Ecology and Environment ›› 2023, Vol. 32 ›› Issue (1): 139-149.DOI: 10.16258/j.cnki.1674-5906.2023.01.015
• Research Articles • Previous Articles Next Articles
WANG Quanchao1(), JI Hengkuan1, LI Simin1, LI Caisheng1, HOU Zhengwei1, DENG Wangang1, WU Zhipeng1,*(
), WANG Dengfeng2,*(
)
Received:
2022-11-01
Online:
2023-01-18
Published:
2023-04-06
Contact:
WU Zhipeng,WANG Dengfeng
王全超1(), 吉恒宽1, 李思敏1, 李财生1, 侯正伟1, 邓万刚1, 吴治澎1,*(
), 王登峰2,*(
)
通讯作者:
吴治澎,王登峰
作者简介:
王全超(1999年生),男,硕士研究生,主要研究方向为土地利用变化与生态环境效应。E-mail: 1473561136@qq.com
基金资助:
CLC Number:
WANG Quanchao, JI Hengkuan, LI Simin, LI Caisheng, HOU Zhengwei, DENG Wangang, WU Zhipeng, WANG Dengfeng. Molecular Characteristics and Interfacial Transformation Mechanism of Dissolved Black Carbon in Soil-Stream Continuum in Dongzhai Harbor Watershed of Hainan Province[J]. Ecology and Environment, 2023, 32(1): 139-149.
王全超, 吉恒宽, 李思敏, 李财生, 侯正伟, 邓万刚, 吴治澎, 王登峰. 海南东寨港流域土壤-溪流连续体溶解态黑碳分子特征及其界面转化机制[J]. 生态环境学报, 2023, 32(1): 139-149.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.01.015
方法 | 数据集组成 | 调整r2 | 解释比例/% | P值 | |
---|---|---|---|---|---|
类别 | 有效指标 | ||||
全变量 | 所有数据集 | 所用指标 | 0.857 | 100 | <0.002 |
变量分割 | 水土界面理化性质 (WH) | TN; NH4+-N; NO3--N; DO | 0.173 | 20.187 | <0.004 |
水土界面微生物组成 (WSW) | Proteobacteria; Actinobacteria; Bacteroidetes; Chloroflexi; Cyanobacteria | 0.115 | 13.419 | <0.001 | |
DBC分子大小 (FD) | DBC (1-10 kDa); DBC (<1 kDa); MW | 0.211 | 24.621 | <0.002 | |
DBC分子结构 (FJ) | B3+4/B5+6; CHON; DBE | 0.327 | 38.156 | <0.005 | |
交互作用 | WH-WSW | 0.015 | 1.750 | <0.003 | |
FD-WSW | 0.011 | 1.284 | <0.001 | ||
FJ-WSW | 0.005 | 0.583 | <0.002 |
Table 1 Full RDAs and portioned out in partial RDAs by group or combination of group
方法 | 数据集组成 | 调整r2 | 解释比例/% | P值 | |
---|---|---|---|---|---|
类别 | 有效指标 | ||||
全变量 | 所有数据集 | 所用指标 | 0.857 | 100 | <0.002 |
变量分割 | 水土界面理化性质 (WH) | TN; NH4+-N; NO3--N; DO | 0.173 | 20.187 | <0.004 |
水土界面微生物组成 (WSW) | Proteobacteria; Actinobacteria; Bacteroidetes; Chloroflexi; Cyanobacteria | 0.115 | 13.419 | <0.001 | |
DBC分子大小 (FD) | DBC (1-10 kDa); DBC (<1 kDa); MW | 0.211 | 24.621 | <0.002 | |
DBC分子结构 (FJ) | B3+4/B5+6; CHON; DBE | 0.327 | 38.156 | <0.005 | |
交互作用 | WH-WSW | 0.015 | 1.750 | <0.003 | |
FD-WSW | 0.011 | 1.284 | <0.001 | ||
FJ-WSW | 0.005 | 0.583 | <0.002 |
[1] |
ALAN R J, PODGORKSI D C, SASHA W, et al., 2017. Photodissolution of charcoal and fire-impacted soil as a potential source of dissolved black carbon in aquatic environments[J]. Organic Geochemistry, 112: 16-21.
DOI URL |
[2] |
ALAN R J, SEIDEL M, DITTMAR T, et al., 2018. Land use controls on the spatial variability of dissolved black carbon in a subtropical watershed[J]. Environmental Science & Technology, 52(15): 8104-8114.
DOI URL |
[3] |
ANDRILLI J D, FOREMAN C M, MARSHALL A G, et al., 2013. Characterization of IHSS Pony Lake fulvic acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopy[J]. Organic Geochemistry, 65(6): 19-28.
DOI URL |
[4] |
BRODOWSKI S, RODIONOV A, HAUMAIER L, et al., 2005. Revised black carbon assessment using benzene polycarboxylic acids[J]. Organic Geochemistry, 36(9): 1299-1310.
DOI URL |
[5] |
BIRD M I, WYNN J G, GUSTAVO S, et al., 2015. The pyrogenic carbon cycle[J]. Annual Review of Earth and Planetary Sciences, 43(1): 273-298.
DOI URL |
[6] |
CHEN Y L, SUN K, WANG Z B, et al., 2022. Analytical methods, molecular structures and biogeochemical behaviors of dissolved black carbon[J]. Carbon Research, 1(1): 23-42.
DOI |
[7] |
DENG X Q, MAO L J, WU Y L, et al., 2022. Distribution and source of black carbon in coastal river sediments around Haizhou Bay, Eastern China: implications for anthropogenic inputs[J]. Environmental Science and Pollution Research International, 30: 21092-21103.
DOI |
[8] |
DITTMAR T, 2008. The molecular level determination of black carbon in marine dissolved organic matter[J]. Organic Geochemistry, 39(4): 396-407.
DOI URL |
[9] |
DITTMAR T, BORIS K, NORBERT H, et al., 2008. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater[J]. Limnology and Oceanography: Methods, 6(6): 230-235.
DOI URL |
[10] |
HUTCHINS R H, AUKES P, SCHIFF S L, et al., 2017. The optical, chemical, and molecular dissolved organic matter succession along a boreal Soil-Stream-River Continuum[J]. Journal of Geophysical Research: Biogeosciences, 122(11): 2892-2908.
DOI URL |
[11] |
KHAN A L, SASHA W, RUDOLF J, et al., 2017. Dissolved black carbon in the global cryosphere: Concentrations and chemical signatures[J]. Geophysical Research Letters, 44(12): 6226-6234.
DOI URL |
[12] |
KUREK M R, POULIN B A, MCKENNA A M, et al., 2020. Deciphering dissolved organic matter: Ionization, dopant, and fragmentation insights via fourier transform-ion cyclotron resonance mass spectrometry[J]. Environmental Science & Technology, 54(24): 16249-16259.
DOI URL |
[13] | MARQUES J S, DITTMAR T, NIGGEMANN J, et al., 2017. Dissolved black carbon in the Headwaters-to-Ocean Continuum of Paraíba Do Sul River, Brazil[J]. Frontiers in Earth Science, 5(11): 1-12. |
[14] |
MARX A, DUSEK J, JANKOVEC J, et al., 2017. A review of CO2 and associated carbon dynamics in headwater streams: A global perspective[J]. Reviews of Geophysics, 55(2): 560-585.
DOI URL |
[15] |
MASIELLO C A, 2004. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 92(1): 201-213.
DOI URL |
[16] |
OHNO T, HE Z Q, SLEIGHTER R L, et al., 2010. Ultrahigh resolution mass spectrometry and indicator species analysis to identify marker components of soil and plant biomass derived organic matter fractions[J]. Environmental Science & Technology, 44(22): 8594-8600.
DOI URL |
[17] |
RUDOLF J, YAN D, JUTTA N, et al., 2013. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans[J]. Science, 340(6130): 345-347.
DOI PMID |
[18] | SASHA W, YAN D, RUDOLF J, 2017. A new perspective on the apparent solubility of dissolved black carbon[J]. Frontiers in Earth Science, 5(75): 1-16. |
[19] |
STENSON A C, MARSHALL A G, COOPER W T, 2003. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra[J]. Analytical Chemistry, 75(6): 1275-1284.
PMID |
[20] |
THIBAULT L, TEODORU C R, NYONI F C, et al., 2016. Along-stream transport and transformation of dissolved organic matter in alarge tropical river[J]. Biogeosciences, 13(9): 2727-2741.
DOI URL |
[21] | TRILLA P N, VILA C M, CASAS G, et al., 2021. Dissolved black carbon and semivolatile aromatic hydrocarbons in the ocean: Two entangled biogeochemical cycles?[J]. Environmental Science & Technology Letters, 8(10): 918-923. |
[22] |
WANG M, SUN Y X, ZENG H X, et al., 2022. Distribution of black carbon in sediments from mangrove wetlands in China[J]. Frontiers in Forests and Global Change, 5: 989329.
DOI URL |
[23] |
WANG W J, KHANNA N, LIN J, et al., 2022. Black carbon emissions and reduction potential in China: 2015-2050[J]. Journal of Environmental Management, 329: 117087-117087.
DOI URL |
[24] |
YAN D, YOUHEI Y, DODDS W K, et al., 2013. Dissolved black carbon in grassland streams: Is there an effect of recent fire history?[J]. Chemosphere, 90(10): 2557-2562.
DOI PMID |
[25] | ZIOLKOWSKI L A, DRUFFEL E R, 2010. Aged black carbon identified in marine dissolved organic carbon[J]. Geophysical Research Letters, 37(16): L16601-1-L16601-4. |
[26] |
卜文圣, 臧润国, 丁易, 等, 2013. 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化[J]. 生物多样性, 21(3): 278-287.
DOI |
BU W S, ZANG R G, DING Y, et al., 2013. Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China[J]. Biodiversity Science, 21(3): 278-287.
DOI |
|
[27] | 鲍士旦, 2000. 土壤农化分析[M]. 3版. 北京: 中国农业出版社: 22-162. |
BAO S D, 2000. Soil analysis in agricultural chemistry[M]. third edition. Beijing: China Agricultural Press: 22-162. | |
[28] | 董迪, 魏征, 王刚, 等, 2020. 广东、广西和海南滨海湿地遥感制图与分析[J]. 海洋开发与管理, 37(6): 95-99. |
DONG D, WEI Z, WANG G, et al., 2020. Analysis on the mapping of remote sensing for coastal wetlands in Guangdong, Guangxi and Hainan[J]. Ocean Development and Management, 37(6): 95-99. | |
[29] |
吉恒宽, 吴月颖, 符佩娇, 等, 2020. 热带滨海区不同土地利用背景下土壤溶解性有机氮的组成与粒径分布特征[J]. 生态环境学报, 29(3): 525-535.
DOI URL |
JI H K, WU Y Y, FU P J, et al., 2020. Composition and size distribution characteristics of soil dissolved organic nitrogen under different land use types in tropical coastal areas[J]. Ecology and Environmental Sciences, 29(3): 525-535. | |
[30] | 江家彬, 祝贞科, 林森, 等, 2021. 针铁矿吸附态和包裹态有机碳在稻田土壤中的矿化及其激发效应[J]. 土壤学报, 58(6): 1530-1539. |
JIANG J B, ZHU Z K, LIN S, et al., 2021. Mineralization of goethite-adsorbed and -encapsulated organic carbon and its priming effect in paddy soil[J]. Acta Pedologica Sinica, 58(6): 1530-1539. | |
[31] | 刘金良, 2019. 刺槐人工林林木-土壤-微生物互作关系及机制[D]. 杨凌: 西北农林科技大学. |
LIU J L, 2019. Interaction relationship and mechanism of forest-soil-microbes of robinia pseudoacacia in the loess plateau[D]. Yangling: Northwest A & F University. | |
[32] | 马巧丽, 杜欢, 刘杨, 等, 2022. 红树林湿地硫酸盐还原菌的多样性及其参与驱动的元素耦合机制[J]. 微生物学报, 62(12): 4606-4627. |
MA Q L, DU H, LIU Y, et al., 2022. Sulfate-reducing prokaryotes in mangrove wetlands: diversity and role in driving element coupling[J]. Acta Microbiologica Sinica, 62(12): 4606-4627. | |
[33] | 邱敬, 高人, 杨玉盛, 等, 2009. 土壤黑碳的研究进展[J]. 亚热带资源与环境学报, 4(1): 88-94. |
QIU J, GAO R, YANG Y S, et al., 2009. Advances on research of black carbon in soil[J]. Journal of Subtropical Resources and Environment, 4(1): 88-94. | |
[34] |
王钊, 张曼胤, 胡宇坤, 等, 2022. 盐度对典型滨海湿地沉积物汞甲基化的影响[J]. 生态环境学报, 31(9): 1876-1884.
DOI URL |
WANG Z, ZHANG M Y, HU Y K, et al., 2022. Effect of salinity on mercury methylation in sediments of a typical coastal wetland[J]. Ecology and Environmental Sciences, 31(9): 1876-1884. | |
[35] | 吴月颖, 吉恒宽, 吴蔚东, 等, 2020. 海南北部滨海区不同土地利用模式下土壤DOM粒径分布与光谱特性[J]. 农业资源与环境学报, 37(5): 654-665. |
WU Y Y, JI H K, WU W D, et al., 2020. Size fractionation and optical properties of DOM under different land use types in the coastal area of northern Hainan Island[J]. Journal of Agricultural Resources and Environment, 37(5): 654-665. | |
[36] | 鲜文东, 张潇橦, 李文均, 2020. 绿弯菌的研究现状及展望[J]. 微生物学报, 60(9): 1801-1820. |
XIAN W D, ZHANG X T, LI W J, 2020. Research status and prospect on bacterial phylum Chloroflexi[J]. Acta Microbiologica Sinica, 60(9): 1801-1820. | |
[37] | 杨鸿儒, 袁博, 赵霞, 等, 2016. 三种荒漠灌木根际可培养固氮细菌类群及其固氮和产铁载体能力[J]. 微生物学通报, 43(11): 2366-2373. |
YANG H R, YUAN B, ZHAO X, et al., 2016. Cultivable diazotrophic community in the rhizosphere of three desert shrubs and their nitrogen-fixation and siderophore-producing capabilities[J]. Microbiology China, 43(11): 2366-2373. | |
[38] | 张履勤, 章明奎, 2006. 土地利用方式对红壤和黄壤颗粒有机碳和碳黑积累的影响[J]. 土壤通报, 9(4): 662-665. |
ZHANG L Q, ZHANG M K, 2006. Effects of land use on particulate organic carbon and black carbon accumulation in red and yellow soils[J]. Chinese Journal of Soil Science, 9(4): 662-665. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn