Ecology and Environment ›› 2022, Vol. 31 ›› Issue (7): 1383-1392.DOI: 10.16258/j.cnki.1674-5906.2022.07.010
• Research Articles • Previous Articles Next Articles
LI Chengcheng(), ZHANG Zirui, SONG Xiaoxuan, KONG Juanjuan, HAN Yang, RUAN Yanan*
Received:
2022-03-22
Online:
2022-07-18
Published:
2022-08-31
Contact:
RUAN Yanan
李程程(), 张子蕤, 宋晓萱, 孔娟娟, 韩阳, 阮亚男*
通讯作者:
阮亚男
作者简介:
李程程(1987年生),女,讲师,博士研究生,研究方向为种群生态学、生态适应、恢复生态学。E-mail: lichengcheng@lnu.edu.cn
基金资助:
CLC Number:
LI Chengcheng, ZHANG Zirui, SONG Xiaoxuan, KONG Juanjuan, HAN Yang, RUAN Yanan. Effects of Ozone Stress on Antioxidant Metabolism and Reproductive Growth of Soybean[J]. Ecology and Environment, 2022, 31(7): 1383-1392.
李程程, 张子蕤, 宋晓萱, 孔娟娟, 韩阳, 阮亚男. 臭氧胁迫对大豆抗氧化代谢与生殖生长的影响[J]. 生态环境学报, 2022, 31(7): 1383-1392.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.07.010
数量性状 Traits | x(O3)/(nmol∙mol-1) | ||
---|---|---|---|
CK | 80 | 200 | |
叶面积 Leaf area/cm2 | 51.28±1.76a | 51.70±1.08a | 37.94±2.20b |
株高 Plant height/cm | 90.13±6.51a | 89.25±4.37a | 81.00±2.17b |
地上生物量 (干质量) Aboveground/g | 13.83±1.95a | 15.25±1.66a | 10.241±0.57b |
地下生物量 Underground/g | 2.33±0.58a | 1.46±0.17b | 0.85±0.10b |
豆荚数 Pod | 29.25±0.48b | 34.50±2.22a | 25.25±2.87b |
单株粒数 Seed | 65.75±4.40b | 80.50±5.56a | 59.00±4.8b |
单株粒重 Individual grain weight/g | 11.31±1.18a | 12.31±1.76a | 8.35±1.06b |
百粒重 Hundred-gain weight/g | 16.98±0.52a | 16.17±0.62b | 14.35±0.30c |
Table 1 Multiple comparison of main quantitative traits of soybean with different ozone concentrations
数量性状 Traits | x(O3)/(nmol∙mol-1) | ||
---|---|---|---|
CK | 80 | 200 | |
叶面积 Leaf area/cm2 | 51.28±1.76a | 51.70±1.08a | 37.94±2.20b |
株高 Plant height/cm | 90.13±6.51a | 89.25±4.37a | 81.00±2.17b |
地上生物量 (干质量) Aboveground/g | 13.83±1.95a | 15.25±1.66a | 10.241±0.57b |
地下生物量 Underground/g | 2.33±0.58a | 1.46±0.17b | 0.85±0.10b |
豆荚数 Pod | 29.25±0.48b | 34.50±2.22a | 25.25±2.87b |
单株粒数 Seed | 65.75±4.40b | 80.50±5.56a | 59.00±4.8b |
单株粒重 Individual grain weight/g | 11.31±1.18a | 12.31±1.76a | 8.35±1.06b |
百粒重 Hundred-gain weight/g | 16.98±0.52a | 16.17±0.62b | 14.35±0.30c |
Figure 1 Effects of elevated ozone pretreatment to O2∙-production rate, H2O2 content in soybean leaves CK: ozone mole fraction: 40.16±8.22 nmol∙mol-1; 80: ozone mole fraction: 80 nmol∙mol-1; 200: ozone mole fraction: 200 nmol∙mol-1, The same below
[1] |
ALSCHER R G, ERTURK N, HEATH L S, 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. Journal of Experimental Botany, 53(372): 1331-1341.
DOI URL |
[2] | BOWLER C, 1992. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Biology, 43(1): 83-116. |
[3] |
BRITZ S J, ROBINSON J M, 2001. Chronic ozone exposure and photosynthate partitioning into starch in soybean leaves[J]. International Journal of Plant Sciences, 162(1): 111-117.
DOI URL |
[4] | BUEGE J A, AUST S D, 1978. Microsomal lipid peroxidation[J]. Methods in Enzymology, 52: 302-310. |
[5] | BULLBOVAS P, SOUZA S R, ESPOSITO J B, et al., 2014. Assessment of the ozone tolerance of two soybean cultivars (Glycine max cv. Sambaíba and Tracajá) cultivated in Amazonian areas[J]. Environmental Science & Pollution Research, 21(17): 10514-10524. |
[6] |
CALATAYUD A, ALVARADO J W, BARRENO E, 2001. Changes in chlorophyll a fluorescence, lipid peroxidation, and detoxificant system in potato plants grown under filtered and non-filtered air in open-top chambers[J]. Photosynthetica, 39(4): 507-513.
DOI URL |
[7] | CHANGEY F, BAGARD M, SOULEYMANE M, et al., 2018. Cascading effects of elevated ozone on wheat rhizosphere microbial communities depend on temperature and cultivar sensitivity[J]. Environmental Pollution, 242(Part A): 113-125. |
[8] |
COSTA J H, ROQUE A L M, AZIZ S, et al., 2021. Genome-wide identification of ascorbate-glutathione cycle gene families in soybean (Glycine max) reveals gene duplication events and specificity of gene members linked to development and stress conditions[J]. International journal of biological macromolecules, 187: 528-543.
DOI URL |
[9] |
DU Y Y, WANG P C, CHEN J, et al., 2010. Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana[J]. Journal of Integrative Plant Biology, 50(10): 1318-1326.
DOI URL |
[10] |
DUMONT J, KESKI-SAARI S, KEINANEN M, et al., 2017. Ozone affects ascorbate and glutathione biosynthesis as well as amino acid contents in three Euramerican poplar genotypes[J]. Tree Physiology, 34(3): 253-266.
DOI URL |
[11] | EDENHOFER O, PICHS M R, SOKONA Y, 2014. Mitigation of climate change. Climate Change[M]. Cambridge: Cambridge University Press: 111-150. |
[12] | EMBERSON L, 2020. Effects of ozone on agriculture, forests and grasslands[J]. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 378(2183): 20190327. |
[13] |
GIANNOPOLITIS C N, RIES S K, 1997. Superoxide dismutases: I. Occurrence in higher plants[J]. Plant Physiology, 59(2): 309-314.
DOI URL |
[14] |
GILL S S, TUTEJA N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 48(12): 909-930.
DOI URL |
[15] |
GRIFFITH O W, 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine[J]. Analytical Biochemistry, 106(1): 207-212.
DOI URL |
[16] |
GRULKE N E, HEATH R L, 2020. Ozone effects on plants in natural ecosystems[J]. Plant Biology, 22(Suppl 1): 12-37.
DOI URL |
[17] | KARAM E A, KERAMAT B, SORBO S, et al., 2017. Interaction of triacontanol and arsenic on the ascorbate-glutathione cycle and their effects on the ultrastructure in Coriandrum sativum L.[J]. Environmental & Experimental Botany, 141: 161-169. |
[18] |
KASK K, KAURILIND E, TALTS E, et al., 2021. Combined acute ozone and water stress alters the quantitative relationships between O3 uptake, photosynthetic characteristics and volatile emissions in Brassica nigra[J]. Molecules, 26(11): 3114.
DOI URL |
[19] |
KAUR S, PRAKASH P, BAK D H, et al., 2021. Regulation of Dual Activity of Ascorbate Peroxidase 1 From Arabidopsis thaliana by Conformational Changes and Posttranslational Modifications[J]. Frontiers in Plant Science, 12: 678111.
DOI URL |
[20] | KE D S, WANG A G, SUN G C, et al., 2002. The effect of active oxygen on the activity of ACC synthase induced by exogenous IAA[J]. Acta Botanica Sinica, 44(5): 551-556. |
[21] |
KUERBAN M, WAILI Y, FAN F, et al., 2020. Spatio-temporal patterns of air pollution in China from 2015 to 2018 and implications for health risks[J]. Environmental Pollution, 258:113659.
DOI URL |
[22] | LEFOHN A S, MALLEY C S, SMITH L, et al., 2018. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research[J]. Elementa: Science of the Anthropocene, 6(1): 28. |
[23] |
LI C H, GU X, WU Z Y, et al., 2021. Assessing the effects of elevated ozone on physiology, growth, yield and quality of soybean in the past 40 years: A meta-analysis[J]. Ecotoxicology and Environmental Safety, 208: 111644.
DOI URL |
[24] |
LIANG Z H, JU T Z, DONG H P, et al., 2021. Study on the variation characteristics of tropospheric ozone in Northeast China[J]. Environmental Monitoring and Assessment, 193(5): 1-16.
DOI URL |
[25] |
LIVAK K J, SCHMITTGEN T D, 2001. Analysis of relative gene expression data using Real Time Quantitative PCR and the 2-ΔΔCT method[J]. METHODS, 25: 402-408.
DOI URL |
[26] | LU X, HONG J Y, ZHANG L, et al., 2018. Severe surface ozone pollution in China: A global perspective[J]. Environmental Science & Technology, 5: 487-494. |
[27] | MACIAS-BENITEZ S, NAVARRO-TORRE S, CABALLERO P, et al., 2021. Biostimulant capacity of an enzymatic extract from rice bran against ozone-induced damage in Capsicum annum [J]. Frontiers in plant science, 12: 749422. |
[28] | MAHALINGAM R, JAMBUNATHAN N, GUNJAN S K, et al., 2006. Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana[J]. Plant Cell & Environment, 29(7): 1357-1371. |
[29] | MAHMOOD U, HUSSAIN S, HUSSAIN S, et al., 2021. Morpho-physio-biochemical and molecular responses of maize hybrids to salinity and waterlogging during stress and recovery phase[J]. Plants (Basel, Switzerland), 10(7): 345. |
[30] | MALAIYANDI M, NATARAJAN M, 2014. Impact of Ozone on Morphological, Physiological, and Biochemical Changes in Cow Pea (Vigna unguiculata [L.] Walp.)[J]. Ozone Science & Engineering, 36(1): 36-42. |
[31] |
MUKHERJEE S P, CHOUDHURI M A, 1985. Implication of hydrogen peroxide-ascorbate system on membrane permeability of water stressed vigna seedlings[J]. New Phytologist, 99(3): 355-360.
DOI URL |
[32] | NAKANO Y, ASADA K, 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant & Cell Physiology, 22(5): 867-880. |
[33] |
OSBORNE S A, MILLS G, HAYES F, et al., 2016. Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose-response data[J]. Global Change Biology, 22(9): 3097-3111.
DOI URL |
[34] | PANDEY A K, GHOSH A, AGRAWAL M, et al., 2018. Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality[J]. Ecotoxicology & Environmental Safety, 158: 59-68. |
[35] | PELLEGRINI E, CAMPANELLA A, COTROZZI L, et al., 2017. What about the detoxification mechanisms underlying ozone sensitivity in Liriodendron tulipifera[J]. Environmental Science & Pollution Research, 25(9): 1-13. |
[36] |
PELLEGRINO E, TRIVELLINI A, CAMPANELLA A, et al., 2013. Signaling molecules and cell death in Melissa officinalis plants exposed to ozone[J]. Plant Cell Reports, 32(12): 1965-1980.
DOI URL |
[37] | PERRY J J, SHIN D S, GETZOFF E D, et al., 2009. The structural biochemistry of the superoxide dismutases[J]. Biochimica et Biophysica Acta, 1804(2): 245-262. |
[38] | PRYOR W A, 1995. Methods in enzymology: Oxygen radicals in biological systems, part C[J]. Free Radical Biology & Medicine, 18(5): 959. |
[39] |
QIAO X Q, ZHENG Z Z, ZHANG L F, et al., 2015 Lead tolerance mechanism in sterilized seedlings of Potamogeton crispus L.: Subcellular distribution, polyamines and proline[J]. Chemosphere, 120: 179-187.
DOI URL |
[40] |
ROZPĄDEK P, NOSEK M, ŚLESAK I, et al., 2015. Ozone fumigation increases the abundance of nutrients in Brassica vegetables: broccoli (Brassica oleracea var. italica) and Chinese cabbage (Brassica pekinensis)[J]. European Food Research and Technology, 240(2): 459-462.
DOI URL |
[41] |
SALVATORI E, FUSARO L, STRASSER RJ, et al., 2015. Effects of acute O3 stress on PSII and PSI photochemistry of sensitive and resistant snap bean genotypes (Phaseolus vulgaris L.), probed by prompt chlorophyll “a” fluorescence and 820 nm modulated reflectance[J]. Plant Physiology and Biochemistry, 97: 368-377.
DOI URL |
[42] |
SHORT E F, NORTH K A, ROBERTS M R, et al., 2012. A stress-specific calcium signature regulating an ozone-responsive gene expression network in Arabidopsis[J]. The Plant Journal, 71(6): 948-961.
DOI URL |
[43] | SIM H H, DU H K, JAE C L, 2009. Effects of fertilization on physiological parameters in American sycamore (Platanus occidentalis) during ozone stress and recovery phase[J]. Journal of Ecology and Field Biology, 32(3): 149-158. |
[44] | SLUPPHAUG G, KAVLI B, KROKAN H E, 2003. The interacting pathways for prevention and repair of oxidative DNA damage[J]. Mutation Research/fundamental & Molecular Mechanisms of Mutagenesis, 531(1): 231-251. |
[45] | VAULTIER M N, JOLIVET Y, 2015. Ozone sensing and early signaling in plants: An outline from the cloud[J]. Environmental & Experimental Botany, 114: 144-152. |
[46] |
WANG N, LYU X P, DENG X J, et al., 2019. Aggravating O3 pollution due to NOx emission control in eastern China[J]. Science of The Total Environment, 677: 732-744.
DOI URL |
[47] |
WANG T, XUE L K, PETER B, et al., 2016. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment, 575: 1582-1596.
DOI URL |
[48] |
YAMAGUCHI M, HOSHINO D, KONDO T, 2015. Evaluation of O3 effect on net photosynthetic rate in flag leaves of rice (Oryza sativa L.) by stomatal O3 flux and radical scavenging enzyme activities[J]. Journal of Agricultural Meteorology, 71(3): 211-217.
DOI URL |
[49] |
YANG Q, LI Y L, WANG L H, et al., 2014. Effect of lanthanum (III) on the production of ethylene and reactive oxygen species in soybean seedlings exposed to the enhanced ultraviolet-B radiation[J]. Ecotoxicology and Environmental Safety, 104: 152-159.
DOI URL |
[50] |
ZHANG X X, ZHANG X F, WANG T Z, et al., 2021. Metabolic response of soybean leaves induced by short-term exposure of ozone[J]. Ecotoxicology and Environmental Safety, 213(114): 112033.
DOI URL |
[51] | ZHAO T H, SHI Y, HUANG G H, et al., 2005. Respective and interactive effects of doubled CO2 and O3 concentration on membrane lipid peroxidation and antioxidative ability of soybean[J]. Science in China (Series C: Life Sciences), 48(1): 136-141. |
[52] | 冯兆忠, 2020. 臭氧污染的生态风险和防护对策[J]. 环境保护, 48(15): 20-22. |
FENG Z Z, 2020. Ecological Risks of Ozone Pollution in China and Countermeasures[J]. Environmental Protection, 48(15): 20-22. | |
[53] |
冯兆忠, 袁相洋, 李品, 等, 2020. 地表臭氧浓度升高对陆地生态系统影响的研究进展[J]. 植物生态学报, 44(5): 526-542.
DOI |
FENG Z Z, YUAN X Y, LI P, et al., 2020. Progress in the effects of elevated ground-level ozone on terrestrial ecosystems[J]. Chinese Journal of Plant Ecology, 44(5): 526-542.
DOI URL |
|
[54] | 阮亚男, 何兴元, 陈玮, 等, 2008. 臭氧浓度升高对植物抗氧化系统的影响[J]. 生态学杂志, 27(5): 829-834. |
RUAN Y N, HE X Y, CHEN W, et al., 2008. Effects of elevated ozone on anti-oxidative system in plants[J]. Chinese Journal of Ecology, 27(5): 829-834. | |
[55] | 阮亚男, 徐胜, 郭龙, 等, 2017. 大气臭氧浓度升高对银杏叶片活性氧代谢及相关基因表达的影响[J]. 应用生态学报, 28(11): 32-39. |
RUAN Y N, XU S, GUO L, et al., 2017. Effects of elevated ozone concentrations on reactive oxygen metabolism and related gene expression in Ginkgo biloba leaves[J]. Chinese Journal of Applied Ecology, 28(11): 32-39. | |
[56] | 易睿, 王亚林, 张殷俊, 等, 2015. 长江三角洲地区城市臭氧污染特征与影响因素分析[J]. 环境科学学报, 35(8): 2370-2377. |
YI R, WANG Y L, ZHANG Y J, et al., 2015. Pollution characteristics and influence factors of ozone in Yangtze River Delta[J]. Acta Scientiae Circumstantiae, 35(8): 2370-2377. |
[1] | YAN Xuejun, HAO Saimei, ZHANG Rongrong, QIN Hua, GAO Sulian, WANG Feng, JIN Xianzhong, SUN Youmin, ZHANG Guiqin. Composition Spectrum and Emission Estimation of VOCs from Furniture Malls [J]. Ecology and Environment, 2023, 32(6): 1070-1077. |
[2] | ZHAO Hongbin, BAI Xue, FAN Yufeng, ZHANG Xiaofu, ZHANG Tao, LI Shufen. Cloning and Differential Expression Analysis of Stipa Breviflora StbCRY1 and StbCRY2 Genes [J]. Ecology and Environment, 2023, 32(5): 866-877. |
[3] | XU Xiaoyun, RAO Zhihan, JIANG Hongbin, ZHANG Wei, CHEN Chao, YANG Yongan, HU Yanli, WEI Haichuan. Pollution Characteristics and Formation Potential for O3 and SOA of Ambient VOCs in Suining Industrial Zone in Summer [J]. Ecology and Environment, 2023, 32(5): 956-968. |
[4] | KOU Zhu, QING Chun, YUAN Changguo, LI Ping. Diversity and Distribution of Sulfur Oxidizing Bacteria in Hot Springs of Northeast Tibet, China [J]. Ecology and Environment, 2023, 32(5): 989-1000. |
[5] | WEN Lirong, JIANG Ming, HUANG Bo, YUAN Luan, ZHOU Yan, LU Weimei, ZHANG Ying, LIU Ming, ZHANG Liyun. Analysis of Ozone Pollution Causes and Source Analysis of VOCs in Typical Areas of Pearl River Delta: A Case Study of Zhongshan City [J]. Ecology and Environment, 2023, 32(3): 500-513. |
[6] | FU Chuanbo, DAN Li, TONG Jinhe, CHEN Hong. Characteristics and Potential Source Analysis of Ozone pollution in Haikou City [J]. Ecology and Environment, 2023, 32(2): 331-340. |
[7] | YIN Haojun, LONG Mingliang, LIU Wei, NI Chunlin, LI Fangbai, WU Yundang. Dissolved Oxygen Concentration Regulates Arsenic Reduction in Aeromonas hydrophila: Effects and Mechanisms [J]. Ecology and Environment, 2023, 32(2): 381-387. |
[8] | FU Rong, WU Xinmei, CHEN Bin. Analysis on the Spatial Stratified Heterogeneity and Driving Factors Differences of the Urban Land Surface Temperature: A Case Study of Hefei [J]. Ecology and Environment, 2023, 32(1): 110-122. |
[9] | XIANG Xing, MAN Baiying, ZHANG Junzhong, LUO Yang, MAO Xiaotao, ZHANG Chao, SUN Binghua, WANG Xi. Vertical Distribution of Bacterial Community and Functional Groups Mediating Nitrogen Cycling in Mount Huangshan, Anhui, China [J]. Ecology and Environment, 2023, 32(1): 56-69. |
[10] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environment, 2022, 31(8): 1537-1546. |
[11] | JIANG Peng, QIN Mei’ou, LI Rongping, MENG Ying, YANG Feiyun, WEN Rihong, SUN Pei, FANG Yuan. Seasonal Variability of GPP and Its Influencing Factors in the Typical Ecosystems in China [J]. Ecology and Environment, 2022, 31(4): 643-651. |
[12] | LIU Zhijun, CUI Lijuan, LI Wei, LI Jing, LEI Yinru, ZHU Yinuo, WANG Rumiao, DOU Zhiguo. Effects of Spartina alterniflora Invasion on the Diversity and Community Structure of nirS-type Denitrifying Bacteria in Yancheng Coastal Wetlands [J]. Ecology and Environment, 2022, 31(4): 704-714. |
[13] | LIU Hongmei, HAI Xiang, AN Kerui, ZHANG Haifang, WANH Hui, ZHANG Yanjun, WANG Lili, ZHANG Guilong, YANG Dianlin. Effects of Different Fertilization Regimes on Community Structure Diversity of CO2-assimilating Bacteria in Maize Field of Fluvo-aquic Soil in North China [J]. Ecology and Environment, 2022, 31(4): 715-722. |
[14] | CHEN Xuequan, KONG Bin, LAN Qing, YU Zhiquan, XIE Yinsi, HUANG Junyi. Emission Characteristics and Ozone Formation Potential Assessment of Volatile Organic Compounds (VOCs) from Adhesive Manufacturing Industry [J]. Ecology and Environment, 2022, 31(4): 750-758. |
[15] | LI Jiayi, SUN Weimin, SUN Xiaoxu, KONG Tianle, LI Baoqin, LIU Zhenhong, GAO pin. Isolation, Identification and Functional Verification of Sulfur-oxidizing Microorganisms in Mine Tailing [J]. Ecology and Environment, 2022, 31(4): 785-792. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn