Ecology and Environment ›› 2022, Vol. 31 ›› Issue (8): 1566-1572.DOI: 10.16258/j.cnki.1674-5906.2022.08.008
• Research Articles • Previous Articles Next Articles
DENG Tianle(), XIE Liyong*(
), ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong
Received:
2022-04-21
Online:
2022-08-18
Published:
2022-10-10
Contact:
XIE Liyong
通讯作者:
谢立勇
作者简介:
邓天乐(2001年生),男,硕士研究生,从事气候变化与农业气候研究。E-mail: 2953419357@qq.com
基金资助:
CLC Number:
DENG Tianle, XIE Liyong, ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong. Competition for Growth Space between Barnyard Grass and Rice under Elevated Atmospheric CO2 Concentration[J]. Ecology and Environment, 2022, 31(8): 1566-1572.
邓天乐, 谢立勇, 张凤哲, 赵洪亮, 蒋语童. CO2浓度升高条件下稗草与水稻生长空间竞争关系研究[J]. 生态环境学报, 2022, 31(8): 1566-1572.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.08.008
处理 Treatments | 每穴穗数 Number of spikes per point | 每穗粒数 Grains per panicle | 结实率 Seed setting rate/% | 千粒质量 Thousand-grain weight/g | 理论产量 Theoretical yield/(kg∙m-2) |
---|---|---|---|---|---|
CK | 25.67±1.53b | 154.00±3.60a | 74.34±0.79ab | 21.43±0.57b | 0.795±0.05b |
TB | 22.00±2.00b | 158.67±4.04a | 70.03±0.19b | 22.10±0.03ab | 0.763±0.25b |
TC | 30.00±2.00a | 163.67±1.53a | 75.29±1.12a | 21.60±0.51b | 0.984±0.41a |
BC | 23.00±0.82b | 163.33±8.50a | 73.28±0.39ab | 22.58±0.04a | 0.776±0.80b |
Table 1 Effects of high concentration CO2 and barnyard grass on rice yield components
处理 Treatments | 每穴穗数 Number of spikes per point | 每穗粒数 Grains per panicle | 结实率 Seed setting rate/% | 千粒质量 Thousand-grain weight/g | 理论产量 Theoretical yield/(kg∙m-2) |
---|---|---|---|---|---|
CK | 25.67±1.53b | 154.00±3.60a | 74.34±0.79ab | 21.43±0.57b | 0.795±0.05b |
TB | 22.00±2.00b | 158.67±4.04a | 70.03±0.19b | 22.10±0.03ab | 0.763±0.25b |
TC | 30.00±2.00a | 163.67±1.53a | 75.29±1.12a | 21.60±0.51b | 0.984±0.41a |
BC | 23.00±0.82b | 163.33±8.50a | 73.28±0.39ab | 22.58±0.04a | 0.776±0.80b |
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 47.5±2.67ab | 78.3±3.78b | 114.7±1.12b | 108.37±0.94a |
TB | 45.7±1.97b | 74.5±0.54c | 113.3±0.73b | 103.23±0.31b |
TC | 49.7±0.59a | 83.3±1.90a | 118.4±1.27a | 109.23±0.82a |
BC | 47.2±0.90ab | 80.9±1.19ab | 115.2±1.96b | 107.83±1.57a |
Table 2 Effects of high concentration CO2 and barnyard
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 47.5±2.67ab | 78.3±3.78b | 114.7±1.12b | 108.37±0.94a |
TB | 45.7±1.97b | 74.5±0.54c | 113.3±0.73b | 103.23±0.31b |
TC | 49.7±0.59a | 83.3±1.90a | 118.4±1.27a | 109.23±0.82a |
BC | 47.2±0.90ab | 80.9±1.19ab | 115.2±1.96b | 107.83±1.57a |
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 3.67±0.47a | 6.00±0.82a | 9.67±0.25ab | 10.33±1.70b |
TB | 3.33±0.97a | 5.33±0.47a | 6.33±0.47c | 8.67±0.94b |
TC | 4.67±1.70a | 6.67±1.25a | 11.33±1.89a | 13.00±0.82a |
BC | 4.00±0.82a | 6.00±1.41a | 8.00±0.00bc | 8.67±0.47b |
Table 3 Effects of high concentration CO2 and barnyard grass on tiller number of rice
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 3.67±0.47a | 6.00±0.82a | 9.67±0.25ab | 10.33±1.70b |
TB | 3.33±0.97a | 5.33±0.47a | 6.33±0.47c | 8.67±0.94b |
TC | 4.67±1.70a | 6.67±1.25a | 11.33±1.89a | 13.00±0.82a |
BC | 4.00±0.82a | 6.00±1.41a | 8.00±0.00bc | 8.67±0.47b |
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage |
---|---|---|---|
CK | 0.099±0.003a | 0.165±0.005a | 0.659±0.013a |
TB | 0.076±0.002c | 0.136±0.005a | 0.543±0.053a |
TC | 0.091±0.008a | 0.135±0.004b | 0.671±0.099a |
BC | 0.091±0.004b | 0.136±0.005b | 0.598±0.053a |
Table 4 Effects of high concentration CO2 and barnyard grass on LAI of rice
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage |
---|---|---|---|
CK | 0.099±0.003a | 0.165±0.005a | 0.659±0.013a |
TB | 0.076±0.002c | 0.136±0.005a | 0.543±0.053a |
TC | 0.091±0.008a | 0.135±0.004b | 0.671±0.099a |
BC | 0.091±0.004b | 0.136±0.005b | 0.598±0.053a |
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 66.77±2.68b | 102.35±0.97b | 121.38±3.05a | 50.53±1.87a |
TB | 38.98±2.97d | 91.16±2.13c | 104.15±1.08b | 43.00±2.69a |
TC | 98.33±4.32a | 115.90±1.93a | 119.51±2.73a | 52.25±3.08a |
BC | 52.78±3.77c | 100.16±4.79b | 110.81±11.72ab | 48.00±8.55a |
Table 5 Effects of high CO2 concentration and barnyard grass on root oxidative activity of rice μg∙h-1∙g-1
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 66.77±2.68b | 102.35±0.97b | 121.38±3.05a | 50.53±1.87a |
TB | 38.98±2.97d | 91.16±2.13c | 104.15±1.08b | 43.00±2.69a |
TC | 98.33±4.32a | 115.90±1.93a | 119.51±2.73a | 52.25±3.08a |
BC | 52.78±3.77c | 100.16±4.79b | 110.81±11.72ab | 48.00±8.55a |
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 0.17±0.00a | 0.31±0.02b | 1.00±0.02a | 0.59±0.02a |
TB | 0.08±0.00c | 0.29±0.02b | 0.88±0.02b | 0.41±0.03b |
TC | 0.14±0.01b | 0.39±0.00a | 1.03±0.02a | 0.36±0.04bc |
BC | 0.12±0.01b | 0.38±0.01a | 1.01±0.03b | 0.34±0.03c |
Table 6 Effects of high concentration CO2 and barnyard grass on active absorption area of rice roots m2
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 0.17±0.00a | 0.31±0.02b | 1.00±0.02a | 0.59±0.02a |
TB | 0.08±0.00c | 0.29±0.02b | 0.88±0.02b | 0.41±0.03b |
TC | 0.14±0.01b | 0.39±0.00a | 1.03±0.02a | 0.36±0.04bc |
BC | 0.12±0.01b | 0.38±0.01a | 1.01±0.03b | 0.34±0.03c |
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 0.42±0.01a | 0.79±0.05bc | 3.28±0.06b | 1.63±0.07a |
TB | 0.23±0.01c | 0.67±0.07c | 2.62±0.06c | 1.47±0.05b |
TC | 0.31±0.01b | 1.07±0.07a | 3.51±0.05a | 0.92±0.02c |
BC | 0.30±0.02ab | 0.88±0.09b | 3.26±0.05b | 0.79±0.06d |
Table 7 Effects of high concentration CO2 and barnyard grass on total absorption area of rice roots m2
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 0.42±0.01a | 0.79±0.05bc | 3.28±0.06b | 1.63±0.07a |
TB | 0.23±0.01c | 0.67±0.07c | 2.62±0.06c | 1.47±0.05b |
TC | 0.31±0.01b | 1.07±0.07a | 3.51±0.05a | 0.92±0.02c |
BC | 0.30±0.02ab | 0.88±0.09b | 3.26±0.05b | 0.79±0.06d |
[1] | ALBERTO A M P, ZISKA L H, CERVANCIA C R, 1996. The influence of increasing carbon dioxide and temperature on competitive interactions between a C3 crop, rice (Oryza sativa) and a C4 weed (Echinochloa glabrescens)[J]. Australian Journal of Plant Physiology, 6: 128-137. |
[2] |
ELIZABETH A A, 2008. Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration[J]. Global Change Biology, 14(7): 1642-1650.
DOI URL |
[3] |
FERNANDO N, FLORENTINEA S K, NAIKER M, et al., 2019. Annual ryegrass (Lolium rigidum Gaud) competition altered wheat grain quality: A study under elevated atmospheric CO2 levels and drought conditions[J]. Food Chemistry, 276: 285-290.
DOI URL |
[4] | IPCC, 2014. Climate change 2014:Impacts, adaptation and vulnerability. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change[C]. Cambridge and New York: Cambridge University Press. |
[5] | IPCC, 2021. Climate change 2021:the science basic. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change[C]. Cambridge and New York: Cambridge University Press. |
[6] |
KATHIRESAN R and GUALBERT G, 2016. Impact of climate change on the invasive traits of weeds[J]. Weed Biology and Management, 16(2): 59-66.
DOI URL |
[7] |
KORRES N E, NORSWORTHY J K, TEHRANCHIAN P, et al., 2016. Cultivars to face climate change effects on crops and weeds: A review[J]. Agronomy for Sustainable Development, 36(1): 12-22.
DOI URL |
[8] |
MATZRAFI M. SEIWERT B, REEMTSMA T, et al., 2016. Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification[J]. Planta, 244(6): 1217-1227.
PMID |
[9] |
MOYA T B, ZISKA L H, NAMUCO O S, et al., 1998. Growth dynamics and genotypic variation in tropical, field-grown paddy rice (Oryza sativa L.) in response to increasing carbon dioxide and temperature[J]. Global Change Biology, 4(6): 645-656.
DOI URL |
[10] |
PARVIN S, 2019. Grain mineral quality of dryland legumes as affected by elevated CO2 and drought: A FACE study on lentil (Lens culinaris) and faba bean (Vicia faba)[J]. Crop and Pasture Science, 70(3): 244-253.
DOI URL |
[11] |
RAMESH K, MATLOOB A, ASLAM F, et al., 2017. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management[J]. Frontiers in Plant Science, 8: 95.
DOI PMID |
[12] |
REFATTI J P, AVILA L A, CAMARGO E R, et al., 2019. High [CO2] and Temperature increase resistance to cyhalofop-butyl in multiple- resistant echinochloa colona[J]. Frontiers in Plant Science, 10: 529.
DOI URL |
[13] |
REICH P B, HOBBIE S E, LEE T D, et al., 2018. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment[J]. Science, 360(6386): 317-320.
DOI URL |
[14] |
WANG X L, ZHANG Z Y, XU X M, et al., 2019. The density of barnyard grass affects photosynthesis and physiological characteristics of rice[J]. Photosynthetica, 57(2): 705-711.
DOI URL |
[15] |
WARYSZAK P, LENZ T I, LEISHMAN M R, et al., 2018. Herbicide effectiveness in controlling invasive plants under elevated CO2: Sufficient evidence to rethink weeds management[J]. Journal of Environmental Management, 226: 400-407.
DOI URL |
[16] |
YUN S I, KANG B M, LIM S S, et al., 2012. Further understanding CH4 emissions from a flooded rice field exposed to experimental warming with elevated CO2[J]. Agricultural and Forest Meteorology, 154-155: 75-83.
DOI URL |
[17] |
ZISKA L H, 2016. The role of climate change and increasing atmospheric carbon dioxide on weed management: Herbicide efficacy[J]. Agriculture, Ecosystems & Environment, 231: 304-309.
DOI URL |
[18] | 陈浩, 张秀英, 吴玉红, 等, 2018. 秸秆还田与氮肥管理对稻田杂草群落和水稻产量的影响[J]. 农业资源与环境学报, 35(6): 500-507. |
CHEN H, ZHANG X Y, WU Y H, et al., 2018. Effects of straw return and nitrogen fertilizer management on weed community and rice yield in paddy field[J]. Journal of Agricultural Resources and Environment, 35(6): 500-507. | |
[19] | 董立尧, 高原, 房加鹏, 等, 2018. 我国水稻田杂草抗药性研究进展[J]. 植物保护, 44(5): 69-76. |
DONG L Y, GAO Y, FANG J P, et al., 2018. Research progress on the herbicide-resistance of weeds in rice fields in China[J]. Plant Protection, 44(5): 69-76. | |
[20] | 范桂枝, 蔡庆生, 王春明, 等, 2007. 水稻株高性状对大气CO2浓度升高的响应[J]. 作物学报, 33(3): 433-440. |
FAN G Z, CAI Q S, WANG C M, et al., 2007. Response of plant height to free air CO2 enrichment in rice[J]. Acta Agronomica Sinica, 33(3): 433-440. | |
[21] | 冯芳, 范佩佩, 刘超, 等, 2019. 水稻叶绿素荧光特性对CO2浓度升高的代际响应研究[J]. 生态环境学报, 28(3): 463-471. |
FENG F, FAN P P, LIU C, et al., 2019. Intergenerational response of chlorophyll fluorescence characteristics of rice to elevated CO2 concentration[J]. Ecology and Environmental Sciences, 28(3): 463-471. | |
[22] |
黄丽芬, 全晓艳, 张蓉, 等, 2013. 光、氮及其互作对水稻主要生长性状指标的影响[J]. 核农学报, 27(12): 1927-1937.
DOI |
HUANG L F, QUAN X Y, ZHANG R, et al., 2013. Interactive effects of light intensity and nitrogen supply on indicators of main growth traits in rice[J]. Journal of Nuclear Agricultural Sciences, 27(12): 1927-1937. | |
[23] | 金殿玉, 谢立勇, 赵洪亮, 等, 2022. 大气CO2浓度升高条件下稻稗共生系统中稗草对水稻光合生理的影响[J]. 中国农业气象, 43(3): 204-214. |
JIN D Y, XIE L Y, ZHAO H L, et al., 2022. Impacts of barnyard grass on photosynthesis and physiology of rice under elevated atmospheric CO2 concentration[J]. Chinese Journal of Agrometeorology, 43(3): 204-214. | |
[24] | 李书燕, 王彦辉, 柏连阳, 等, 2020. 不同密度下抗性与敏感稗草对水稻氮素水平和光合作用的影响[J]. 植物生理学报, 56(12): 2677-2682. |
LI S Y, WANG Y H, BAI L Y, et al., 2020. Effects of different densities of resistant and sensitive barnyardgrass on nitrogen content and the photosynthesis in rice[J]. Plant Physiology Journal, 56(12): 2677-2682. | |
[25] |
廖平强, MASOOM A, 毛海燕, 等, 2020. 特异性适应稻作系统的稗草种群生活史特性[J]. 应用生态学报, 31(9): 3067-3074.
DOI |
LIAO P Q, MASOOM A, MAO H Y, et al., 2020. Life history traits of an Echinochloa crus-galli var. crus-galli population with extreme adaptations to rice planting systems[J]. Chinese Journal of Applied Ecology, 31(9): 3067-3074. | |
[26] | 刘超, 胡正华, 陈健, 等, 2018. 不同CO2浓度升高水平对水稻光合特性的影响[J]. 生态环境学报, 27(2): 246-254. |
LIU C, HU Z H, CHEN J, et al., 2018. Effects of elevated CO2 concentration levels on photosynthetic characteristics of rice[J]. Ecology and Environmental Sciences, 27(2): 246-254. | |
[27] | 刘红江, 杨连新, 黄建畔, 等, 2008. FACE对三系杂交籼稻灿优63产量形成的影响[J]. 农业环境科学学报, 27(6): 2285-2290. |
LIU H J, YANG L X, HUANG J P, et al., 2008. Effect of free air CO2 enrichment (FACE) on yield formation of three-line indica hybrid rice cultivar Shanyou 63[J]. Journal of Agro-Environment Science, 27(6): 2285-2290. | |
[28] | 刘桃菊, 唐建军, 张佩莲, 等, 1998. 水稻根系建成对高产形成的模拟模型与调控决策研究水稻根系形态建成参数与产量形成关系的初步研究[J]. 江西农业大学学报, 20(3): 11-15. |
LIU T J, TANG J J, ZHANG P L, et al., 1998. A Study on the relationship between the physiological character parameters of root and yield formation in rice and the regulation model[J]. Acta Agriculturae Universitatis Jiangxiensis, 20(3): 11-15. | |
[29] | 刘永霞, 岳延滨, 刘岩, 等, 2010. 水稻单株产量与根系主要几何属性的定量关系[J]. 江苏农业学报, 26(3): 456-461. |
LIU Y X, YUE Y B, LIU Y, et al., 2010. Quantitative relationships between main geometric properties of root system and individual plant yield in rice[J]. Jiangsu Journal of Agricultural Sciences, 26(3): 456-461. | |
[30] | 牛玺朝, 户少武, 杨阳, 等, 2021. 大气CO2浓度增高对不同水稻品种稻米品质的影响[J]. 中国生态农业学报, 29(3): 509-519. |
NIU X C, HU S W, YANG Y, et al., 2021. Effects of CO2 concentration enrichment on the grain quality of different rice varieties[J]. Chinese Journal of Eco-Agriculture, 29(3): 509-519. | |
[31] | 孙富芝, 朱建国, 曾青, 等, 2007. 大气CO2浓度升高条件下移栽水稻与不同出苗时间稗草竞争的响应差异[J]. 中国水稻科学, 21(2): 203-208. |
SUN F Z, ZHU J G, ZENG Q, et al., 2007. Difference of competition responses between rice and barnyardgrass with different seedling emergence time under elevated atmosphere CO2[J]. Chinese Journal of Rice Science, 21(2): 203-208. | |
[32] | 谢立勇, 李悦, 徐玉秀, 等, 2014. 气候变化对农业生产与粮食安全影响的新认知[J]. 气候变化研究进展, 10(4): 235-239. |
XIE L Y, LI Y, XU Y X, et al., 2014. Updated understanding on the impacts of climate change on food production and food security[J]. Advances in Climate Change Research, 10(4): 235-239. | |
[33] | 杨建昌, 王志琴, 朱庆森, 1996. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J]. 中国农业科学, 29(4): 58-66. |
YANG J C, WANG Z Q, ZHU Q S, 1996. Effects of nitrogen nutrition on rice yield under different soil water conditions and its physiological mechanism[J]. Scientia Agricutura Sinica, 29(4): 58-66. | |
[34] | 杨连新, 王云霞, 朱建国, 等, 2009. 十年水稻FACE研究的产量响应[J]. 生态学报, 29(3): 1486-1497. |
YANG L X, WANG Y X, ZHU J G, et al., 2009. What have we learned from 10 years of Free Air CO2 Enrichment (FACE) experiments on rice CO2 and grain yield[J]. Acta Ecologica Sinica, 29(3): 1486-1497. | |
[35] | 曾青, 朱建国, 刘刚, 等, 2002. 开放式空气CO2浓度增高条件下C3作物(水稻)与C4杂草(稗草)的竞争关系[J]. 应用生态学报, 13(10): 1231-1234. |
ZENG Q, ZHU J G, LIU G, et al., 2002. Effect of FACE on competition between a C3 crop (rice, Oryza sativa) and a C4 weed (barnyardgrass, Echinochloa crusgalli)[J]. Chinese Journal of Applied Ecology, 13(10): 1231-1234. | |
[36] | 张钰薇, 何宏斌, 程俊康, 等, 2019. 不同施肥管理对“多花黑麦草-水稻”轮作系统杂草防控效应的影响[J]. 生态环境学报, 28(9): 1793-1801. |
ZHANG Y W, HE H B, CHENG J K, et al., 2019. Effects of different fertilization managements on weed control in italian ryegrass-rice rotation system[J]. Ecology and Environmental Sciences, 28(9): 1793-1801. | |
[37] |
张自常, 谷涛, 杨霞, 等, 2017. 不同抗性稗草对水稻产量及其生理特性的影响[J]. 核农学报, 31(8): 1594-1603.
DOI |
ZHANG Z C, GU T, YANG X, et al., 2017. Effects of barnyardgrass with different resistance on grain yield of rice and their physiological characteristics[J]. Journal of Nuclear Agricultural Sciences, 31(8): 1594-1603. |
[1] | HUANG Yingmei, ZHONG Songxiong, ZHU Yiwen, WANG Xiangqin, LI Fangbai. Effects and Mechanism of Element Sulfur Inhibiting Methylmercury Accumulation in Rice Plants [J]. Ecology and Environment, 2023, 32(6): 1115-1122. |
[2] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environment, 2023, 32(5): 825-834. |
[3] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[4] | YANG Kai, YANG Jingrui, CAO Peipei, LÜ Chunhua, SUN Wenjuan, YU Lingfei, DENG Xi. Dynamic Response of Rice Plant Height, Tillering and SPAD under Elevated CO2 Concentration and Their Simulation [J]. Ecology and Environment, 2023, 32(5): 933-942. |
[5] | LI Hui, LI Bilong, GE Lili, HAN Chenhui, YANG Qian, ZHANG Yuejun. Temporal and Spatial Characteristics of Vegetation Evolution and Topographic Effects in Fenhe River Basin from 2000 to 2021 [J]. Ecology and Environment, 2023, 32(3): 439-449. |
[6] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
[7] | XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice [J]. Ecology and Environment, 2023, 32(1): 150-157. |
[8] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[9] | QI Yue, ZHANG Qiang, HU Shujuan, CAI Dihua, ZHAO Funian, ZHANG Kai, WANG Heling, WANG Runyuan. Climate Change and Its Impact on Winter Wheat Potential Productivity of Loess Plateau in China [J]. Ecology and Environment, 2022, 31(8): 1521-1529. |
[10] | JIANG Chaoqiang, LI Chen, ZHU Qifa, XU Haiqing, LIU Yanhong, SHEN Jia, YAN Yifeng, YU Fei, ZU Chaolong. Evaluation of Carbon Sink and Economic Benefit in Different Planting Patterns in Southern Anhui [J]. Ecology and Environment, 2022, 31(7): 1285-1292. |
[11] | LU Yanyu, SUN Wei, FANG Yanqiu, TANG Weian, DENG Hanqing, HE Dongyan. Estimating the Climatic Potential Productivity and the Climatic Capacity of Food Security Based on the Cropping Structure in Anhui Province [J]. Ecology and Environment, 2022, 31(7): 1293-1305. |
[12] | LI Dengke, WANG Zhao. Quantitative Analysis of the Impact of Climate Change and Human Activities on Vegetation NPP in Shaanxi Province [J]. Ecology and Environment, 2022, 31(6): 1071-1079. |
[13] | CAO Xiaoyun, ZHU Cunxiong, CHEN Guoqian, SUN Shujiao, ZHAO Huifang, ZHU Wenbin, ZHOU Bingrong. Surface Greenness Change and Topographic Differentiation over Qaidam Basin from 2000 to 2021 [J]. Ecology and Environment, 2022, 31(6): 1080-1090. |
[14] | ZHANG Han, TANG Changyuan, XUAN Yingxue, JIANG Tao, HUANG Pinyi, YANG Qiu, CAO Yingjie. The Regular Pattern and Influencing Factors of CO2 and CH4 Fluxes from Mangrove Soil [J]. Ecology and Environment, 2022, 31(5): 939-948. |
[15] | LI Chengwei, LIU Zhangyong, GONG Songling, YANG Wei, LI Shaoqiu, ZHU Bo. Effects of Changing Rice Cropping Patterns on CH4 and N2O Emissions from Paddy Fields [J]. Ecology and Environment, 2022, 31(5): 961-968. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn