Ecology and Environment ›› 2023, Vol. 32 ›› Issue (3): 535-544.DOI: 10.16258/j.cnki.1674-5906.2023.03.011
• Research Articles • Previous Articles Next Articles
LI Yushi(), XIA Zhiye*(
), ZHANG Lei
Received:
2022-11-26
Online:
2023-03-18
Published:
2023-06-02
Contact:
XIA Zhiye
通讯作者:
夏志业
作者简介:
李语诗(1999年生),女,硕士研究生,研究方向为温室气体卫星遥感监测研究。E-mail: 1364933221@qq.com
基金资助:
CLC Number:
LI Yushi, XIA Zhiye, ZHANG Lei. Carbon Emission Prediction and Spatial Optimization of Land Use in Chengdu-Chongqing Economic Circle in 2030 Based on SSPs Multi-scenarios[J]. Ecology and Environment, 2023, 32(3): 535-544.
李语诗, 夏志业, 张蕾. 基于SSPs多情景目标的2030年成渝经济圈土地利用碳排放预测及其空间优化[J]. 生态环境学报, 2023, 32(3): 535-544.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.03.011
数据类型 | 数据来源 | 描述 |
---|---|---|
DEM | 地理空间数据云 ( | 空间分辨率为30 m,含坡度、坡向 |
土地利用数 | 欧洲航天局CCI-LC (Climate Change Initiative Land Cover) 土地覆盖数据 | 空间分辨率为300 m |
社会经济数据 | WorldPop ( | 人口密度、GDP、铁路、 公路、居民区分布数据 |
气候情景数据 | SSP数据库 ( | SSPs情景下各类用地预测值 (空间分辨率分别为0.5°与1 km) |
气候和环境数据 | 中国科学院资源与环境科学数据中心 ( | 年均温度、年降水量、土壤类型数据 |
Table 1 Source of data
数据类型 | 数据来源 | 描述 |
---|---|---|
DEM | 地理空间数据云 ( | 空间分辨率为30 m,含坡度、坡向 |
土地利用数 | 欧洲航天局CCI-LC (Climate Change Initiative Land Cover) 土地覆盖数据 | 空间分辨率为300 m |
社会经济数据 | WorldPop ( | 人口密度、GDP、铁路、 公路、居民区分布数据 |
气候情景数据 | SSP数据库 ( | SSPs情景下各类用地预测值 (空间分辨率分别为0.5°与1 km) |
气候和环境数据 | 中国科学院资源与环境科学数据中心 ( | 年均温度、年降水量、土壤类型数据 |
地物类型 | 耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 |
---|---|---|---|---|---|---|
耕地 | 1 | 1 | 0 | 0 | 1 | 0 |
林地 | 1 | 1 | 0 | 0 | 0 | 0 |
草地 | 1 | 1 | 1 | 1 | 1 | 0 |
水域 | 1 | 1 | 0 | 1 | 1 | 0 |
建设用地 | 1 | 0 | 0 | 1 | 1 | 0 |
未利用地 | 1 | 1 | 1 | 1 | 1 | 1 |
Table 2 Historical scenario cost matrix
地物类型 | 耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 |
---|---|---|---|---|---|---|
耕地 | 1 | 1 | 0 | 0 | 1 | 0 |
林地 | 1 | 1 | 0 | 0 | 0 | 0 |
草地 | 1 | 1 | 1 | 1 | 1 | 0 |
水域 | 1 | 1 | 0 | 1 | 1 | 0 |
建设用地 | 1 | 0 | 0 | 1 | 1 | 0 |
未利用地 | 1 | 1 | 1 | 1 | 1 | 1 |
情景 | 特点与含义 |
---|---|
SSP126 | SSP1和RCP2.6综合情景,代表生态友好的可持续发展情景和低等温室气体排放 |
SSP245 | SSP2和RCP4.5综合情景,代表了社会经济发展的中间情景和中等水平的温室气体排放 |
SSP585 | SSP5和RCP8.5综合情景,代表了以化石燃料为主的高速发展情景和高水平的温室气体排放 |
历史情景 | 不考虑任何规划政策的变化,代表了延续历史土地利用转换规律和排放规律的情景 |
政策情景 | 考虑土地利用政策的限制,代表了以2035年规划 和 “十四五” 政策为目标的优化情景 |
Table 3 Scenario set
情景 | 特点与含义 |
---|---|
SSP126 | SSP1和RCP2.6综合情景,代表生态友好的可持续发展情景和低等温室气体排放 |
SSP245 | SSP2和RCP4.5综合情景,代表了社会经济发展的中间情景和中等水平的温室气体排放 |
SSP585 | SSP5和RCP8.5综合情景,代表了以化石燃料为主的高速发展情景和高水平的温室气体排放 |
历史情景 | 不考虑任何规划政策的变化,代表了延续历史土地利用转换规律和排放规律的情景 |
政策情景 | 考虑土地利用政策的限制,代表了以2035年规划 和 “十四五” 政策为目标的优化情景 |
地类 | 耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | ||||||
2010 | 1.46×105 | 69.1 | 5.85×104 | 27.7 | 1.54×103 | 0.730 | 2.07×103 | 0.978 | 3.03×103 | 1.43 | 151 | 7.17×10-2 | |||||
2015 | 1.45×105 | 68.7 | 5.84×104 | 27.6 | 1.55×103 | 0.735 | 2.08×103 | 0.984 | 4.01×103 | 1.90 | 164 | 7.78×10-2 | |||||
2020 | 1.41×105 | 67.0 | 6.09×104 | 28.8 | 1.48×103 | 0.701 | 2.11×103 | 1.00 | 4.96×103 | 2.35 | 163 | 7.71×10-2 |
Table 4 Land type and area occupied in 2010-2020
地类 | 耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | ||||||
2010 | 1.46×105 | 69.1 | 5.85×104 | 27.7 | 1.54×103 | 0.730 | 2.07×103 | 0.978 | 3.03×103 | 1.43 | 151 | 7.17×10-2 | |||||
2015 | 1.45×105 | 68.7 | 5.84×104 | 27.6 | 1.55×103 | 0.735 | 2.08×103 | 0.984 | 4.01×103 | 1.90 | 164 | 7.78×10-2 | |||||
2020 | 1.41×105 | 67.0 | 6.09×104 | 28.8 | 1.48×103 | 0.701 | 2.11×103 | 1.00 | 4.96×103 | 2.35 | 163 | 7.71×10-2 |
2010 | 2020 | |||||
---|---|---|---|---|---|---|
草地 | 耕地 | 建设用地 | 林地 | 水域 | 未利用地 | |
草地 | 1.21×103 | 63.7 | 35.3 | 215 | 11.8 | 2.97 |
耕地 | 55.9 | 1.35×105 | 2.19×103 | 7.43×103 | 518 | 12.7 |
建设用地 | 3.42 | 360 | 2.60×103 | 9.00 | 57.7 | 1.00 |
林地 | 201 | 4.96×103 | 27.0 | 5.36×104 | 29.2 | 60.4 |
水域 | 3.87 | 443 | 87.8 | 40.2 | 1.48×103 | 9.45 |
未利用地 | 2.61 | 18.5 | 12.9 | 27.3 | 13.6 | 76.7 |
Table 5 Land use transfer matrix of the study area from 2010 to 2020 km2
2010 | 2020 | |||||
---|---|---|---|---|---|---|
草地 | 耕地 | 建设用地 | 林地 | 水域 | 未利用地 | |
草地 | 1.21×103 | 63.7 | 35.3 | 215 | 11.8 | 2.97 |
耕地 | 55.9 | 1.35×105 | 2.19×103 | 7.43×103 | 518 | 12.7 |
建设用地 | 3.42 | 360 | 2.60×103 | 9.00 | 57.7 | 1.00 |
林地 | 201 | 4.96×103 | 27.0 | 5.36×104 | 29.2 | 60.4 |
水域 | 3.87 | 443 | 87.8 | 40.2 | 1.48×103 | 9.45 |
未利用地 | 2.61 | 18.5 | 12.9 | 27.3 | 13.6 | 76.7 |
气候情景 | 耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 |
---|---|---|---|---|---|---|
SSP126 | 1.37×105 | 6.43×104 | 1.40×103 | 2.11×103 | 6.43×103 | 149 |
SSP245 | 1.39×105 | 6.21×104 | 1.34×103 | 2.11×103 | 6.46×103 | 108 |
SSP585 | 1.39×105 | 6.17×104 | 1.38×103 | 2.11×103 | 6.81×103 | 158 |
历史情景 | 1.38×105 | 6.30×104 | 1.44×103 | 2.17×103 | 6.55×103 | 171 |
政策情景 | 1.32×105 | 6.94×104 | 1.48×103 | 2.28×103 | 6.86×103 | 117 |
Table 6 Forecast of land use area in the study area under the multi-target scenario in 2030 km2
气候情景 | 耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 |
---|---|---|---|---|---|---|
SSP126 | 1.37×105 | 6.43×104 | 1.40×103 | 2.11×103 | 6.43×103 | 149 |
SSP245 | 1.39×105 | 6.21×104 | 1.34×103 | 2.11×103 | 6.46×103 | 108 |
SSP585 | 1.39×105 | 6.17×104 | 1.38×103 | 2.11×103 | 6.81×103 | 158 |
历史情景 | 1.38×105 | 6.30×104 | 1.44×103 | 2.17×103 | 6.55×103 | 171 |
政策情景 | 1.32×105 | 6.94×104 | 1.48×103 | 2.28×103 | 6.86×103 | 117 |
年份 | 气候情景 | 耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 | 总计 |
---|---|---|---|---|---|---|---|---|
2020 | 6.50×106 | -3.53×106 | -3.26×103 | -5.35×104 | 1.75×108 | -8.15×10 | 1.78×108 | |
2030 | SSP126 | 6.30×106 | -3.72×106 | -2.93×103 | -5.35×104 | 1.21×108 | -7.49×10 | 1.24×108 |
SSP245 | 6.41×106 | -3.60×106 | -2.81×103 | -5.35×104 | 1.22×108 | -5.44×10 | 1.25×108 | |
SSP585 | 6.40×106 | -3.57×106 | -2.89×103 | -5.35×104 | 1.28×108 | -7.92×10 | 1.31×108 | |
历史情景 | 6.35×106 | -3.65×106 | -3.03×103 | -5.49×104 | 1.23×108 | -8.59×10 | 1.26×108 | |
政策情景 | 6.04×106 | -4.02×106 | -3.26×103 | -5.76×104 | 1.29×108 | -5.87×10 | 1.31×108 |
Table 7 Forecast of land use carbon emissions in 2030 under multi-objective scenario t
年份 | 气候情景 | 耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 | 总计 |
---|---|---|---|---|---|---|---|---|
2020 | 6.50×106 | -3.53×106 | -3.26×103 | -5.35×104 | 1.75×108 | -8.15×10 | 1.78×108 | |
2030 | SSP126 | 6.30×106 | -3.72×106 | -2.93×103 | -5.35×104 | 1.21×108 | -7.49×10 | 1.24×108 |
SSP245 | 6.41×106 | -3.60×106 | -2.81×103 | -5.35×104 | 1.22×108 | -5.44×10 | 1.25×108 | |
SSP585 | 6.40×106 | -3.57×106 | -2.89×103 | -5.35×104 | 1.28×108 | -7.92×10 | 1.31×108 | |
历史情景 | 6.35×106 | -3.65×106 | -3.03×103 | -5.49×104 | 1.23×108 | -8.59×10 | 1.26×108 | |
政策情景 | 6.04×106 | -4.02×106 | -3.26×103 | -5.76×104 | 1.29×108 | -5.87×10 | 1.31×108 |
[1] |
CHEN Y M, LI X, LIU X P, et al., 2013. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy[J]. International Journal of Geographical Information Science, 28(2): 234-255.
DOI URL |
[2] |
DOELMAN J C, STEHFEST E, TABEAU A, et al., 2018. Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation[J]. Global Environmental Change, 48: 119-135.
DOI URL |
[3] |
LIANG X, GUAN Q, CLARKE K C, et al., 2021. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 85: 101569.
DOI URL |
[4] |
LIANG X, LIU X P, LI X, et al., 2018. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method[J]. Landscape and Urban Planning, 177: 47-63.
DOI URL |
[5] |
LIAO W L, LIU X P, XU X Y, et al., 2020. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China[J]. Science Bulletin, 65(22): 1935-1947.
DOI PMID |
[6] |
LI J Y, CHEN X, KURBAN A, et al., 2021. Coupled SSPs-RCPs scenarios to project the future dynamic variations of water-soil-carbon-biodiversity services in Central Asia[J]. Ecological Indicators, 129: 107936.
DOI URL |
[7] |
LUO G P, YIN C Y, CHEN X, et al., 2010. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: A case study of Sangong watershed in Xinjiang, China[J]. Ecological Complexity, 7(2): 198-207.
DOI URL |
[8] |
MEIYAPPAN P, DALTON M, O'NEILL B C, et al., 2014. Spatial modeling of agricultural land use change at global scale[J]. Ecological Modelling, 291: 152-174.
DOI URL |
[9] |
WANG Z Y, LI X, MAO Y T, et al., 2022. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China[J]. Ecological Indicators, 134: 108499.
DOI URL |
[10] |
YANG H, HUANG J L, LIU D F, 2020. Linking climate change and socioeconomic development to urban land use simulation: Analysis of their concurrent effects on carbon storage[J]. Applied Geography, 115: 102135.
DOI URL |
[11] |
TANG R, ZHAO J, LIU Y F, et al., 2022. Air quality and health co-benefits of China's carbon dioxide emissions peaking before 2030[J]. Nature Communications, 13(1): 1008.
DOI |
[12] |
ZHAI H, LÜ C, LIU W, et al., 2021. Understanding spatio-temporal patterns of land use/land cover change under urbanization in Wuhan, China, 2000-2019 [J]. Remote Sensing, 13(16): 3331.
DOI URL |
[13] |
ZHANG S, YANG P, XIA J, et al., 2022. Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios[J]. Science of The Total Environment, 833: 155238.
DOI URL |
[14] | 包蕊, 刘峰, 张建平, 等, 2018. 基于多目标线性规划的甲积峪小流域生态系统服务权衡优化[J]. 生态学报, 38(3): 812-828. |
BAO R, LIU F, ZHANG J P, et al., 2018. Multi-objective linear programming-based trade-off and optimization of the ecosystem service in Jiajiyu small watershed in the loess plateau, China[J]. Acta Ecologica Sinica, 38(3): 812-828. | |
[15] | 蔡兆男, 成里京, 李婷婷, 等, 2021. 碳中和目标下的若干地球系统科学和技术问题分析[J]. 中国科学院院刊, 36(5): 602-613. |
CAI Z N, CHENG L J, LI T T, et al., 2021. Key scientific and technical issues in earth system science towards achieving carbon neutrality in China[J]. Bulletin of Chinese Academy of Sciences, 36(5): 602-613. | |
[16] | 段晓男, 王效科, 逯非, 等, 2008. 中国湿地生态系统固碳现状和潜力[J]. 生态学报, 28(2): 463-469. |
DUAN X N, WANG X K, LU F, et al., 2008. Carbon sequestration and its potential by wetland ecosystems in China[J]. Acta Ecologica Sinica, 28(2): 463-469.
DOI URL |
|
[17] | 方精云, 黄耀, 朱江玲, 等, 2015. 森林生态系统碳收支及其影响机制[J]. 中国基础科学, 17(3): 20-25. |
FANG J Y, HUANG Y, ZHU J L, et al., 2015. Carbon budget of forest ecosystem and its driving forces[J]. China Basic Science, 17(3): 20-25. | |
[18] | 韩骥, 周翔, 象伟宁, 2016. 土地利用碳排放效应及其低碳管理研究进展[J]. 生态学报, 36(4): 1152-1161. |
HAN J, ZHOU X, XIANG W N, 2016. Progress in research on land use effects on carbon emissions and low carbon management[J]. Acta Ecologica Sinica, 36(4): 1152-1161. | |
[19] | 景丞, 姜彤, 苏布达, 等, 2022. 共享社会经济路径在土地利用、能源与碳排放研究的应用[J]. 大气科学学报, 45(3): 397-413. |
JING C, JIANG T, SU B D, et al., 2022. Multiple application of shared socioeconomic pathways in land use, energy and carbon emission research[J]. Journal of Atmospheric Sciences, 45(3): 397-413. | |
[20] | 赖力, 黄贤金, 刘伟良, 等, 2006. 基于投入产出技术的区域生态足迹调整分析——以2002年江苏省经济为例[J]. 生态学报, 26(4): 1285-1292. |
LAI L, HUANG X J, LIU W L, et al., 2006. Adjustment for regional ecological footprint based on input-output technology: A case study of Jiangsu province in 2002[J]. Acta Ecologica Sinica, 26(4): 1285-1292. | |
[21] | 牛亚文, 赵先超, 胡艺觉, 2021. 基于NPP-VIIRS夜间灯光的长株潭地区县域土地利用碳排放空间分异研究[J]. 环境科学学报, 41(9): 3847-3856. |
NIU Y W, ZHAO X C, HU Y J, 2021. Spatial variation of carbon emissions from county land use in Chang-Zhu-Tan area based on NPP-VIIRS night light[J]. Chinese Journal of Environmental Sciences, 41(9): 3847-3856. | |
[22] | 彭文甫, 周介铭, 徐新良, 等, 2016. 基于土地利用变化的四川省碳排放与碳足迹效应及时空格局[J]. 生态学报, 36(22): 7244-7259. |
PENG W F, ZHOU J M, XU X L, et al., 2016. Effect of land use changes on the temporal and Spatial patterns of carbon emission and carbon footprint in Sichuan Province of western China, from 1990 to 2010[J]. Acta Ecologica Sinica, 36(22): 7244-7259. | |
[23] | 石洪昕, 穆兴民, 张应龙, 等, 2012. 四川省广元市不同土地利用类型的碳排放效应研究[J]. 水土保持通报, 32(3): 101-106. |
SHI H X, MU X M, ZHANG Y L, et al., 2012. Effects of different land use patterns on Carbon emission in Guangyuan City of Sichuan Province[J]. Bulletin of Soil and Water Conservation, 32(3): 101-106. | |
[24] | 唐乎媞, 张斌, 鞠登平, 等, 2022. 生态-经济权衡下国家中心城市土地利用优化配置——以武汉市为例[J]. 水土保持研究, 29(6): 416-424. |
TANG H T, ZHANG B, JU D P, et al., 2022. Optimal allocation of land use in national central city under ecological economic balance: Take Wuhan City as an example[J]. Research of Soil and Water Conservation, 29(6): 416-424. | |
[25] | 汤琦, 余珮珩, 陈泽怡, 等, 2022. 共享社会经济路径下土地利用变化模拟[J]. 水土保持研究, 29(1): 301-310. |
TANG Q, YU P H, CHEN Z Y, et al., 2022. Simulation of land use change based on the shared socioeconomic path[J]. Research of Soil and Water Conservation, 29(1): 301-310. | |
[26] |
唐宗, 周悟, 杨颢, 等, 2020. 基于交互效应Logistic回归模型的耕地质量评价方法研究[J]. 生态环境学报, 29(12): 2394-2403.
DOI |
TANG Z, ZHOU W, YANG H, et al., 2020. Evaluation of cultivated land quality based on interactive logistic regression model[J]. Ecology and Environmental Sciences, 29(12): 2394-2403. | |
[27] | 王保盛, 廖江福, 祝薇, 等, 2019. 基于历史情景的FLUS模型邻域权重设置——以闽三角城市群2030年土地利用模拟为例[J]. 生态学报, 39(12):4284-4298. |
WANG B S, LIAO J F, ZHU W, et al., 2019. The weight of neighborhood setting of the FLUS model based on a historical scenario: A case study of land use simulation of urban agglomeration of the golden triangle of southern Fujian in 2030[J]. Acta Ecologica Sinica, 39(12): 4284-4298. | |
[28] |
王超越, 郭先华, 郭莉, 等, 2022. 基于FLUS-InVEST的西北地区土地利用变化及其对碳储量的影响——以呼包鄂榆城市群为例[J]. 生态环境学报, 31(8): 1667-1679.
DOI |
WANG C Y, GUO X H, GUO L, et al., 2022. Land use change and its impact on carbon storage in northwest China based on FLUS-InVEST: A case study of Hu-Bao-Er-Yu urban agglomeration[J]. Ecology and Environmental Sciences, 31(8): 1667-1679. | |
[29] | 翁宇威, 蔡闻佳, 王灿, 2020. 共享社会经济路径 (SSPs) 的应用与展望[J]. 气候变化研究进展, 16(2): 215-222. |
WENG Y W, CAI W J, WANG C, 2020. The application and future directions of the shared socioeconomic pathways (SSPs)[J]. Climate Change Research, 16(2): 215-222. | |
[30] |
向书江, 张骞, 王丹, 等, 2022. 近20年重庆市主城区碳储量对土地利用/覆被变化的响应及脆弱性分析[J]. 自然资源学报, 37(5): 1198-1213.
DOI |
XIANG S J, ZHANG Q, WANG D, et al., 2022. Response and vulnerability analysis of carbon storage to LUCC in the main urban area of Chongqing during 2000-2020[J]. Journal of Natural Resources, 37(5): 1198-1213.
DOI URL |
|
[31] | 肖红艳, 袁兴中, 李波, 等, 2012. 土地利用变化碳排放效应研究——以重庆市为例[J]. 重庆师范大学学报 (自然科学版), 29(1): 38-42, 115. |
XIAO H Y, YUAN X Z, LI B, et al., 2012. The effects of land use changes on Carbon emission: Take Chongqing as an example[J]. Journal of Chongqing Normal University (Natural Science), 29(1): 38-42, 115. | |
[32] | 谢高地, 张彩霞, 张雷明, 等, 2015. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 30(8): 1243-1254. |
XIE G D, ZHANG C X, ZHANG L M, et al., 2015. Improvement of the Evaluation of method for ecosystem services value based on per unit area[J]. Journal of Natural Resources, 30(8): 1243-1254. | |
[33] |
杨国清, 朱文锐, 文雅, 等, 2019. 20年来广东省土地利用碳排放强度与效率空间分异研究[J]. 生态环境学报, 28(2): 332-340.
DOI |
YANG G Q, ZHU W R, WEN Y, et al., 2019. Spatial differentiation in the intensity and efficiency of carbon emission from land use in Guangdong province in past two decades[J]. Ecology and Environmental Sciences, 28(2): 332-340. | |
[34] |
易丹, 欧名豪, 郭杰, 等, 2022. 土地利用碳排放及低碳优化研究进展与趋势展望[J]. 资源科学, 44(8): 1545-1559.
DOI |
YI D, OU M H, GUO J, et al., 2022. progress and prospect of Research on land use carbon emission and low-carbon optimization[J]. Resources Science, 44(8): 1545-1559. | |
[35] | 于贵瑞, 郝天象, 朱剑兴, 2022. 中国碳达峰、碳中和行动方略之探讨[J]. 中国科学院院刊, 37(4): 423-434. |
YU G R, HAO T X, ZHU J X, 2022. Discussion on action strategies of China's carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 37(4): 423-434. |
[1] | WANG Lin, WEI Wei. Characteristics and Driving Factors of Ecosystem Services Changes in A Typical County of the Loess Plateau [J]. Ecology and Environment, 2023, 32(6): 1140-1148. |
[2] | LIU Xia, GUO Shu, WANG Lin. Study on the Value of Land Use and Ecological Services in the Region of Regional Integration: Take Shuanglai Pilot Area as An Example [J]. Ecology and Environment, 2023, 32(6): 1163-1172. |
[3] | WANG Chao, YANG Qiannan, ZHANG Chi, LIU Tongxu, ZHANG Xialong, CHEN Jing, LIU Kexue. The Characteristics of Soil Phosphorus Fractions and Their Availability under Different Land Use Types in Danxia Mountain [J]. Ecology and Environment, 2023, 32(5): 889-897. |
[4] | WANG Tiezheng, QU Xinyue, LIU Chunxiang, LI Youzhi. Spatial and Temporal Changes in Water Quality in the Dongjiang Lake and Their Relationships with Land Use in the Watershed [J]. Ecology and Environment, 2023, 32(4): 722-732. |
[5] | SHENG Meijun, LI Shengjun, YANG Xinyue, WANG Rui, LI Jie, LI Gang, XIU Weiming. Changes of Soil Enzyme Activities in Cropland with Different Land Use Intensities in Fluvo-aquic Soil Area, North China [J]. Ecology and Environment, 2023, 32(2): 299-308. |
[6] | WANG Quanchao, JI Hengkuan, LI Simin, LI Caisheng, HOU Zhengwei, DENG Wangang, WU Zhipeng, WANG Dengfeng. Molecular Characteristics and Interfacial Transformation Mechanism of Dissolved Black Carbon in Soil-Stream Continuum in Dongzhai Harbor Watershed of Hainan Province [J]. Ecology and Environment, 2023, 32(1): 139-149. |
[7] | CHEN Le, WEI Wei. Spatiotemporal Changes in Land Use and Habitat Quality in A Typical Dryland Watershed of Northwest China [J]. Ecology and Environment, 2022, 31(9): 1909-1918. |
[8] | WANG Chaoyue, GUO Xianhua, GUO Li, BAI Lifang, XIA Lilin, WANG Chunbo, LI Tingzhen. Land Use Change and Its Impact on Carbon Storage in Northwest China Based on FLUS-Invest: A Case Study of Hu-Bao-Er-Yu Urban Agglomeration [J]. Ecology and Environment, 2022, 31(8): 1667-1679. |
[9] | LI Meijiao, HE Fanneng, ZHAO Caishan, YANG Fan. Credibility Assessment of Cropland Data in Xinjiang Area in Global Historical LUCC Datasets [J]. Ecology and Environment, 2022, 31(6): 1215-1224. |
[10] | CHEN Jinfeng, YU Shiqin, FU Jiafang, XU Guoliang, YU Bo, LAI Xiaoqun, HU Siyuan, ZHANG Kaiqu, LIU Jiahua. Soil Quality Characteristics and Influencing Factors of Different Land Use in the Red Bed Landform Region of South China: Taking Nanxiong Basin as An Example [J]. Ecology and Environment, 2022, 31(5): 918-930. |
[11] | YANG Xianfang, CHEN Zhao, ZHENG Lin, WAN Zhiwei, CHEN Yonglin, WANG Yuandong. Characteristics and Network of Soil Bacterial Communities in Different Land Use Types in Rare Earth Mining Areas [J]. Ecology and Environment, 2022, 31(4): 793-801. |
[12] | LI Pingxing, ZOU Lu. Identification and Construction Cost of Ecological Corridors Based on Land Use Change: The Case of Eastern Suburb Nanjing [J]. Ecology and Environment, 2022, 31(2): 277-285. |
[13] | FU Le, CHI Yanyan, YU Yang, ZHANG Liping, LIU Siyang, WANG Xiahui, XU Kaipeng, WANG Jingjing, ZHANG Xin. Characteristics and Driving Forces of Land Use Change in the Yellow River Basin from 2000 to 2020 [J]. Ecology and Environment, 2022, 31(10): 1927-1938. |
[14] | LI Xin, CHEN Xiaohua, GU Hairong, QIAN Xiaoyong, SHEN Genxiang, ZHAO Qingjie, BAI Yujie. Distribution Characteristics and Influencing Factors of Enzyme Activities in Typical Farmland Soils [J]. Ecology and Environment, 2021, 30(8): 1634-1641. |
[15] | HU Lin, LI Siyue. Scale Effects of Land Use Structure and Landscape Pattern on Water Quality in the Longchuan River Basin [J]. Ecology and Environment, 2021, 30(7): 1470-1481. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn