Ecology and Environment ›› 2023, Vol. 32 ›› Issue (5): 933-942.DOI: 10.16258/j.cnki.1674-5906.2023.05.011
• Research Articles • Previous Articles Next Articles
YANG Kai1,2(), YANG Jingrui1,2, CAO Peipei1,2, LÜ Chunhua1,2, SUN Wenjuan1, YU Lingfei1, DENG Xi3,*(
)
Received:
2023-03-01
Online:
2023-05-18
Published:
2023-08-09
Contact:
DENG Xi
杨凯1,2(), 杨靖睿1,2, 曹培培1,2, 吕春华1,2, 孙文娟1, 于凌飞1, 邓希3,*(
)
通讯作者:
邓希
作者简介:
杨凯(1993年生),男,博士,从事气候变化与农业生态研究。E-mail: yangkai@ibcas.ac.cn
基金资助:
CLC Number:
YANG Kai, YANG Jingrui, CAO Peipei, LÜ Chunhua, SUN Wenjuan, YU Lingfei, DENG Xi. Dynamic Response of Rice Plant Height, Tillering and SPAD under Elevated CO2 Concentration and Their Simulation[J]. Ecology and Environment, 2023, 32(5): 933-942.
杨凯, 杨靖睿, 曹培培, 吕春华, 孙文娟, 于凌飞, 邓希. CO2浓度升高下水稻株高、茎蘖与SPAD动态响应及其模拟[J]. 生态环境学报, 2023, 32(5): 933-942.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.05.011
生育时期 | 日期 | |
---|---|---|
2017 | 2018 | |
播种 | 2017-05-20 | 2018-05-20 |
移栽 | 2017-06-20 | 2018-06-20 |
拔节 | 2017-07-28 | 2018-07-26 |
抽穗 | 2017-08-23 | 2018-08-24 |
成熟 | 2017-10-30 | 2018-10-20 |
Table 1 Rice calendars
生育时期 | 日期 | |
---|---|---|
2017 | 2018 | |
播种 | 2017-05-20 | 2018-05-20 |
移栽 | 2017-06-20 | 2018-06-20 |
拔节 | 2017-07-28 | 2018-07-26 |
抽穗 | 2017-08-23 | 2018-08-24 |
成熟 | 2017-10-30 | 2018-10-20 |
年份 | H/cm | a1 | a2 | r2 | RMSE |
---|---|---|---|---|---|
2017 | 155.6 | 1.381 | -0.0020 | 0.970 | 2.96 |
2018 | 110.8 | 0.783 | -0.0035 | 0.953 | 3.52 |
Table 2 Parameters of dynamic model of plant height
年份 | H/cm | a1 | a2 | r2 | RMSE |
---|---|---|---|---|---|
2017 | 155.6 | 1.381 | -0.0020 | 0.970 | 2.96 |
2018 | 110.8 | 0.783 | -0.0035 | 0.953 | 3.52 |
t | T1/T2 | a1/b1 | a2/b2 | a3/b3 | r2 | RMSE |
---|---|---|---|---|---|---|
t≤35 (茎蘖增长) | 27.3 | -1.660 | 0.1856 | -0.0062 | 0.971 | 0.77 |
t>35 (茎蘖消亡) | 10.1 | 7.0716 | -0.1819 | 0.0009 | 0.996 | 0.65 |
Table 3 Parameters of dynamic model of tiller growth and extinction
t | T1/T2 | a1/b1 | a2/b2 | a3/b3 | r2 | RMSE |
---|---|---|---|---|---|---|
t≤35 (茎蘖增长) | 27.3 | -1.660 | 0.1856 | -0.0062 | 0.971 | 0.77 |
t>35 (茎蘖消亡) | 10.1 | 7.0716 | -0.1819 | 0.0009 | 0.996 | 0.65 |
年 | 测定 日期 | CO2 处理 | L1 | L2 | L3 | P值 | ||
---|---|---|---|---|---|---|---|---|
CO2 | L | CO2×L | ||||||
2017 | 8月29日 | a[CO2] | 48.4a | 49.3a | 48.3a | ns | ns | ns |
e[CO2] | 49.9a | 49.6a | 48.3a | |||||
9月3日 | a[CO2] | 47.5a | 48.7a | 47.4a | ns | ns | ns | |
e[CO2] | 49.2a | 48.7a | 47.7a | |||||
9月8日 | a[CO2] | 49.2a | 49.4a | 48.2a | ns | * | ns | |
e[CO2] | 50.7a | 49.2a | 48.0a | |||||
9月13日 | a[CO2] | 48.3a | 48.8a | 47.7a | ns | * | ns | |
e[CO2] | 49.8a | 49.3a | 48.0a | |||||
9月18日 | a[CO2] | 46.6b | 47.3a | 45.9a | + | ** | ns | |
e[CO2] | 48.2a | 47.9a | 45.7a | |||||
9月23日 | a[CO2] | 47.3a | 47.7a | 44.8a | ns | ** | ns | |
e[CO2] | 47.7a | 47.3a | 43.8a | |||||
9月28日 | a[CO2] | 45.1b | 43.9b | 42.7a | ** | ** | ns | |
e[CO2] | 46.8a | 46.0a | 43.4a | |||||
10月3日 | a[CO2] | 43.8a | 43.5a | - | ** | ns | ns | |
e[CO2] | 45.7b | 44.5a | - | |||||
10月8日 | a[CO2] | 41.4a | 41.6a | - | ** | ns | ns | |
e[CO2] | 43.9b | 43.6a | - | |||||
10月13日 | a[CO2] | 38.8b | 38.2b | - | ** | ns | ns | |
e[CO2] | 43.1a | 42.1a | - | |||||
10月18日 | a[CO2] | 35.4b | 33.8b | - | ** | ns | ns | |
e[CO2] | 40.0a | 38.9a | - | |||||
2018 | 8月25日 | a[CO2] | 39.1a | 40.9a | 41.5a | + | ** | ns |
e[CO2] | 39.5a | 41.1a | 42.5a | |||||
8月30日 | a[CO2] | 40.8a | 41.3a | 42.0a | ns | + | ns | |
e[CO2] | 40.6a | 41.7a | 41.9a | |||||
9月5日 | a[CO2] | 38.9a | 39.6a | 39.5a | * | + | ns | |
e[CO2] | 39.5a | 40.7a | 40.8a | |||||
9月10日 | a[CO2] | 37.0a | 37.8a | 36.4a | ns | ns | ns | |
e[CO2] | 37.1a | 37.9a | 37.4a | |||||
9月15日 | a[CO2] | 36.2a | 36.1a | 34.6a | ns | + | ns | |
e[CO2] | 36.4a | 36.5a | 35.2a | |||||
9月22日 | a[CO2] | 33.3a | 32.8a | 30.9a | ns | * | ns | |
e[CO2] | 34.0a | 32.9a | 31.5a | |||||
9月29日 | a[CO2] | 23.5b | 21.2a | 20.2b | ** | ** | ns | |
e[CO2] | 28.0a | 23.8a | 24.7a | |||||
10月6日 | a[CO2] | 16.8a | 13.5a | 15.3a | ns | ** | ns | |
e[CO2] | 18.8a | 12.9a | 17.3a |
Table 4 Effects of e[CO2] and leaf position on SPAD at different measured time
年 | 测定 日期 | CO2 处理 | L1 | L2 | L3 | P值 | ||
---|---|---|---|---|---|---|---|---|
CO2 | L | CO2×L | ||||||
2017 | 8月29日 | a[CO2] | 48.4a | 49.3a | 48.3a | ns | ns | ns |
e[CO2] | 49.9a | 49.6a | 48.3a | |||||
9月3日 | a[CO2] | 47.5a | 48.7a | 47.4a | ns | ns | ns | |
e[CO2] | 49.2a | 48.7a | 47.7a | |||||
9月8日 | a[CO2] | 49.2a | 49.4a | 48.2a | ns | * | ns | |
e[CO2] | 50.7a | 49.2a | 48.0a | |||||
9月13日 | a[CO2] | 48.3a | 48.8a | 47.7a | ns | * | ns | |
e[CO2] | 49.8a | 49.3a | 48.0a | |||||
9月18日 | a[CO2] | 46.6b | 47.3a | 45.9a | + | ** | ns | |
e[CO2] | 48.2a | 47.9a | 45.7a | |||||
9月23日 | a[CO2] | 47.3a | 47.7a | 44.8a | ns | ** | ns | |
e[CO2] | 47.7a | 47.3a | 43.8a | |||||
9月28日 | a[CO2] | 45.1b | 43.9b | 42.7a | ** | ** | ns | |
e[CO2] | 46.8a | 46.0a | 43.4a | |||||
10月3日 | a[CO2] | 43.8a | 43.5a | - | ** | ns | ns | |
e[CO2] | 45.7b | 44.5a | - | |||||
10月8日 | a[CO2] | 41.4a | 41.6a | - | ** | ns | ns | |
e[CO2] | 43.9b | 43.6a | - | |||||
10月13日 | a[CO2] | 38.8b | 38.2b | - | ** | ns | ns | |
e[CO2] | 43.1a | 42.1a | - | |||||
10月18日 | a[CO2] | 35.4b | 33.8b | - | ** | ns | ns | |
e[CO2] | 40.0a | 38.9a | - | |||||
2018 | 8月25日 | a[CO2] | 39.1a | 40.9a | 41.5a | + | ** | ns |
e[CO2] | 39.5a | 41.1a | 42.5a | |||||
8月30日 | a[CO2] | 40.8a | 41.3a | 42.0a | ns | + | ns | |
e[CO2] | 40.6a | 41.7a | 41.9a | |||||
9月5日 | a[CO2] | 38.9a | 39.6a | 39.5a | * | + | ns | |
e[CO2] | 39.5a | 40.7a | 40.8a | |||||
9月10日 | a[CO2] | 37.0a | 37.8a | 36.4a | ns | ns | ns | |
e[CO2] | 37.1a | 37.9a | 37.4a | |||||
9月15日 | a[CO2] | 36.2a | 36.1a | 34.6a | ns | + | ns | |
e[CO2] | 36.4a | 36.5a | 35.2a | |||||
9月22日 | a[CO2] | 33.3a | 32.8a | 30.9a | ns | * | ns | |
e[CO2] | 34.0a | 32.9a | 31.5a | |||||
9月29日 | a[CO2] | 23.5b | 21.2a | 20.2b | ** | ** | ns | |
e[CO2] | 28.0a | 23.8a | 24.7a | |||||
10月6日 | a[CO2] | 16.8a | 13.5a | 15.3a | ns | ** | ns | |
e[CO2] | 18.8a | 12.9a | 17.3a |
年 | 叶位 | a1 | a2 | a3 | r2 | RMSE |
---|---|---|---|---|---|---|
2017 | 旗叶 | 46.95 | 0.2232 | -0.0078 | 0.983 | 0.55 |
倒二叶 | 48.01 | 0.2034 | -0.0081 | 0.980 | 0.69 | |
倒三叶 | 47.31 | 0.1712 | -0.0086 | 0.960 | 0.39 | |
2018 | 旗叶 | 39.47 | 0.2062 | -0.0179 | 0.982 | 1.10 |
倒二叶 | 39.84 | 0.2756 | -0.0217 | 0.985 | 1.18 | |
倒三叶 | 42.76 | -0.1398 | -0.0126 | 0.983 | 1.20 |
Table 5 Parameters of SPAD dynamic model
年 | 叶位 | a1 | a2 | a3 | r2 | RMSE |
---|---|---|---|---|---|---|
2017 | 旗叶 | 46.95 | 0.2232 | -0.0078 | 0.983 | 0.55 |
倒二叶 | 48.01 | 0.2034 | -0.0081 | 0.980 | 0.69 | |
倒三叶 | 47.31 | 0.1712 | -0.0086 | 0.960 | 0.39 | |
2018 | 旗叶 | 39.47 | 0.2062 | -0.0179 | 0.982 | 1.10 |
倒二叶 | 39.84 | 0.2756 | -0.0217 | 0.985 | 1.18 | |
倒三叶 | 42.76 | -0.1398 | -0.0126 | 0.983 | 1.20 |
[1] |
AINSWORTH EA, LONG SP, 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2[J]. New Phytologist, 165(2): 351-372.
DOI URL |
[2] |
BINDI M, HACOUR A, VANDERMEIREN K, et al., 2002. Chlorophyll concentration of potatoes grown under elevated carbon dioxide and/or ozone concentrations[J]. European Journal of Agronomy, 17(4): 319-335.
DOI URL |
[3] |
GRANT R F, KIMBALL B A, BROOKS T J, et al., 2001. Modeling interactions among carbon dioxide, nitrogen, and climate on energy exchange of wheat in a free air carbon dioxide experiment[J]. Agronomy Journal, 93(3): 638-649.
DOI URL |
[4] |
HU S W, WANG Y X, YANG L X, 2021. Response of rice yield traits to elevated atmospheric CO2 concentration and its interaction with cultivar, nitrogen application rate and temperature: A meta-analysis of 20 years FACE studies[J]. Science of the Total Environment, 764: 142797.
DOI URL |
[5] |
HU S W, WANG C, TONG K C, et al., 2022. Response of rice growth and leaf physiology to elevated CO2 concentrations: A meta-analysis of 20-year FACE studies[J]. Science of the Total Environment, 807(Part 3): 151017.
DOI URL |
[6] | IPCC, 2022. Climate change 2022: Impacts, adaptation, and vulnerability[C]/ PÖRTNER H-O, ROBERTS DC, TIGNOR M, POLOCZANSKA ES, MINTENBECK K, ALEGRÍA A, CRAIG M, LANGSDORF S, LÖSCHKE S, MÖLLER V, OKEM A, RAMA B (eds) Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge: Cambridge University Press. |
[7] |
KIM H Y, LIEFFERING M, KOBAYASHI K, et al., 2003. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment[J]. Global Change Biology, 9(6): 826-837.
DOI URL |
[8] |
KOTI S, REDDY K R, KAKANI V, et al., 2007. Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interactions on soybean (Glycine max L.) growth and development[J]. Environmental and Experimental Botany, 60(1): 1-10.
DOI URL |
[9] |
LECOEUR J, GUILIONI L, 1998. Rate of leaf production in response to soil water deficits in field pea[J]. Field Crops Research, 57(3): 319-328.
DOI URL |
[10] |
LIU H J, YANG L X, WANG Y L, et al., 2008. Yield formation of CO2-enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions[J]. Field Crops Research, 108(1): 93-100.
DOI URL |
[11] |
LOBELL DB, SCHLENKER W, COSTA-ROBERTS J, 2011. Climate trends and global crop production since 1980[J]. Science, 333(6042): 616-620.
DOI PMID |
[12] |
LÜ C H, HUANG Y, SUN W J, et al., 2020. Response of rice yield and yield components to elevated CO2: A synthesis of updated data from FACE experiments[J]. European Journal of Agronomy, 112: 125961.
DOI URL |
[13] |
PENG S B, TANG Q Y, ZOU Y B, 2009. Current status and challenges of rice production in China[J]. Plant Production Science, 12(1): 3-8.
DOI URL |
[14] |
SAKAI H, YAGI K, KOBAYASHI K, et al., 2001. Rice carbon balance under elevated CO2[J]. New Phytologist, 150(2): 241-249.
DOI URL |
[15] |
SAKAI H, HASEGAWA T, KOBAYASHI K, 2006. Enhancement of rice canopy carbon gain by elevated CO2 is sensitive to growth stage and leaf nitrogen concentration[J]. New Phytologist, 170(2): 321-332.
DOI URL |
[16] |
SÁNCHEZ B, RASMUSSEN A, PORTER J R, 2014. Temperatures and the growth and development of maize and rice: a review[J]. Global Change Biology, 20(2): 408-417.
DOI PMID |
[17] |
TUBIELLO F N, AMTHOR J S, BOOTE K J, et al., 2007. Crop response to elevated CO2 and world food supply: a comment on “Food for Thought…” by Long et al., Science 312: 1918-1921, 2006[J]. European journal of agronomy, 26(3): 215-223.
DOI URL |
[18] |
TUBIELLO FN, EWERT F, 2002. Simulating the effects of elevated CO2 on crops: approaches and applications for climate change[J]. European Journal of Agronomy, 18(1-2): 57-74.
DOI URL |
[19] |
WU J J, KRONZUCKER HJ, SHI W M, 2018. Dynamic analysis of the impact of free-air CO2 enrichment (FACE) on biomass and N uptake in two contrasting genotypes of rice[J]. Functional Plant Biology, 45(7): 696-704.
DOI URL |
[20] |
YANG K, YANG J R, LÜ C H, et al., 2021. Reduced mesophyll conductance induces photosynthetic acclimation of japonica rice under elevated CO2[J]. Environmental and Experimental Botany, 190(7): 104590.
DOI URL |
[21] |
YANG L X, HUANG J Y, YANG H J, et al., 2006. The impact of free-air CO2 enrichment (FACE) and N supply on yield formation of rice crops with large panicle[J]. Field Crops Research, 98(2-3): 141-150.
DOI URL |
[22] |
ZISKA L H, BUNCE J A, 2007. Predicting the impact of changing CO2 on crop yields: some thoughts on food[J]. New Phytologist, 175(4): 607-618.
DOI URL |
[23] |
ZISKA L H, NAMUCO O, MOYA T, et al., 1997. Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature[J]. Agronomy Journal, 89(1): 45-53.
DOI URL |
[24] |
ZHU C W, ZHU J G, ZENG Q, et al., 2009. Elevated CO2 accelerates flag leaf senescence in wheat due to ear photosynthesis which causes greater ear nitrogen sink capacity and ear carbon sink limitation[J]. Functional Plant Biology, 36(4): 291-299.
DOI URL |
[25] | 边立丽, 艾栋, 陈玉蓝, 等, 2022. 基于SPAD值的烤烟氮素营养诊断研究[J]. 中国土壤与肥料, 301(5):177-183. |
BIAN L L, AI D, CHEN Y L, et al., 2022. Study on nitrogen nutrition diagnosis of flue-cured tobacco based on SPAD value[J]. Soil and Fertilizer Sciences in China, 301(5): 177-183. | |
[26] |
陈杨, 徐孟泽, 王玉红, 等, 2022. 有效积温与不同供氮水平夏玉米干物质和氮素积累定量化研究[J]. 中国农业科学, 55(15): 2973-2987.
DOI |
CHEN Y, XU M Z, WANG Y H, et al., 2022. Quantitative study on effective accumulated temperature and dry matter and nitrogen accumulation of summer maize under different nitrogen supply levels[J]. Scientia Agricultura Sinica, 55(15): 2973-2987.
DOI |
|
[27] | 方精云, 朱江玲, 石岳, 2018. 生态系统对全球变暖的响应[J]. 科学通报, 63(2): 136-140. |
FANG J Y, ZHU J L, SHI Y, 2018. The responses of ecosystems to global warming[J]. Chinese Science Bulletin, 63(2): 136-140 | |
[28] | 高亮之, 李琳, 1992. 水稻气象生态[M]. 北京: 农业出版社. |
GAO L Z, LI L, 1992. Meteorological Ecology of Rice[M]. Beijing: Agriculture Press. | |
[29] | 黄建晔, 杨洪建, 董桂春, 等, 2002. 开放式空气CO2浓度增高对水稻产量形成的影响[J]. 应用生态学报, 13(10): 1210-1214. |
HUANG J H, YANG H J, DONG G C, et al., 2002. Effects of free-air CO2 enrichment (FACE) on yield formation in rice (Oryza sativa)[J]. Chinese Journal of Applied Ecology, 13(10): 1210-1214. | |
[30] | 黄耀, 2017. 粮食作物产量对气候变暖的响应[J]. 科学通报, 62(36): 4220-4227. |
HUANG Y, 2017. Response of grain crop yields to climate warming[J]. Chinese Science Bulletin, 62(36): 4220-4227. | |
[31] | 黄耀, 高亮之, 金之庆, 等, 1994. 水稻群体茎蘖动态的计算机模拟模型[J]. 生态学杂志, 13(4): 27-32, 26. |
HUANG Y, GAO L Z, JIN Z Q, et al., 1994. Simulation model of tillering dynamics of rice community[J]. Chinese Journal of Ecology, 13(4):27-32, 26. | |
[32] | 蒋跃林, 张庆国, 岳伟, 等, 2005. 大气CO2浓度升高对大豆生长和产量的影响[J]. 中国农学通报, 21(6): 355-357. |
JIANG Y L, ZHANG Q G, YUE W, et al., 2005. Effects of elevated atmospheric CO2 concentration on growth and yield of soybean[J]. Chinese Agricultural Science Bulletin, 21(6):355-357. | |
[33] | 赖上坤, 2011. 水稻生长和产量对大气CO2浓度升高响应的基因型差异-FACE研究[D]. 扬州: 扬州大学. |
LAI S K, 2011. Genotypic differences in the responses of rice growth and grain yield to elevated CO2 concentration-a FACE study[D]. Yangzhou: Yangzhou University. | |
[34] | 刘晓萌, 于凌飞, 黄耀, 等, 2018. CO2浓度升高下粳稻叶片光合作用对光强变化的响应[J]. 生态学杂志, 37(4): 1051-1057. |
LIU X M, YU L F, HUANG Y, et al., 2018. Responses of photosynthesis in leaves of Japonica rice to light intensity at elevated CO2 concentration[J]. Chinese Journal of Ecology, 37(4): 1051-1057. | |
[35] | 苏李君, 刘云鹤, 王全九, 2020. 基于有效积温的中国水稻生长模型的构建[J]. 农业工程学报, 36(1):162-174. |
SU L J, LIU Y H, WANG Q J, 2020. Rice growth model in China based on growing degree days[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(1): 162-174. | |
[36] | 孙成明, 庄恒扬, 杨连新, 等, 2006a. 开放式空气CO2浓度增高对水稻茎蘖动态影响的模拟研究[J]. 农业环境科学学报, 25(5): 1122-1126. |
SUN M C, ZHUANG H Y, YANG L X, et al., 2006a. Simulation study on effects of Free-air CO2 Enrichment (FACE) on tiller dynamic of rice[J]. Journal of Agro-environment science, 25(5): 1122-1126. | |
[37] | 孙成明, 庄恒扬, 杨连新, 等, 2006b. FACE水稻茎蘖动态模型[J]. 应用生态学报, 17(8): 1448-1452. |
SUN C M, ZHUANG H Y, YANG L X, et al., 2006b. Dynamic model of rice tiller in FACE[J]. Chinese Journal of Applied Ecology, 17(8): 1448-1452. | |
[38] | 王萌萌, 杨沈斌, 江晓东, 等, 2016. 光温要素对水稻群体茎蘖增长动态影响的分析及模拟[J]. 作物学报, 42(1): 82-92. |
WANG M M, YANG S B, JIANG X D, et al., 2016. Analysis and simulation of impact of light and temperature on rice tillering[J]. Acta Agronomica Sinica, 42(1): 82-92.
DOI URL |
|
[39] | 王声锋, 段爱旺, 徐建新, 2010. 冬小麦株高和叶面积指数变化动态分析及模拟模型[J]. 灌溉排水学报, 29(4): 97-100. |
WANG S F, DUAN A W, XU J X, 2010. Dynamic changes and simulation model of plant height and leaf area index of winter wheat[J]. Journal of Irrigation and Drainage, 29(4): 97-100. | |
[40] | 谢辉, 2005. CO2浓度增加对水稻生长发育及产量形成的影响[D]. 南京: 南京农业大学. |
XIE H, 2005. Effects of high CO2 concentration on growth and yield formation in rice (Oryza Sativa L.)[D]. Nanjing: Nanjing Agricultural University. | |
[41] | 谢立勇, 孙雪, 赵洪亮, 等, 2015. FACE条件下水稻生育后期剑叶光合色素含量及产量构成的响应研究[J]. 中国生态农业学报, 23(4): 425-431. |
XIE L Y, SUN X, ZHAO H L, et al., 2015. Responses of flag-leaf photosynthetic pigments at late growth stage and rice yield components to elevated CO2 under FACE system[J]. Chinese Journal of Eco-Agriculture, 23(4): 425-431. | |
[42] | 严定春, 周爱莲, 2008. 水稻叶龄和株高变化动态的模型研究[J]. 中国种业, 165(12): 58-59. |
YAN D C, ZHOU A L, 2008. Model study on dynamic change of leaf age and plant height in rice[J]. China Seed Industry, 165(12):58-59. | |
[43] | 杨连新, 李世峰, 王余龙, 等, 2007. 开放式空气二氧化碳浓度增高对小麦产量形成的影响[J]. 应用生态学报, 18(1): 75-80. |
YANG L X, LI S F, WANG Y L, et al., 2007. Effects of free-air CO2 enrichment (FACE) on yield formation of wheat[J]. Chinese Journal of Applied Ecology, 18(1):75-80. | |
[44] | 杨沈斌, 陈德, 王萌萌, 等, 2016. ORYZA2000模型与水稻群体茎蘖动态模型的耦合[J]. 中国农业气象, 37(4): 422-430. |
YANG S B, CHEN D, WANG M M, et al., 2016. Coupling the dynamic tillering model to rice growth model ORYZA2000 to simulate rice tillering[J]. Chinese Journal of Agrometeorology, 37(4): 422-430. | |
[45] | 赵考诚, 叶迎, 马军, 等, 2021. 水稻花后叶片SPAD值动态模型与特征分析[J]. 江苏农业科学, 49(16): 74-80. |
ZHAO K C, YE Y, MA J, et al., 2021. Dynamic model and characteristic analysis of SPAD value of rice leaves after anthesis[J]. Jiangsu Agricultural Sciences, 49(16): 74-80. | |
[46] | 周宁, 2020. 开放式空气中CO2浓度和温度升高对粳稻生长和光合的影响[D]. 扬州: 扬州大学. |
ZHOU N, 2020. Effect of elevated CO2 and temperature on Japonica rice growth, development and photosynthetic[D]. Yangzhou: Yangzhou University. | |
[47] |
周宁, 景立权, 王云霞, 等, 2017. 开放式空气中CO2浓度和温度增高对水稻叶片叶绿素含量和SPAD值的动态影响[J]. 中国水稻科学, 31(5): 524-532.
DOI |
ZHOU N, JING L Q, WANG Y X, et al., 2017. Effects of elevated atmospheric CO2 and temperature on dynamics of leaf chlorophyll contents and SPAD value of rice in open-air field Conditions[J]. Chinese Journal of Rice Science, 31(5):524-532. |
[1] | HUANG Yingmei, ZHONG Songxiong, ZHU Yiwen, WANG Xiangqin, LI Fangbai. Effects and Mechanism of Element Sulfur Inhibiting Methylmercury Accumulation in Rice Plants [J]. Ecology and Environment, 2023, 32(6): 1115-1122. |
[2] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
[3] | XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice [J]. Ecology and Environment, 2023, 32(1): 150-157. |
[4] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[5] | DENG Tianle, XIE Liyong, ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong. Competition for Growth Space between Barnyard Grass and Rice under Elevated Atmospheric CO2 Concentration [J]. Ecology and Environment, 2022, 31(8): 1566-1572. |
[6] | JIANG Chaoqiang, LI Chen, ZHU Qifa, XU Haiqing, LIU Yanhong, SHEN Jia, YAN Yifeng, YU Fei, ZU Chaolong. Evaluation of Carbon Sink and Economic Benefit in Different Planting Patterns in Southern Anhui [J]. Ecology and Environment, 2022, 31(7): 1285-1292. |
[7] | LI Chengwei, LIU Zhangyong, GONG Songling, YANG Wei, LI Shaoqiu, ZHU Bo. Effects of Changing Rice Cropping Patterns on CH4 and N2O Emissions from Paddy Fields [J]. Ecology and Environment, 2022, 31(5): 961-968. |
[8] | XU Meihua, GU Minghua, WANG Chengzhen, LEI Jing, WEI Yanyan, SHEN Fangke. Effect of Manganese on Arsenic Speciation in Soil and Arsenic Migration to Rice [J]. Ecology and Environment, 2022, 31(4): 802-813. |
[9] | ZENG Min, CHEN Jia, LI Exian, YIN Fuyou, WANG Linxian, ZENG Liqiong, GUO Rong. Distribution Characteristics and Dynamic Changes of Cadmium Content in the Introgression Lines of Yuanjiang Common Wild Rice [J]. Ecology and Environment, 2022, 31(3): 565-571. |
[10] | SHI Hanzhi, JIANG Qi, LIU Fan, WEN Dian, HUANG Yongdong, DENG Tenghaobo, WANG Xu, XU Aiping, LI Furong, WU Zhichao, LI Meixia, PENG Jinfen, DU Ruiying. Effects of Returning Rice Stubble to Field on Cadmium Accumulation in Soil and Rice [J]. Ecology and Environment, 2022, 31(2): 363-369. |
[11] | SHANG GUAN Yuxian, YIN Hongliang, XU Yi, ZHONG Hongmei, HE Mingjiang, QIN Yusheng, GUO Song, YU Hua. Effects of Different Passivators on Cadmium Absorption in Rice and Wheat Grains [J]. Ecology and Environment, 2022, 31(2): 370-379. |
[12] | ZHANG Yaping, CHEN Huimin, WU Zhiyu, TANG Jia, Xie Zhangzhang, LIU Fanghua. Low Concentration of Ferrihydrite Promoted the Hydrogen Production Efficiency of Clostridium sp. BY-1 Isolated from Rice Paddy Soil [J]. Ecology and Environment, 2022, 31(12): 2341-2349. |
[13] | SHI Hanzhi, LIU Fan, HUANG Yongdong, WU Zhichao, LI Furong, XU Shoujun, DENG Tenghaobo, WEN Dian, WANG Xu, WANG Fuhua, JIANG Qi, DU Ruiying. Effects of Dynamic Change of Dissolved Organic Matter in Soil on Water-Soluble Copper [J]. Ecology and Environment, 2021, 30(9): 1896-1902. |
[14] | KONG Pan, XIA Sujing, ZHANG Haiwei, ZHU Jianqiang. Effects of Tillage Methods on Ammonia Volatilization of Early Season Rice-ratooning Rice Fields [J]. Ecology and Environment, 2021, 30(8): 1627-1633. |
[15] | LU Xuping, LI Fanglan, SHI Yafei, ZHANG Juanwei, YANG Wenwei, LUO Chengke, TIAN Lei, LI Peifu. Physiological Differences of Seedlings of Different Rice Varieties in Response to Alkali Stress and Construction of Stress Levels [J]. Ecology and Environment, 2021, 30(8): 1757-1768. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn