4±12.1b | CM |
2006 | 3086 | 12.1±2.3c | 94.5±21.9c | CL |
Table 1 Characteristics of the sampling sites
造林时间 Planting time | 造林密度 D/(trees∙hm-2) | 平均胸径 DBH/cm | 林分生物量 B/(t∙hm-2) | 林分 Plantation |
---|---|---|---|---|
2008 | 3086 | 15.8±3.0a | 192.4±21.8a | CH |
2007 | 3086 | 14.5±2.7b | 151.4±12.1b | CM |
2006 | 3086 | 12.1±2.3c | 94.5±21.9c | CL |
Fig. 1 Soil C, soil N and soil C?N The error bars represent mean+1SD; n=3; Different lowercase letters indicate the difference between plantations of the same soil layers at P<0.05; Different uppercase letters indicate the difference between soil layers of the same plantation at P<0.05
根系类别 Root group | 林分 Plantation | 土层 Soil layer | ||
---|---|---|---|---|
0-10 cm | 10-20 cm | 20-40 cm | ||
吸收根 Absorbing roots | CH | 0.32±0.04Aa | 0.29±0.03Aa | 0.10±0.04Ba |
CM | 0.27±0.04Aab | 0.28±0.03Aab | 0.09±0.03Ba | |
CL | 0.25±0.02Ab | 0.23±0.02Ab | 0.09±0.01Ba | |
运输细根 Transporting fine roots | CH | 0.79±0.04Aa | 0.88±0.26Aa | 0.29±0.03Ba |
CM | 0.74±0.03Aab | 0.87±0.08Aa | 0.29±0.07Ba | |
CL | 0.71±0.04Ab | 0.83±0.05Aa | 0.28±0.09Ba | |
粗根 Coarse roots | CH | 2.54±0.23Aa | 2.58±0.22Aa | 1.39±0.15Ba |
CM | 2.61±0.09Aa | 2.52±0.04Aa | 1.33±0.14Ba | |
CL | 2.58±0.35Aa | 2.49±0.26Aa | 1.27±0.35Ba | |
灌草根 Herb roots | CH | 0.05±0.01Aa | 0.06±0.01Aa | 0.06±0.04Aa |
CM | 0.06±0.03Aa | 0.07±0.02Aa | 0.06±0.02Aa | |
CL | 0.04±0.01Aa | 0.06±0.02Aa | 0.07±0.05Aa |
Table 2 Root biomass density mg∙cm-3
根系类别 Root group | 林分 Plantation | 土层 Soil layer | ||
---|---|---|---|---|
0-10 cm | 10-20 cm | 20-40 cm | ||
吸收根 Absorbing roots | CH | 0.32±0.04Aa | 0.29±0.03Aa | 0.10±0.04Ba |
CM | 0.27±0.04Aab | 0.28±0.03Aab | 0.09±0.03Ba | |
CL | 0.25±0.02Ab | 0.23±0.02Ab | 0.09±0.01Ba | |
运输细根 Transporting fine roots | CH | 0.79±0.04Aa | 0.88±0.26Aa | 0.29±0.03Ba |
CM | 0.74±0.03Aab | 0.87±0.08Aa | 0.29±0.07Ba | |
CL | 0.71±0.04Ab | 0.83±0.05Aa | 0.28±0.09Ba | |
粗根 Coarse roots | CH | 2.54±0.23Aa | 2.58±0.22Aa | 1.39±0.15Ba |
CM | 2.61±0.09Aa | 2.52±0.04Aa | 1.33±0.14Ba | |
CL | 2.58±0.35Aa | 2.49±0.26Aa | 1.27±0.35Ba | |
灌草根 Herb roots | CH | 0.05±0.01Aa | 0.06±0.01Aa | 0.06±0.04Aa |
CM | 0.06±0.03Aa | 0.07±0.02Aa | 0.06±0.02Aa | |
CL | 0.04±0.01Aa | 0.06±0.02Aa | 0.07±0.05Aa |
Fig. 3 Root biomass The error bars represent mean+1SD; n=3; different lowercase letters indicate significant differences between plantations at P<0.05
[1] |
ANTONINKA A, WOLF J E, BOWKER M, et al., 2009. Linking above- and belowground responses to global change at community and ecosystem scales[J]. Global Change Biology, 15(4): 914-929.
DOI URL |
[2] |
BLUME-WERRY G, LINDÉN E, ANDRESEN L et al., 2017. Proportion of fine roots, but not plant biomass allocation belowground, increases with elevation in arctic tundra[J]. Journal of Vegetation Science, 29(2): 226-235.
DOI URL |
[3] | BROUWER R, 1963. Some aspects of the equilibrium between overground and underground plant parts. In: The growth of cereals and grasses[M]. Wageningen: Jaarbboek IBS: 31-39. |
[4] |
CLEMENSSON-LINDELL A, PERSSON H, 1992. Effects of freezing on rhizosphere and root nutrient content using two soil sampling methods[J]. Plant and Soil, 139: 39-45.
DOI URL |
[5] |
COMAS L H, BECHER S R, CRUZ V, et al., 2013. Root traits contributing to plant productivity under drought[J]. Frontiers in Plant Science, DOI: 10.3389/fpls.2013.00442.
DOI |
[6] |
CORMIER N, TWILLEY R R, EWEL K C, et al., 2015. Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia[J]. Hydrobiologia, 750(1): 69-87.
DOI URL |
[7] |
EISSENSTAT D M, 1992. Costs and benefits of constructing roots of small diameter[J]. Journal of Plant Nutrition, 15(6): 763-782.
DOI URL |
[8] |
EISSENSTAT D M, KUCHARSKI J M, ZADWORNY M, et al., 2015. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest[J]. New Phytologist, DOI: 10.1111/nph.13451.
DOI |
[9] |
FINÉR L, LAINE J, 1998. Root dynamics at drained peatland sites of different fertility in southern Finland[J]. Plant and Soil, 201: 27-36.
DOI URL |
[10] |
FINÉR L, HELMISAARI H-S, LÕHMUS K, et al., 2007. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.)[J]. Plant Biosystems, 141(3): 394-405.
DOI URL |
[11] | FITTER A H, 1985. Functional significance of root morphology and root system architecture. In: Fitter A H, Atkinson D, Read D J, Usher M B (eds) Ecological interactions in soil [M]. Oxford: Blackwell Scientific Publication: 37-42. |
[12] |
FRESCHET G T, SWART E M, CORNELISSEN J H, 2015. Integrated plant phenotypic responses to contrasting above- and below-ground resources: Key roles of specific leaf area and root mass fraction[J]. New Phytologist, 206(4): 1247-1260.
DOI URL |
[13] | GAMBETTA G A, FEI J, ROST T L, et al., 2013. Water uptake along the length of grapevine fine roots: developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport[J]. Ecophysiology and Sustainability, 163(3): 1254-1265. |
[14] |
GUO D L, MITCHELL R J, HENDRICKS J J, 2004. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest[J]. Oecologia, 140: 450-457.
DOI URL |
[15] |
GUO D, XIA M, WEI X, et al., 2008. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 180(3): 673-683.
DOI URL |
[16] |
HELMISAARI H S, DEROME J, NÖJD P, et al., 2007. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands[J]. Tree Physiology, 27(10): 1493-1504.
DOI URL |
[17] |
HENDRICK R L, PREGITZER K S, 1993. Patterns of fine root mortality in two sugar maple forests[J]. Nature, 361(6407): 59-61.
DOI URL |
[18] |
LIAO Y C, MCCORMACK M L, FAN H B, et al., 2014. Relation of fine root distribution to soil C in a Cunninghamia lanceolata plantation in subtropical China[J]. Plant and Soil, 381(1-2): 225-234.
DOI URL |
[19] |
LIU C, XIANG W H, LEI P F, et al., 2014. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient[J]. Plant and Soil, 376(1-2): 445-459.
DOI URL |
[20] |
MCCORMACK M L, ADAMS T X, SMITHWICK E A H, et al., 2012. Predicting fine root lifespan from plant functional traits in temperate trees[J]. New Phytologist, 195: 823-831.
DOI URL |
[21] |
MCCORMACK M L, KAPROTH M A, CAVENDER-BARES J, et al., 2020. Climate and phylogenetic history structure morphological and architectural trait variation among fine-root orders[J]. New Phytologist, 228(6): 1824-1834.
DOI URL |
[22] |
O'HEHIR J F, NAMBIAR E K S, 2010. Productivity of three successive rotations of P. radiata plantations in South Australia over a century[J]. Forest Ecology and Management, 259(10): 1857-1869.
DOI URL |
[23] |
OSTONEN I, HELMISAARI H S, BORKEN W, et al., 2011. Fine root foraging strategies in Norway spruce forests across a European climate gradient[J]. Global Change Biology, 17(12): 3620-3632.
DOI URL |
[24] |
PREGITZER K S, KUBISKE M E, YU C K, et al., 1997. Relationships among root branch order, carbon, and nitrogen in four temperate species[J]. Oecologia, 111(3): 302-308.
DOI URL |
[25] |
PREGITZER K S, DEFOREST J L, BURTON A J, et al., 2002. Fine root architecture of nine North American trees[J]. Ecological Monographs, 72(2): 293-309.
DOI URL |
[26] |
PREGITZER K S, 2008. Tree root architecture-form and function[J]. New Phytologist, 180: 562-564.
DOI URL |
[27] | RIVERO R M, KOJIMA M, GEPSTEIN A, et al., 2007. Delayed leaf senescence induces extreme drought tolerance in a flowering plant[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(49): 19631-19636. |
[28] |
SCHACHTMAN D P, GOODGER J Q D, 2008. Chemical root to shoot signaling under drought[J]. Trends in Plant Science, 13(6): 281-287.
DOI URL |
[29] |
SPRUNGER C D, OATES L G, JACKSON R D, et al., 2017. Plant community composition influences fine root production and biomass allocation in perennial bioenergy cropping systems of the upper Midwest, USA[J]. Biomass and Bioenergy, 105: 248-258.
DOI URL |
[30] |
VICCA S, LUYSSAERT S, PEÑUELAS J, et al., 2012. Fertile forests produce biomass more efficiently[J]. Ecology Letter, 15(6): 520-526.
DOI URL |
[31] |
VOGT K A, VOGT D J, PALMIOTTO P A, et al., 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species[J]. Plant and Soil, 187(2): 159-219.
DOI URL |
[32] |
XIA M X, GUO D L, PREGITZER K S, 2010. Ephemeral root modules in Fraxinus mandshurica[J]. New Phytologist, 188(4): 1065-1074.
DOI URL |
[33] |
YUAN Z Y, CHEN H, 2010. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses[J]. Critical Reviews in Plant Sciences, 29(4): 204-221.
DOI URL |
[34] |
ZADWORNY M, MCCORMACK M L, MUCHA J, et al., 2016. Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient[J]. New Phytologist, 212(2): 389-399.
DOI URL |
[35] |
ZHOU Z C, SHANGGUAN Z P, 2007. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr.forest of the Loess Plateau of China[J]. Plant and Soil, 291(1-2): 119-129.
DOI URL |
[36] | 蔡瑛莹, 熊德成, 李茵茵, 等, 2018. 土壤增温和氮沉降对杉木幼树细根生物量的影响[J]. 亚热带资源与环境学报, 13(1): 36-44. |
CAI Y Y, XIONG D C, LI Y Y, et al., 2018. Effects of soil warming and nitrogen deposition on fine root biomass of Cunninghamia lanceolata saplings[J]. Journal of Subtropical Resources and Environment, 13(1): 36-44. | |
[37] | 陈光水, 杨玉盛, 何宗明, 等, 2004. 福建柏和杉木人工林细根季节动态和生产力的比较[J]. 林业科学, 40(4): 15-21. |
CHEN G S, YANG Y S, HE Z M, et al., 2004. Comparison on fine root production,distribution and turnover between plantations of Fokienia hodginsii and Cunninghamia lanceolata[J]. Scientia Silvae Sinicae, 40(4): 15-21. | |
[38] | 陈龙池, 汪思龙, 陈楚莹, 2004. 杉木人工林衰退机理探讨[J]. 应用生态学报, 15(10): 1953-1957. |
CHEN L C, WANG S L, CHEN C Y, 2004. Degradation mechanism of Chinese fir plantation[J]. Chinese Journal Applied Ecology, 15(10): 1953-1957. | |
[39] | 陈劲松, 苏智先, 2001. 缙云山马尾松种群生物量生殖配置研究[J]. 植物生态学报, 25(6): 704-708. |
CHEN J S, SU Z X, 2001. Reproductive Allocation of Biomass in Pinus Massoniana at Mt. JinYun[J]. Acta Phytoecologica Sinica, 25(6): 704-708. | |
[40] | 程云环, 韩有志, 王庆成, 等, 2005. 落叶松人工林细根动态与土壤资源有效性关系研究[J]. 植物生态学报, 29(3): 403-410. |
CHEN Y H, HAN Y Z, WANG Q C, et al., 2005. Seasonal dynamics of fine root biomass, root length density, specific root length and soil resource availability in a Larixgmelinis Plantation[J]. Acta Phytoecologica Sinica, 29(3): 403-410. | |
[41] | 方精云, 刘国华, 徐嵩龄, 1996. 我国森林植被的生物量和净生产量[J]. 生态学报, 16(5): 497-508. |
FANG J Y, LIU G H, XU S L, 1996. Biomass and net production of forest vegetation in China[J]. Acta Ecologica Sinica, 16(5): 497-508. | |
[42] | 黄林, 王峰, 周立江, 等, 2012. 不同森林类型根系分布与土壤性质的关系[J]. 生态学报, 32(19): 6110-6119. |
HUANG L, WANG F, ZHOU L J, et al., 2012. Root distribution in the different forest types and their relationship to soil properties[J]. Acta Ecologica Sinica, 32(19):6110-6119.
DOI URL |
|
[43] | 纪娇娇, 张秋芳, 杨智杰, 等, 2020. 模拟氮沉降对中亚热带杉木幼树根系生物量的影响[J]. 生态学报, 40(17): 6118-6125. |
JI J J, ZHANG Q F, YANG Z J, et al., 2020. Effects of simulated nitrogen deposition on root biomass of subtropical Chinese fir saplings[J]. Acta Ecologica Sinica, 40(17): 6118-6125. | |
[44] | 江洪, 白莹莹, 饶应福, 等, 2016. 新围垦盐土地三种人工林群落细根生物量及其影响因素分析[J]. 植物学报, 51(3): 343-352. |
JIANG H, BAI Y Y, RAO Y F, 2016. Fine root biomass and morphological characteristics in three different artificial forest communities in newly reclaimed saline soil[J]. Bulletin of Botany, 51(3): 343-352. | |
[45] | 孔令仑, 黄志群, 何宗明, 等, 2017. 不同林龄杉木人工林的水分利用效率与叶片养分浓度[J]. 应用生态学报, 28(4): 1069-1076. |
KONG L L, HUANG Z Q, HE Z M, et al., 2017. Variations of water use efficiency and foliar nutrient concentrations in Cunninghamia lanceolata plantations at different ages[J]. Chinese Journal of Applied Ecology, 28(4): 1069-1076. | |
[46] | 匡冬姣, 雷丕锋, 2015. 不同林龄杉木人工林细根生物量及分布特征[J]. 中南林业科技大学学报, 35(6): 70-74, 79. |
KUANG D J, LEI P F, 2015. Fine root biomass and vertical distribution of Chinese fir plantations (Cunninghamia lanceolata) at different stand ages[J]. Journal of Central South University of Forestry & Technology, 35(6): 70-74, 79. | |
[47] | 刘福德, 姜岳忠, 王华田, 等, 2005. 杨树人工林连作效应的研究[J]. 水土保持学报, 19(2): 102-105. |
LIU F D, JIANG Y Z, WANG H T, et al., 2005. Effect of continuous cropping on Poplar plantation[J]. Journal of Soil and Water Conservation, 19(2): 102-105. | |
[48] | 刘琪璟, 孟盛旺, 周华, 等, 2017. 中国立木材积表[M]. 北京: 中国林业出版社. |
LIU Q J, MENG S W, ZHOU H, et al., 2017. Tree volume tables of China[M]. Beijing: China Forestry Publishing House. | |
[49] | 孙长忠, 沈国舫, 2001. 我国人工林生产力问题的研究II——影响我国人工林生产力的人为因素与社会因素探讨[J]. 林业科学, 37(4): 26-34. |
SUN C Z, SHEN G F, 2001. Study on the Problems of Forest Plantation Productivity of China Ⅱ. — to Probe into the Social and Other Non-nature Factors Debasing the Plantation Productivity[J]. Scientia Silvae Sinicae, 37(4): 26-34. | |
[50] | 王福根, 卫星杓, 赵国春, 等, 2020. 无患子细根形态及垂直分布特征对配方施肥措施的响应[J]. 南京林业大学学报(自然科学版), https://kns.cnki.net/kcms/detail/32.1161.s.20200915.0849.002.html. |
WANG F G, WEI X B, ZHAO G C, et al., 2020. Effect of morphology and vertical distribution of fine root for Sapindus mukorossi based on formula fertilization[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), https://kns.cnki.net/kcms/detail/32.1161.s.20200915.0849.002.html. | |
[51] | 王建林, 钟志明, 王忠红, 等, 2014. 青藏高原高寒草原生态系统土壤碳氮比的分布特征[J]. 生态学报, 34(22): 6678-6691. |
WANG J L, ZHONG Z M, WANG Z H, et al., 2014. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai- Tibetan Plateau[J]. Acta Ecologica Sinica, 34(22): 6678-6691. | |
[52] | 谢建文, 2020. 不同造林密度下杉木人工林的生物量与分配特征[J]. 亚热带农业研究, 16(2): 84-88. |
XIE J W, 2020. Biomass and its distribution characteristics of Cunninghamia lanceolata plantations with different afforestation densities[J]. Subtropical Agriculture Research, 16(2): 84-88. | |
[53] | 徐伟强, 周璋, 李意德, 等, 2016. 植被因子和土壤氮对南亚热带常绿阔叶次生林细根生物量的影响[J]. 生态环境学报, 25(2): 183-188. |
XU W Q, ZHOU Z, LI Y D, et al., 2016. Effects of stand vegetation factors and soil nitrogen on fine root biomass in evergreen broad-leaved secondary forests in lower subtropical China[J]. Ecology and Environmental Sciences, 25(2): 183-188. | |
[54] | 张雷, 项文化, 田大伦, 等, 2009. 第2代杉木林土壤有机碳、全氮对细根分布及形态特征的影响[J]. 中南林业科技大学学报, 29(3): 11-15. |
ZHANG L, XIANG W H, TIAN D L, et al., 2009. Effects of soil nutrients on fine-root biomass, root surface-area and specific root length of Chinese fir plantation in Huitong, Hunan Province[J]. Journal of Central South University of Forestry & Technology, 29(3): 11-15. |
[1] | WANG Xuemei, YANG Xuefeng, ZHAO Feng, AN Baisong, HUANG Xiaoyu. Estimation of Aboveground Biomass in the Arid Oasis Based on the Machine Learning Algorithm [J]. Ecology and Environment, 2023, 32(6): 1007-1015. |
[2] | CHEN Keyi, LIN Tianmiao, WANG Jianjun, HE Youjun, ZHANG Liwen. Effects of Natural Forest Conservation Project on Forest Carbon Pool of Key State-Owned Forest Region of Daxing’anling, Heilongjiang Province in the Past 20 Years [J]. Ecology and Environment, 2023, 32(6): 1016-1025. |
[3] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[4] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[5] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[6] | SONG Zhibin, ZHOU Jiacheng, TAN Lu, TANG Tao. Altitudinal Patterns of Benthic Algal Communities in Plateau Rivers: A Case Study of Heiqu and Xuequ in Tibet [J]. Ecology and Environment, 2023, 32(2): 274-282. |
[7] | ZHANG Beier, WU Jianqiang, WANG Min, XIONG Lijun, TAN Juan, SHEN Cheng, HUANG Botao, HUANG Shenfa. Evaluation of Soil Health in Different Arable Land Ecological Conservation Projects [J]. Ecology and Environment, 2023, 32(2): 388-396. |
[8] | LI Weiwen, HUANG Jinquan, QI Yujie, LIU Xiaolan, LIU Jigen, MAO Zhichao, GAO Xiufang. Meta-analysis of Soil Microbial Biomass Carbon Content and Its Influencing Factors under Soil Erosion [J]. Ecology and Environment, 2023, 32(1): 47-55. |
[9] | HUANG Weijia, LIU Chun, LIU Yue, HUANG Bin, LI Dingqiang, YUAN Zaijian. Soil Ecological Stoichiometry and Its Influencing Factors at Different Elevations in Nanling Mountains [J]. Ecology and Environment, 2023, 32(1): 80-89. |
[10] | CHEN Keyi, WANG Jianjun, HE Youjun, ZHANG Liwen. Estimations of Forest Carbon Storage and Carbon Sequestration Potential of Key State-Owned Forest Region in Daxing’anling, Heilongjiang Province [J]. Ecology and Environment, 2022, 31(9): 1725-1734. |
[11] | LIU Zhendi, SONG Yanyu, WANG Xianwei, TAN Wenwen, ZHANG Hao, GAO Jinli, GAO Siqi, DU Yu. Effects of Simulated Warming on Plant Growth and Carbon and Nitrogen Characteristics in Permafrost Peatland [J]. Ecology and Environment, 2022, 31(9): 1765-1772. |
[12] | CUI Qiao, LI Zongxing, ZHANG Baijuan, ZHAO Yue, NAN Fusen. A Meta-analysis of the Effects of Freezing and Thawing on Soil Dissolved Carbon and Nitrogen and Microbial Biomass Carbon and Nitrogen Contents [J]. Ecology and Environment, 2022, 31(8): 1700-1712. |
[13] | WANG Lei, WEN Yuanguang, ZHOU Xiaoguo, ZHU Hongguang, SUN Dongjing. Effects of Mixing Eucalyptus urophylla×E. grandis with Castanopsis hystrix on Understory Vegetation and Soil Properties [J]. Ecology and Environment, 2022, 31(7): 1340-1349. |
[14] | YU Yanghua, WU Yingu, SONG Yanping, LI Yitong. Stoichiometric Characteristics of Soil Microbial Concentration and Biomass in Zanthoxylum planispinum var. Dintanensis Plantations of Different Ages [J]. Ecology and Environment, 2022, 31(6): 1160-1168. |
[15] | SUN Jianbo, CHANG Wenjun, LI Wenbin, ZHANG Shiqing, LI Chunqiang, PENG Ming. Dynamics of Soil Microbial Biomass and Enzyme Activities in Rhizosphere Soil at Different Growing Stages of Banana [J]. Ecology and Environment, 2022, 31(6): 1169-1174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn