Ecology and Environment ›› 2024, Vol. 33 ›› Issue (5): 802-811.DOI: 10.16258/j.cnki.1674-5906.2024.05.013
• Research Article [Environmental Science] • Previous Articles Next Articles
LI Hui*(), DENG Jiawei, LI Yaxin, MU Yingqi
Received:
2024-01-12
Online:
2024-05-18
Published:
2024-06-27
通讯作者:
*
作者简介:
李慧(1991年生),女,讲师,博士,主要从事水文地质方面研究。E-mail: lihui@xust.edu.cn
基金资助:
CLC Number:
LI Hui, DENG Jiawei, LI Yaxin, MU Yingqi. Impacts of Climate and Land Use Change on Runoff in Typical Basin of Northern Foothills of Qinling Mountains: Case Study of Bahe River Basin[J]. Ecology and Environment, 2024, 33(5): 802-811.
李慧, 邓佳伟, 李亚鑫, 母滢琦. 秦岭北麓典型流域径流对气候和土地利用变化的响应——以灞河流域为例[J]. 生态环境学报, 2024, 33(5): 802-811.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.05.013
土地利用类型 | 1985年 | 2000年 | 2018年 | |||||
---|---|---|---|---|---|---|---|---|
面积/ km2 | 占比/ % | 面积/ km2 | 占比/ % | 面积/ km2 | 占比/ % | |||
耕地 | 1.26×103 | 47.4 | 1.19×103 | 44.6 | 986 | 37.1 | ||
林地 | 1.19×103 | 44.8 | 1.25×103 | 46.9 | 1.37×103 | 51.5 | ||
草地 | 126 | 4.74 | 93.9 | 3.53 | 29.0 | 1.09 | ||
水域 | 4.83 | 0.181 | 3.67 | 0.14 | 10.4 | 0.392 | ||
裸地 | 6.04×10−3 | 3.76×10−4 | 0.00 | 0.00 | 9.18×10−2 | 3.38×10−3 | ||
城镇建设用地 | 76.0 | 2.86 | 129 | 4.83 | 265 | 9.95 |
Table 1 Land use change from 1985 to 2018
土地利用类型 | 1985年 | 2000年 | 2018年 | |||||
---|---|---|---|---|---|---|---|---|
面积/ km2 | 占比/ % | 面积/ km2 | 占比/ % | 面积/ km2 | 占比/ % | |||
耕地 | 1.26×103 | 47.4 | 1.19×103 | 44.6 | 986 | 37.1 | ||
林地 | 1.19×103 | 44.8 | 1.25×103 | 46.9 | 1.37×103 | 51.5 | ||
草地 | 126 | 4.74 | 93.9 | 3.53 | 29.0 | 1.09 | ||
水域 | 4.83 | 0.181 | 3.67 | 0.14 | 10.4 | 0.392 | ||
裸地 | 6.04×10−3 | 3.76×10−4 | 0.00 | 0.00 | 9.18×10−2 | 3.38×10−3 | ||
城镇建设用地 | 76.0 | 2.86 | 129 | 4.83 | 265 | 9.95 |
敏感性排名 | 参数名称 | 参数含义 | t值 | p值 | 最佳值 |
---|---|---|---|---|---|
1 | R__CN2 | SCS径流曲线值 | 9.13 | 0.000 | 0.260 |
2 | V__ALPHA_BF | 基流消退系数 | 2.28 | 0.024 | 0.768 |
3 | V__SLSUBBSN | 平均坡长 | −1.45 | 0.149 | 31.4 |
4 | V__CANMX | 最大冠层截留量 | −1.42 | 0.159 | 0.175 |
5 | V__ESCO | 土壤蒸发补偿因子 | −1.41 | 0.160 | 0.478 |
6 | V__GW_DELAY | 地下水迟滞时间 | 1.17 | 0.244 | 321 |
7 | R__SOL_K | 土壤饱和导水系数 | 1.12 | 0.263 | 0.796 |
8 | V__GW_REVAP | 地下水再蒸发系数 | −1.11 | 0.270 | 0.183 |
9 | V__SURLAG | 地表径流延滞系数 | 1.08 | 0.280 | 18.2 |
10 | V__CH_N2 | 主河道曼宁系数 | 0.950 | 0.346 | 0.260 |
11 | R__SOL_Z | 土壤表层到 底层的深度 | −0.789 | 0.431 | 0.473 |
12 | V__EPCO | 植物蒸腾补偿系数 | −0.663 | 0.508 | 0.868 |
13 | R__SOL_BD | 土壤饱和容重 | 0.555 | 0.580 | 0.233 |
14 | V__CH_K2 | 主河道水力传导率 | −0.187 | 0.852 | 459 |
15 | V__GWQMN | 浅层地下水产生基流的阈值 | −0.065 | 0.948 | 2.01×103 |
Table 2 Parameter sensitivity analysis of the SWAT model
敏感性排名 | 参数名称 | 参数含义 | t值 | p值 | 最佳值 |
---|---|---|---|---|---|
1 | R__CN2 | SCS径流曲线值 | 9.13 | 0.000 | 0.260 |
2 | V__ALPHA_BF | 基流消退系数 | 2.28 | 0.024 | 0.768 |
3 | V__SLSUBBSN | 平均坡长 | −1.45 | 0.149 | 31.4 |
4 | V__CANMX | 最大冠层截留量 | −1.42 | 0.159 | 0.175 |
5 | V__ESCO | 土壤蒸发补偿因子 | −1.41 | 0.160 | 0.478 |
6 | V__GW_DELAY | 地下水迟滞时间 | 1.17 | 0.244 | 321 |
7 | R__SOL_K | 土壤饱和导水系数 | 1.12 | 0.263 | 0.796 |
8 | V__GW_REVAP | 地下水再蒸发系数 | −1.11 | 0.270 | 0.183 |
9 | V__SURLAG | 地表径流延滞系数 | 1.08 | 0.280 | 18.2 |
10 | V__CH_N2 | 主河道曼宁系数 | 0.950 | 0.346 | 0.260 |
11 | R__SOL_Z | 土壤表层到 底层的深度 | −0.789 | 0.431 | 0.473 |
12 | V__EPCO | 植物蒸腾补偿系数 | −0.663 | 0.508 | 0.868 |
13 | R__SOL_BD | 土壤饱和容重 | 0.555 | 0.580 | 0.233 |
14 | V__CH_K2 | 主河道水力传导率 | −0.187 | 0.852 | 459 |
15 | V__GWQMN | 浅层地下水产生基流的阈值 | −0.065 | 0.948 | 2.01×103 |
情景 | 情景设置说明 |
---|---|
L1 | 将所有耕地转化成林地 |
L2 | 将所有草地转化成林地 |
L4 | 将所有耕地转化成城镇建设用地 |
Table 3 Land use change scenario setting
情景 | 情景设置说明 |
---|---|
L1 | 将所有耕地转化成林地 |
L2 | 将所有草地转化成林地 |
L4 | 将所有耕地转化成城镇建设用地 |
情景 | 土地利用数据年份 | 气候变化数据年份 |
---|---|---|
S1 (基准期) | 1985年 | 1960‒1989年 |
S2 | 2000年 | 1960‒1989年 |
S3 | 2018年 | 1960‒1989年 |
S4 | 1985年 | 1990‒2018年 |
S5 | 2000年 | 1990‒2018年 |
S6 | 2018年 | 1990‒2018年 |
Table 4 Integrated scenario setting of climate change and land use
情景 | 土地利用数据年份 | 气候变化数据年份 |
---|---|---|
S1 (基准期) | 1985年 | 1960‒1989年 |
S2 | 2000年 | 1960‒1989年 |
S3 | 2018年 | 1960‒1989年 |
S4 | 1985年 | 1990‒2018年 |
S5 | 2000年 | 1990‒2018年 |
S6 | 2018年 | 1990‒2018年 |
情景 | 气温/降水变化 | 年均径流量/ (m3·s−1) | 径流变化量/ (m3·s−1) | 变化率/ % |
---|---|---|---|---|
基准期 | t, P | 8.52 | ‒ | ‒ |
I1 | t, P (1−20%) | 6.39 | −2.13 | −25.0 |
I2 | t, P (1−10%) | 7.43 | −1.09 | −12.8 |
I3 | t, P (1+10%) | 9.66 | 1.14 | 13.4 |
I4 | t, P (1+20%) | 10.9 | 2.38 | 27.9 |
I5 | (t+1 ℃), P | 8.50 | −0.02 | −0.235 |
I6 | (t+2 ℃), P | 8.49 | −0.03 | −0.352 |
Table 5 Climate change scenario simulation results
情景 | 气温/降水变化 | 年均径流量/ (m3·s−1) | 径流变化量/ (m3·s−1) | 变化率/ % |
---|---|---|---|---|
基准期 | t, P | 8.52 | ‒ | ‒ |
I1 | t, P (1−20%) | 6.39 | −2.13 | −25.0 |
I2 | t, P (1−10%) | 7.43 | −1.09 | −12.8 |
I3 | t, P (1+10%) | 9.66 | 1.14 | 13.4 |
I4 | t, P (1+20%) | 10.9 | 2.38 | 27.9 |
I5 | (t+1 ℃), P | 8.50 | −0.02 | −0.235 |
I6 | (t+2 ℃), P | 8.49 | −0.03 | −0.352 |
情景 | 年均径流量/(m3·s−1) | 径流变化量/(m3·s−1) | 变化率/% |
---|---|---|---|
基准期 | 8.52 | ‒ | ‒ |
L1 | 8.30 | −0.220 | −2.58 |
L2 | 8.59 | 0.07 | 0.822 |
L3 | 12.0 | 3.48 | 40.8 |
Table 6 Simulation results of extreme land use scenarios
情景 | 年均径流量/(m3·s−1) | 径流变化量/(m3·s−1) | 变化率/% |
---|---|---|---|
基准期 | 8.52 | ‒ | ‒ |
L1 | 8.30 | −0.220 | −2.58 |
L2 | 8.59 | 0.07 | 0.822 |
L3 | 12.0 | 3.48 | 40.8 |
情景 | 年均径流量/(m³·s−1) | 径流变化量/(m³·s−1) | 变化率/% |
---|---|---|---|
S1 (基准期) | 8.52 | ‒ | ‒ |
S2 | 8.56 | 0.04 | 0.469 |
S3 | 8.69 | 0.170 | 2.00 |
S4 | 7.48 | −1.04 | −12.2 |
S5 | 7.51 | −1.01 | −11.9 |
S6 | 7.65 | −0.870 | −10.2 |
Table 7 Climate change and land use integrated scenario simulation results
情景 | 年均径流量/(m³·s−1) | 径流变化量/(m³·s−1) | 变化率/% |
---|---|---|---|
S1 (基准期) | 8.52 | ‒ | ‒ |
S2 | 8.56 | 0.04 | 0.469 |
S3 | 8.69 | 0.170 | 2.00 |
S4 | 7.48 | −1.04 | −12.2 |
S5 | 7.51 | −1.01 | −11.9 |
S6 | 7.65 | −0.870 | −10.2 |
[1] | CHU H B, WEI J H, QIU J, et al., 2019. Identification of the impact of climate change and human activities on rainfall-runoff relationship variation in the Three-River Headwaters region[J]. Ecological Indicators, 106: 105516. |
[2] |
GAO J, BIAN H Y, ZHU C Y, et al., 2022. The response of key ecosystem services to land use and climate change in Chongqing: Time, space, and altitude[J]. Journal of Geographical Sciences, 32(2): 317-332.
DOI |
[3] | GIRI S, ARBAB N N, LATHROP R G, 2019. Assessing the potential impacts of climate and land use change on water fluxes and sediment transport in a loosely coupled system[J]. Journal of Hydrology, 577: 123955-123955. |
[4] | LI D F, LU X X, OVEREEM I, et al., 2021. Exceptional increases in fluvial sediment fluxes in a warmer and wetter High Mountain Asia[J]. Science (New York, N. Y.), 374(6567): 599-603. |
[5] | WU J W, MIAO C Y, ZHANG X M, et al., 2017. Detecting the quantitative hydrological response to changes in climate and human activities[J]. Science of the Total Environment, 586: 328-337. |
[6] | WU L H, WANG S J, BAI X Y, et al., 2022. Identifying the multi-scale influences of climate factors on runoff changes in a typical karst watershed using wavelet analysis[J]. Land, 11(8): 1284. |
[7] | ZHANG J, ZHU Z L, HAO H Q, 2023. The effects of climate variation and anthropogenic activity on karst spring discharge based on the wavelet coherence analysis and the multivariate statistical[J]. Sustainability, 15(11): 8798. |
[8] | 崔周宇, 杨肖丽, 李文婷, 等, 2023. 气候与土地利用变化下黄河源区蓝绿水量的时空响应研究[J]. 水文, 43(2): 66-71, 77. |
CUI Z Y, YANG X L, LI W T, et al., 2023. Responses of blue and green water to climate change and landuse change in the source region of the Yellow River[J]. Journal of China Hydrology, 43(2): 66-71, 77. | |
[9] | 程程, 2020. 基于SWAT模型的土地利用和土地覆被变化及气候变化对元江流域径流的影响[J]. 中国水土保持科学, 18(5): 52-59. |
CHENG C, 2020. Impacts of land use /land cover change and climate change on the runoff in Yuan River basin based on SWAT mode[J]. Science of Soil and Water Conservation, 18(5): 52-59. | |
[10] |
窦小东, 黄玮, 易琦, 等, 2019. LUCC及气候变化对龙川江流域径流的影响[J]. 生态环境学报, 28(1): 7-15.
DOI |
DOU X D, HUANG W, YI Q, et al., 2019. Effects of LUCC and climate change on the runoff in Longchuan River Watershed[J]. Ecology and Environmental Sciences, 28(1): 7-15. | |
[11] | 郭冠淼, 包含, 兰恒星, 等, 2022. 基于交叉小波与小波相干的黄土高填方体浅表层水分相关关系研究[J]. 工程地质学报, 30(5): 1389-1402. |
GUO G M, BAO H, LAN H X, et al., 2022. Correlationship of surface moisture in loess high-filling body based on cross wavelet and wavelet coherence[J]. Journal of Engineering Geology, 30(5): 1389-1402. | |
[12] | 郭伟, 陈兴伟, 林炳青, 2021. SWAT模型参数对土地利用变化的响应及其对不同时间尺度径流模拟的影响[J]. 生态学报, 41(16): 6373-6383. |
GUO W, CHEN X W, LIN B Q, 2021. Response of SWAT model parameters to land use change and its effects on the simulation of runoff with different time scales[J]. Acta Ecologica Sinica, 41(16): 6373-6383. | |
[13] | 郝振纯, 苏振宽, 2015. 土地利用变化对海河流域典型区域的径流影响[J]. 水科学进展, 26(4): 491-499. |
HAO Z C, SU Z K, 2015. Effects of land use change on runoff in the typical areas in Haihe River Basin[J]. Advances in Water Science, 26(4): 491-499. | |
[14] |
霍军军, 伊明启, 王静, 等, 2021. 拉萨河流域径流对土地利用和气候变化的响应分析[J]. 长江科学院院报, 38(10): 33-39.
DOI |
HUO J J, YI M Q, WANG J, et al., 2021. Response of runoff in Lhasa River Basin to land use and climate change[J]. Journal of Changjiang River Scientific Research, 38(10): 33-39. | |
[15] | 胡胜, 邱海军, 宋进喜, 等, 2017. 气候变化对秦岭北坡径流过程的影响机制研究——以灞河流域为例[J]. 干旱区地理, 40(5): 967-978. |
HU S, QIU H J, SONG J X, et al., 2017. Influencing mechanisms of climate change on runoff process in the north slope of Qinling Mountains: A case of the Bahe River Basin[J]. Arid Land Geography, 40(5): 967-978. | |
[16] | 江善虎, 刘亚婷, 任立良, 等, 2022. 变化环境下渭河流域生态水文情势演变归因研究[J]. 水资源保护, 38(6): 9-14, 70. |
JIANG S H, LIU Y T, REN L L, et al., 2022. Attribution analysis of eco-hydrological regime evolution in the Weihe River Basin under changing environment[J]. Water Resources Protection, 38(6): 9-14, 70. | |
[17] | 柯新月, 汪妮, 2019. 秦岭南北典型流域径流变化规律的对比研究[J]. 西安理工大学学报, 35(4): 452-458. |
KE X Y, WANG N, 2019. Comparative study on the variation of runoff in typical basins of northern and southern regions of Qinling Mountains[J]. Journal of Xi’an University of Technology, 35(4): 452-458. | |
[18] | 李慧, 周维博, 马聪, 等, 2017. 城市化对西安市降水及河流水文过程的影响[J]. 干旱区地理, 40(2): 322-331. |
LI H, ZHOU W B, MA C, et al., 2017. Effects of urbanization on regional precipitation and river hydrologica process in Xi’an City[J]. Arid Land Geography, 40(2): 322-331. | |
[19] | 李帅, 魏虹, 刘媛, 等, 2017. 气候与土地利用变化下宁夏清水河流域径流模拟[J]. 生态学报, 37(4): 1252-1260. |
LI S, WEI H, LIU Y, et al., 2017. Runoff prediction for Ningxia Qingshui River Basin under scenarios of climate and land use changes[J]. Acta Ecologica Sinica, 37(4): 1252-1260. | |
[20] | 刘酌希, 陈鑫, 管晓祥, 等, 2020. 变化环境下洮河流域径流变化归因[J]. 水土保持研究, 27(5): 87-92, 100. |
LIU Z X, CHEN X, GUAN X X, et al., 2020. Attribution of runoff change in the Taohe River Basin under a changing environment[J]. Research of Soil and Water Conservation, 27(5): 87-92, 100. | |
[21] | 慕全鹏, 鲁克新, 杨光, 等, 2022. 沮河流域径流变化特征及归因分析[J]. 水力发电学报, 41(12): 80-89. |
MU Q P, LU K X, YANG G, et al., 2022. Characteristics of runoff changes in Ju River basin and attribution analysis[J]. Journal of Hydroelectric Engineering, 41(12): 80-89. | |
[22] | 莫淑红, 王学凤, 勾奎, 等, 2016. 气候变化和人类活动对灞河流域径流情势的影响分析[J]. 水力发电学报, 35(9): 7-17. |
MO S H, WANG X F, GOU K, et al., 2016. Impacts of climate changes and human activities on annual runoff of Bahe River basin[J]. Journal of Hydroelectric Engineering, 35(9): 7-17. | |
[23] | 申艳军, 陈兴, 彭建兵, 等, 2024. 秦岭生态地质环境系统本底特征及研究体系初步构想[J/OL]. 地球科学, 1-17[2024-03-12]. http://kns.cnki.net/kcms/detail/42.1874.p.20240123.0945.002.html. |
SHEN Y J, CHEN X, PENG J B, et al., 2024. Background characteristics of ecological geological environment system in the Qinling Mountains and assumption of its theoretical system[J/OL]. Earth Science, 1-17[2024-03-12]. http://kns.cnki.net/kcms/detail/42.1874.p.20240123.0945.002.html. | |
[24] | 史晓亮, 杨志勇, 严登华, 等, 2014. 滦河流域土地利用/覆被变化的水文响应[J]. 水科学进展, 25(1): 21-27. |
SHI X L, YANG Z Y, YAN D H, et al., 2014. On hydrological response to land-use/cover change in Luanhe River basin[J]. Advances in Water Science, 25(1): 21-27. | |
[25] | 宋佃星, 延军平, 马莉, 2011. 近50年来秦岭南北气候分异研究[J]. 干旱区研究, 28(3): 492-498. |
SONG D X, YAN J P, MA L, 2011. Study on climatic differentiation in the south and north Qinling Mountains in recent 50 years[J]. Arid Land Geography, 28(3): 492-498. | |
[26] | 苏贤保, 李勋贵, 张建香, 等, 2021. 气候变化和人类活动对黄河上游径流影响的时空差异[J]. 兰州大学学报(自然科学版), 57(3): 285-293. |
SU X B, LI X G, ZHANG J X, et al., 2021. Temporal and spatial differences in the impact of climate changes and human activities on runoff in the upper reaches of the Yellow River[J]. Journal of Lanzhou University (Natural Sciences), 57(3): 285-293. | |
[27] | 王跃峰, 陈莹, 陈兴伟, 2013. 基于TFPW-MK法的闽江流域径流趋势研究[J]. 中国水土保持科学, 11(5): 96-102. |
WANG Y F, CHEN Y, CHEN X W, 2013. Runoff trend detection in the Minjiang River Basin with TFPW-MK method[J]. Science of Soil and Water Conservation, 11(5): 96-102. | |
[28] | 许心怡, 李建柱, 冯平, 2021. 不同降水产品在滦河流域径流模拟中的适用性[J]. 水力发电学报, 40(12): 25-39. |
XU X Y, LI J Z, FENG P, 2021. Applicability of different precipitation products to runoff simulations of Luanhe River basin[J]. Journal of Hydroelectric Engineering, 40(12): 25-39. | |
[29] | 徐宗学, 周祖昊, 姜瑶, 等, 2022. 西南河流源区径流量变化规律及其未来演变趋势[J]. 水科学进展, 33(3): 360-374. |
XU Z X, ZHOU Z H, JIANG Y, et al., 2022. Variation laws and future evolution trends of runoff in the headwaters region of Southwestern rivers[J]. Advances in Water Science, 33(3): 360-374. | |
[30] | 薛宝林, 张瀚文, 闫宇会, 等, 2020. 黄垒河流域气候与土地利用变化对径流的影响[J]. 北京师范大学学报(自然科学版), 56(3): 445-453. |
XUE B L, ZHANG H W, YAN Y H, et al., 2020. Impact of climate and land use change on runoff in Huanglei River Basin[J]. Journal of Beijing Normal University (Natural Science), 56(3): 445-453. | |
[31] | YACHONGTOU Bounheuang, 梁婕, 曾光明, 等, 2019. 基于SWAT模型的浏阳河流域径流对土地利用和气候变化的协同响应[J]. 水资源与水工程学报, 30(2): 88-94. |
BOUNHEUANG Y, LIANG J, ZENG G M, et al., 2019. Synergistic effect of land use and climate change on Liuyang River Basin runoff assessed by SWAT model[J]. Journal of Water Resources and Water, 30(2): 88-94. | |
[32] | 杨璐莹, 霍艾迪, 赵志欣, 等, 2024. 基于CMIP6的秦岭北麓未来极端降水洪涝风险分析[J]. 人民黄河, 46(2): 55-60, 66. |
YANG L Y, HUO A D, ZHAO Z X, et al., 2024. Risk analysis of future extreme precipitation flooding in the northern foot of Qinling Mountains based on CMIP6[J]. Yellow River, 46(2): 55-60, 66. | |
[33] | 张建军, 周后福, 翟菁, 2007. 合肥气温和降水的突变特征分析[J]. 安徽农业科学, 35(9): 2724-2726. |
ZHANG J J, ZHOU H F, ZHAI J, 2007. Analysis of the character of temperature and precipitation variation in Hefei City[J]. Journal of Anhui Agricultural Sciences, 35(9): 2724-2726. | |
[34] | 张帅, 黄领梅, 张高锋, 2023. 基于不同相似度方法的秦岭北麓典型流域相似度研究[J]. 水资源与水工程学报, 34(6): 10-15. |
ZHANG S, HUANG L M, ZHANG G F, 2023. Similarity analysis of typical watersheds in northern Qinling Mountains based on different measurement approaches[J]. Journal of Water Resources and Water, 34(6): 10-15. | |
[35] | 张晔, 侯精明, 龚佳辉, 等, 2022. 1980-2020年渭河中上游流域土地利用演变及其对径流的影响[J]. 水土保持通报, 42(5): 231-237, 246. |
ZHANG Y, HOU J M, GONG J H, et al., 2022. Land use evolution and its impact on runoff response in middle and upper reaches of Weihe River basin during 1980-2020[J]. Bulletin of Soil and Water Conservation, 42(5): 231-237, 246. | |
[36] | 张召鹏, 段克勤, 2022. 1970-2015年秦岭北麓径流重建及变化[J]. 水土保持研究, 29(2): 206-211. |
ZHANG Z P, DUAN K Q, 2022. Change and retrieval of runoff in the northern foothills of Qinling Mountains from 1970 to 2015[J]. Research of Soil and Water Conservation, 29(2): 206-211. | |
[37] | 周帅, 王义民, 郭爱军, 等, 2018. 气候变化和人类活动对黄河源区径流影响的评估[J]. 西安理工大学学报, 34(2): 205-210. |
ZHOU S, WANG Y M, GUO A J, et al., 2018. Assessment on impacts of climate change and human activities on runoff in source region of the Yellow River[J]. Journal of Xi’an University of Technology, 34(2): 205-210. | |
[38] | 祖拜代·木依布拉, 师庆东, 普拉提·莫合塔尔, 等, 2018. 基于SWAT模型的乌鲁木齐河上游土地利用和气候变化对径流的影响[J]. 生态学报, 38(14): 5149-5157. |
ZUBAIDA·MUYIBUL, SHI Q D, POLAT·MUHTAR, et al., 2018. Land use and climate change effects on runoff in the upper Urumqi River watershed: A SWAT model based analysis[J]. Acta Ecologica Sinica, 38(14): 5149-5157. |
[1] | TIAN Xuchen, WEI Hongling, XIE Shengnan, CHU Qiming, YANG Jing, ZHANG Ying, XIAO Siqiu, TANG Zonghua, LIU Ying, LI Dewen. Potential Geographical Distribution of Acer in Northeast China Based on the MaxEnt Model [J]. Ecology and Environment, 2024, 33(4): 509-519. |
[2] | LIU Xia, GUO Shu, WANG Lin. Study on the Value of Land Use and Ecological Services in the Region of Regional Integration: Take Shuanglai Pilot Area as An Example [J]. Ecology and Environment, 2023, 32(6): 1163-1172. |
[3] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environment, 2023, 32(5): 825-834. |
[4] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[5] | LI Hui, LI Bilong, GE Lili, HAN Chenhui, YANG Qian, ZHANG Yuejun. Temporal and Spatial Characteristics of Vegetation Evolution and Topographic Effects in Fenhe River Basin from 2000 to 2021 [J]. Ecology and Environment, 2023, 32(3): 439-449. |
[6] | LIU Xilin, ZHUO Ruina. Influential Factors and Their Critical Thresholds of Initial Runoff Production Time on the Benggang Colluvial Slopes [J]. Ecology and Environment, 2023, 32(1): 36-46. |
[7] | QI Yue, ZHANG Qiang, HU Shujuan, CAI Dihua, ZHAO Funian, ZHANG Kai, WANG Heling, WANG Runyuan. Climate Change and Its Impact on Winter Wheat Potential Productivity of Loess Plateau in China [J]. Ecology and Environment, 2022, 31(8): 1521-1529. |
[8] | DENG Tianle, XIE Liyong, ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong. Competition for Growth Space between Barnyard Grass and Rice under Elevated Atmospheric CO2 Concentration [J]. Ecology and Environment, 2022, 31(8): 1566-1572. |
[9] | LU Yanyu, SUN Wei, FANG Yanqiu, TANG Weian, DENG Hanqing, HE Dongyan. Estimating the Climatic Potential Productivity and the Climatic Capacity of Food Security Based on the Cropping Structure in Anhui Province [J]. Ecology and Environment, 2022, 31(7): 1293-1305. |
[10] | KE Qihua, ZHANG Keli. Scale Effect on Water and Soil Loss in China: A Bibliometric Analysis [J]. Ecology and Environment, 2022, 31(7): 1489-1498. |
[11] | LI Dengke, WANG Zhao. Quantitative Analysis of the Impact of Climate Change and Human Activities on Vegetation NPP in Shaanxi Province [J]. Ecology and Environment, 2022, 31(6): 1071-1079. |
[12] | CAO Xiaoyun, ZHU Cunxiong, CHEN Guoqian, SUN Shujiao, ZHAO Huifang, ZHU Wenbin, ZHOU Bingrong. Surface Greenness Change and Topographic Differentiation over Qaidam Basin from 2000 to 2021 [J]. Ecology and Environment, 2022, 31(6): 1080-1090. |
[13] | LI Pingxing, ZOU Lu. Identification and Construction Cost of Ecological Corridors Based on Land Use Change: The Case of Eastern Suburb Nanjing [J]. Ecology and Environment, 2022, 31(2): 277-285. |
[14] | SHI Zhiyu, WANG Yating, ZHAO Qing, ZHANG Lianpeng, ZHU Changming. The Spatiotemporal Changes of NPP and Its Driving Mechanisms in China from 2001 to 2020 [J]. Ecology and Environment, 2022, 31(11): 2111-2123. |
[15] | LIU Bingru. Response of Thermal Adaptability of Soil Microbial Respiration and Microbial Community and Diversity to Global Climate Change: A Review [J]. Ecology and Environment, 2022, 31(1): 181-186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn