Ecology and Environment ›› 2023, Vol. 32 ›› Issue (2): 381-387.DOI: 10.16258/j.cnki.1674-5906.2023.02.018
• Research Articles • Previous Articles Next Articles
YIN Haojun1,2(), LONG Mingliang1,2, LIU Wei1, NI Chunlin1,*(
), LI Fangbai2,3, WU Yundang2,3,*(
)
Received:
2022-11-02
Online:
2023-02-18
Published:
2023-05-11
Contact:
NI Chunlin,WU Yundang
尹浩均1,2(), 龙明亮1,2, 刘维1, 倪春林1,*(
), 李芳柏2,3, 吴云当2,3,*(
)
通讯作者:
倪春林,吴云当
作者简介:
尹浩均(1995年生),男,硕士研究生,研究方向为砷的化学与微生物催化转化。E-mail: 541335165@qq.com
基金资助:
CLC Number:
YIN Haojun, LONG Mingliang, LIU Wei, NI Chunlin, LI Fangbai, WU Yundang. Dissolved Oxygen Concentration Regulates Arsenic Reduction in Aeromonas hydrophila: Effects and Mechanisms[J]. Ecology and Environment, 2023, 32(2): 381-387.
尹浩均, 龙明亮, 刘维, 倪春林, 李芳柏, 吴云当. 溶氧浓度调控嗜水气单胞菌的砷还原:效应与机制[J]. 生态环境学报, 2023, 32(2): 381-387.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.02.018
基因名称 | 位置/bp | 长度/bp | NCBI注释 | 引物 |
---|---|---|---|---|
arsB | 99626-100702 | 1077 | Arsenic resistance protein ArsB | F: AGCCGTCACTATCTGGTCAAG R: GAAGAACATCAGCACGAAGTAGA |
arsC-1 | 155186-155536 | 351 | Arsenate reductase and related proteins, glutaredoxin family | F: CATCAAGAAAGCCCGCAAGTG R: ATTGGTAGTGATCGGCCTTGAA |
arsC-2 | 16951-17301 | 351 | Arsenate reductase and related proteins, glutaredoxin family | F: GGATGTGGTGCTCTATCTGGA R: GACCGTTCTTGATCACGATGG |
arsC-3 | 99198-99629 | 432 | Arsenate reductase and related proteins, glutaredoxin family | F: TGAACCTACCGTTATCCACTATCT R: GGCAGAATATCCAGTACCACTTC |
Table 1 The arsenic reduction related genes in A. hydrophila HS01
基因名称 | 位置/bp | 长度/bp | NCBI注释 | 引物 |
---|---|---|---|---|
arsB | 99626-100702 | 1077 | Arsenic resistance protein ArsB | F: AGCCGTCACTATCTGGTCAAG R: GAAGAACATCAGCACGAAGTAGA |
arsC-1 | 155186-155536 | 351 | Arsenate reductase and related proteins, glutaredoxin family | F: CATCAAGAAAGCCCGCAAGTG R: ATTGGTAGTGATCGGCCTTGAA |
arsC-2 | 16951-17301 | 351 | Arsenate reductase and related proteins, glutaredoxin family | F: GGATGTGGTGCTCTATCTGGA R: GACCGTTCTTGATCACGATGG |
arsC-3 | 99198-99629 | 432 | Arsenate reductase and related proteins, glutaredoxin family | F: TGAACCTACCGTTATCCACTATCT R: GGCAGAATATCCAGTACCACTTC |
Figure 4 The expression of arsenic-reduction genes and the correlation between gene expression and rate constant under the condition of different oxygen concentration
[1] |
ACHOUR A R, BAUDA P, BILLARD P, 2007. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria[J]. Research in Microbiology, 158(2): 128-137.
PMID |
[2] | ARAOYE P A, 2009. The seasonal variation of pH and dissolved oxygen (DO2) concentration in Asa lake Ilorin, Nigeria[J]. International Journal of Physical Sciences, 4(5): 271-274. |
[3] |
BIBI S, KAMRAN M A, SULTANA J, et al., 2017. Occurrence and methods to remove arsenic and fluoride contamination in water[J]. Environmental Chemistry Letters, 15: 125-149.
DOI |
[4] |
CAO F, LIU T X, WU C Y, et al., 2012. Enhanced biotransformation of DDTs by an iron-and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2, 6-disulphonic disodium salt (AQDS)[J]. Journal of Agricultural and Food Chemistry, 60(45): 11238-11244.
DOI URL |
[5] |
CHEN Z, LI H, MA W D, et al., 2018. Addition of graphene sheets enhances reductive dissolution of arsenic and iron from arsenic contaminated soil[J]. Land Degradation and Development, 29(3): 572-584.
DOI URL |
[6] |
CHEN Z, WANG Y P, JIANG X L, et al., 2017. Dual roles of AQDS as electron shuttles for microbes and dissolved organic matter involved in arsenic and iron mobilization in the arsenic-rich sediment[J]. Science of the Total Environment, 574: 1684-1694.
DOI URL |
[7] |
CHOONG T S Y, CHUAH T G, ROBIAH Y, et al., 2007. Arsenic toxicity, health hazards and removal techniques from water: An overview[J]. Desalination, 217(1-3): 139-166.
DOI URL |
[8] | COUVERT O, DIVANAC’H M L, LOCHARDET A, et al., 2019. Modelling the effect of oxygen concentration on bacterial growth rates[J]. Food Microbiology 77: 21-25. |
[9] |
DENG Y X, WENG L P, LI Y T, et al., 2020. Redox-dependent effects of phosphate on arsenic speciation in paddy soils[J]. Environmental Pollution, 264: 114783.
DOI URL |
[10] |
DONG G W, HAN R W, PAN Y J, et al., 2021. Role of MnO2 in controlling iron and arsenic mobilization from illuminated flooded arsenic-enriched soils[J]. Journal of Hazardous Materials, 401: 123362.
DOI URL |
[11] |
FEKIH I BEN, ZHANG C K, LI Y P, et al., 2018. Distribution of arsenic resistance genes in prokaryotes[J]. Frontiers in Microbiology, 9: 1-11.
DOI URL |
[12] | JIANG S H, LEE J H, KIM D H, et al., 2013. Differential arsenic mobilization from as-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities[J]. Environmental Science and Technology, 47(15): 8616-8623. |
[13] |
LI X M, LIU T X, LIU L, et al., 2014. Dependence of the electron transfer capacity on the kinetics of quinone-mediated Fe(Ⅲ) reduction by two iron/humic reducing bacteria[J]. RSC Advances, 4(5): 2284-2290.
DOI URL |
[14] |
LIN Z X, LONG M L, LIU W, et al., 2021. Distinct biofilm formation regulated by different culture media: Implications to electricity generation[J]. Bioelectrochemistry, 140: 107826.
DOI URL |
[15] |
LIU K, LI F B, PANG Y, et al., 2022. Electron shuttle-induced oxidative transformation of arsenite on the surface of goethite and underlying mechanisms[J]. Journal of Hazardous Materials, 425: 127780.
DOI URL |
[16] |
LIU T X, LUO X B, WU Y D, et al., 2020. Extracellular electron shuttling mediated by soluble c-type cytochromes produced by Shewanella oneidensis MR-1[J]. Environmental Science and Technology, 54(17): 10577-10587.
DOI URL |
[17] |
LIU T X, ZHANG W, LI X M, et al., 2014. Kinetics of competitive reduction of nitrate and iron oxides by Aeromonas hydrophila HS01[J]. Soil Science Society of America Journal, 78(6): 1903-1912.
DOI URL |
[18] |
MIN D, WU J, CHENG L, et al., 2021. Dependence of arsenic resistance and reduction capacity of Aeromonas hydrophila on carbon substrate[J]. Journal of Hazardous Materials, 403: 123611.
DOI URL |
[19] |
MONDAL P, MAJUMDER C B, MOHANTY B, 2006. Laboratory based approaches for arsenic remediation from contaminated water: Recent developments[J]. Journal of Hazardous Materials, 137(1): 464-479.
DOI PMID |
[20] |
OREMLAND R S, STOLZ J F, 2003. The ecology of arsenic[J]. Science, 300(5621): 939-944.
DOI PMID |
[21] |
QIAO J T, LI X M, HU M, et al., 2018. Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil[J]. Environmental Science and Technology, 52(1): 61-70.
DOI URL |
[22] |
SHI L D, GUO T, LÜ P L, et al., 2020. Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils[J]. Nature Geoscience, 13(12): 799-805.
DOI |
[23] |
SUN Y M, POLISHCHUK E A, RADOJA U, et al., 2004. Identification and quantification of arsC genes in environmental samples by using real-time PCR[J]. Journal of Microbiological Methods, 58(3): 335-349.
DOI URL |
[24] |
TABELIN C B, IGARASHI T, VILLACORTE-TABELIN M, et al., 2018. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies[J]. Science of the Total Environment, 645: 1522-1553.
DOI URL |
[25] |
TALWALKAR A, KAILASAPATHY K, 2004. A review of oxygen toxicity in probiotic yogurts: Influence on the survival of probiotic bacteria and protective techniques[J]. Comprehensive Reviews in Food Science and Food Safety, 3(3): 117-124.
DOI PMID |
[26] |
TSAI S L, SINGH S, CHEN W, 2009. Arsenic metabolism by microbes in nature and the impact on arsenic remediation[J]. Current Opinion in Biotechnology, 20(6): 659-667.
DOI URL |
[27] |
WU C, PAN W S, XUE S G, et al., 2015. Effects of root oxidation ability and P on As mobility and bioavailability in rice[J]. Journal of Central South University, 22(1): 74-81.
DOI URL |
[28] |
WU Y, WU W W, XU Y F, et al., 2023. Environmental Mn(II) enhances the activity of dissimilatory arsenate-respiring prokaryotes from arsenic-contaminated soils[J]. Journal of Environmental Sciences, 125: 582-592.
DOI URL |
[29] |
XIAO K Q, LI L G, MA L P, et al., 2016. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents[J]. Environmental Pollution, 211: 1-8.
DOI URL |
[30] |
ZHANG S Y, ZHAO F J, SUN G X, et al., 2015. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China[J]. Environmental Science and Technology, 49(7): 4138-4146.
DOI URL |
[31] |
ZHANG X X, JIA Y F, WANG S F, et al., 2012. Bacterial reduction and release of adsorbed arsenate on Fe(III)-, Al- and coprecipitated Fe(III)/ Al-hydroxides[J]. Journal of Environmental Sciences, 24(3): 440-448.
DOI URL |
[32] | ZHAO C G, ZHANG Y, CHAN Z H, et al., 2015. Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009[J]. Frontiers in Microbiology, 6: 1-8. |
[33] |
ZHAO F J, WANG P, 2020. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant and Soil, 446(1-2): 1-21.
DOI |
[34] | 武春媛, 李勤奋, 周顺桂, 李芳柏, 2013. 一株嗜水气单胞菌HS01的偶氮还原脱色特性[J]. 微生物学通报, 40(6): 812-821. |
WU C Y, LI Q F, ZHOU S G, et al., 2013. Characterization of azo reduction activity in the strain Aeromonas hydrophila HS01[J]. Microbiology China, 40(6): 812-821. |
[1] | YANG Yu, DENG Renjian, LONG Pei, HUANG Zhongjie, Ren Bozhi, WANG Zhenghua. Isolation and Identification of Arsenic-oxidizing Bacterium Pseudomonas sp. AO-1 and Its Oxidation Properties for As(Ⅲ) [J]. Ecology and Environment, 2023, 32(3): 619-626. |
[2] | LI Ying, ZHANG Zhou, YANG Gaoming, ZU Yanqun, LI Bo, CHEN Jianjun. The Relationship between the Radial Oxygen Loss and the Iron Plaque on Root Surfaces to Wetland Plants Absorb Heavy Metals [J]. Ecology and Environment, 2022, 31(8): 1657-1666. |
[3] | LI Chengcheng, ZHANG Zirui, SONG Xiaoxuan, KONG Juanjuan, HAN Yang, RUAN Yanan. Effects of Ozone Stress on Antioxidant Metabolism and Reproductive Growth of Soybean [J]. Ecology and Environment, 2022, 31(7): 1383-1392. |
[4] | JI Bingjing, LIU Yi, WU Yang, GAO Shutao, ZENG Xiangying, YU Zhiqiang. Occurrence, Source and Potential Ecological Risk of Parent and Oxygenated Polycyclic Aromatic Hydrocarbons in Sediments of Yangtze River Estuary and Adjacent East China Sea [J]. Ecology and Environment, 2022, 31(7): 1400-1408. |
[5] | GAO Peng, GAO Pin, SUN Weimin, KONG Tianle, HUANG Duanyi, LIU Huaqing, SUN Xiaoxun. Response of the Endosphere and Rhizosphere Microbial Community in Petris vittata L. to Arsenic Stress [J]. Ecology and Environment, 2022, 31(6): 1225-1234. |
[6] | XU Meihua, GU Minghua, WANG Chengzhen, LEI Jing, WEI Yanyan, SHEN Fangke. Effect of Manganese on Arsenic Speciation in Soil and Arsenic Migration to Rice [J]. Ecology and Environment, 2022, 31(4): 802-813. |
[7] | YAN Shengwen, LIU Jiazhen, CHEN Yongjin, MA Xiaodan, ZHANG Yaru, ZHU Haiyong. Moisture Sources and Characteristics of Stable Hydrogen and Oxygen Isotopes in Precipitation in Liaocheng [J]. Ecology and Environment, 2022, 31(3): 546-555. |
[8] | LIU Chang, LUO Yanli, LIU Chentong, ZHENG Yuhong, CHAO Bo, DONG Lele. Spatial Distribution Characteristics of Arsenic in Groundwater and Cropland Soil in the Lower Reaches of Kuitun River [J]. Ecology and Environment, 2022, 31(10): 2070-2078. |
[9] | LIANG Yongchun, YIN Fang, ZHAO Yingfen, LIU Lei. Remote Sensing Inversion of Biochemical Oxygen Demand in Taihu Lake Based on Landsat 8 Images [J]. Ecology and Environment, 2021, 30(7): 1492-1502. |
[10] | CONG Chao, YANG Ningke, WANG Haijuan, WANG Hongbin. Enhancing Arsenic and Cadmium Accumulation in Pteris vittata and Solanum nigrum by Combined Application of Indoleacetic Acid and Kinetin: A Field Experiment [J]. Ecology and Environment, 2021, 30(6): 1299-1309. |
[11] | ZHANG Jinlong, HUANG Ying, WU Lifang, GONG Yunhui, LIU Yungen, WANG Yan, YANG Silin. As Subcellular Distribution and Physiological Response of Typha angustifolia L. to As Exposure [J]. Ecology and Environment, 2021, 30(5): 1042-1050. |
[12] | ZHOU Dixuan, LIN Yongbiao, WANG Yanjia, LIU Zhanfeng, ZHOU Lixia. Assessment of Main Ecosystem Services in Subtropical Plantations [J]. Ecology and Environment, 2021, 30(5): 907-919. |
[13] | MA Qiongfang, YAN Hong, LI Wei, ZHAO Xinsheng, CHEN Ling, ZHANG Chaofan, LI Jieling. Evaluation of Carbon Sequestration and Oxygen Release Function of Wetland Ecosystem in Jilin Province [J]. Ecology and Environment, 2021, 30(12): 2351-2359. |
[14] | ZHOU Yingtong, WANG Yan, SUN Mingyu, SAN Yu, YAO Xingzhou, ZHAO Tianhong. Effect of Ozone Concentration Increasing Near the Ground on Antioxidant System of Parent and Offspring Soybean Leaves [J]. Ecology and Environment, 2021, 30(11): 2195-2203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn