Ecology and Environment ›› 2022, Vol. 31 ›› Issue (3): 460-469.DOI: 10.16258/j.cnki.1674-5906.2022.03.004
• Research Articles • Previous Articles Next Articles
XIA Kai(), DENG Pengfei, MA Ruihao, WANG Fei, WEN Zhengyu, XU Xiaoniu*(
)
Received:
2021-10-16
Online:
2022-03-18
Published:
2022-05-25
Contact:
XU Xiaoniu
夏开(), 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛*(
)
通讯作者:
徐小牛
作者简介:
夏开(1991年生),男,硕士研究生,研究方向为森林培育。E-mail: 836058374@qq.com
基金资助:
CLC Number:
XIA Kai, DENG Pengfei, MA Ruihao, WANG Fei, WEN Zhengyu, XU Xiaoniu. Changes of Soil Bacterial Community Structure and Diversity from Conversion of Masson Pine Secondary Forest to Slash Pine and Chinese Fir Plantations[J]. Ecology and Environment, 2022, 31(3): 460-469.
夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.03.004
林分类型 Forest type | 林龄 Age/a | 坡度 Inclination/ (°) | 平均胸径 Average DBH/cm | 平均树高 Average height/m | 林分密度 Stand density/ (plants∙hm-2) |
---|---|---|---|---|---|
PM | 39 | 35.73±0.59 | 28.26±8.05 | 15.85±3.95 | 948±384 |
PE | 11 | 25.61±0.59 | 11.71±3.12 | 9.93±3.28 | 2104±397 |
CL | 10 | 26.43±9.13 | 15.06±1.97 | 11.41±1.49 | 4044±235 |
Table 1 Basic characteristics of the sampling stands
林分类型 Forest type | 林龄 Age/a | 坡度 Inclination/ (°) | 平均胸径 Average DBH/cm | 平均树高 Average height/m | 林分密度 Stand density/ (plants∙hm-2) |
---|---|---|---|---|---|
PM | 39 | 35.73±0.59 | 28.26±8.05 | 15.85±3.95 | 948±384 |
PE | 11 | 25.61±0.59 | 11.71±3.12 | 9.93±3.28 | 2104±397 |
CL | 10 | 26.43±9.13 | 15.06±1.97 | 11.41±1.49 | 4044±235 |
土壤性质指标 Soil property parameter | PM | PE | CL |
---|---|---|---|
pH | 4.27±0.11b | 4.82±0.15a | 4.44±0.22b |
w(EC)/(μS∙cm-1) | 60.47±8.76a | 29.38±7.89b | 37.1±10.14b |
w(SWC)/% | 15.36±1.96b | 17.65±4.63b | 23.49±3.52a |
w(SOC)/(g∙kg-1) | 33.37±5.35a | 30.6±3.45ab | 26.22±5.03b |
w(TN)/(g∙kg-1) | 2.67±0.34a | 2.64±0.49a | 2.37±0.46a |
w(C)/w(N) | 12.48±0.74a | 11.76±1.27a | 11.07±0.68a |
w(NH4+-N)/(mg∙kg-1) | 8.01±3.81b | 11.45±3.69a | 6.55±1.9b |
w(NO3--N)/(mg∙kg-1) | 3.98±1.11a | 1.48±0.99b | 3.32±2.24a |
Table 2 Soil basic characteristics of the experimental stands
土壤性质指标 Soil property parameter | PM | PE | CL |
---|---|---|---|
pH | 4.27±0.11b | 4.82±0.15a | 4.44±0.22b |
w(EC)/(μS∙cm-1) | 60.47±8.76a | 29.38±7.89b | 37.1±10.14b |
w(SWC)/% | 15.36±1.96b | 17.65±4.63b | 23.49±3.52a |
w(SOC)/(g∙kg-1) | 33.37±5.35a | 30.6±3.45ab | 26.22±5.03b |
w(TN)/(g∙kg-1) | 2.67±0.34a | 2.64±0.49a | 2.37±0.46a |
w(C)/w(N) | 12.48±0.74a | 11.76±1.27a | 11.07±0.68a |
w(NH4+-N)/(mg∙kg-1) | 8.01±3.81b | 11.45±3.69a | 6.55±1.9b |
w(NO3--N)/(mg∙kg-1) | 3.98±1.11a | 1.48±0.99b | 3.32±2.24a |
林分类型 Forest type | 观测物种数 Observed_ species | Chao1 指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|
PM | 1550±324b | 1561±332b | 9.56±0.22b | 0.9976±0.0004b |
PE | 1984±224a | 1996±230a | 9.98±0.19a | 0.9983±0.0002a |
CL | 1861±376ab | 1876±388ab | 9.76±0.34ab | 0.9979±0.0006ab |
Table 3 Soil bacterial α-diversity indices
林分类型 Forest type | 观测物种数 Observed_ species | Chao1 指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|
PM | 1550±324b | 1561±332b | 9.56±0.22b | 0.9976±0.0004b |
PE | 1984±224a | 1996±230a | 9.98±0.19a | 0.9983±0.0002a |
CL | 1861±376ab | 1876±388ab | 9.76±0.34ab | 0.9979±0.0006ab |
细菌群落 Bacterial community | P值 P value | |
---|---|---|
PE-PM | CL-PM | |
酸杆菌门 Acidobacteria | 0.248 | 0.4622 |
变形菌门 Proteobacteria | 0.4622 | 0.0117 |
放线菌门 Actinobacteria | 0.9164 | 0.0063 |
绿弯菌门 Chloroflexi | 0.9164 | 0.0016 |
己科河菌门 Rokubacteria | 0.0033 | 0.0357 |
芽单胞菌门 Gemmatimonadetes | 0.0742 | 0.8336 |
疣微菌门 Verrucomicrobia | 0.0587 | 0.0087 |
浮霉菌门 Planctomycetes | 0.1152 | 0.9989 |
WPS-2 | 0.0046 | 0.1722 |
未识别门 Unclassified | 0.2936 | 0.0357 |
其他 Others | 0.4256 | 0.3167 |
Table 4 Statistical results of Wilcoxon pair-to-pair comparison test at soil bacteriophyta levels among PE, CL and PM
细菌群落 Bacterial community | P值 P value | |
---|---|---|
PE-PM | CL-PM | |
酸杆菌门 Acidobacteria | 0.248 | 0.4622 |
变形菌门 Proteobacteria | 0.4622 | 0.0117 |
放线菌门 Actinobacteria | 0.9164 | 0.0063 |
绿弯菌门 Chloroflexi | 0.9164 | 0.0016 |
己科河菌门 Rokubacteria | 0.0033 | 0.0357 |
芽单胞菌门 Gemmatimonadetes | 0.0742 | 0.8336 |
疣微菌门 Verrucomicrobia | 0.0587 | 0.0087 |
浮霉菌门 Planctomycetes | 0.1152 | 0.9989 |
WPS-2 | 0.0046 | 0.1722 |
未识别门 Unclassified | 0.2936 | 0.0357 |
其他 Others | 0.4256 | 0.3167 |
林分比较类型 Types of stand comparison | 门 Phylum | 属 Genus | P值 P value |
---|---|---|---|
PE-PM | 酸杆菌门 Acidobacteria | Subgroup_6纲未定属 (Subgroup_6_unclassified) | 0.0016 |
酸杆菌门 Acidobacteria | Candidatus_Solibacter属 (Candidatus_Solibacter) | 0.0357 | |
酸杆菌门 Acidobacteria | Subgroup_2目未定属 (Subgroup_2_unclassified) | 0.046 | |
变形菌门 Proteobacteria | Elsterales目未定属 (Elsterales_unclassified) | 0.0011 | |
变形菌门 Proteobacteria | 黄色杆菌科未定属 (Xanthobacteraceae_unclassified) | 0.0011 | |
放线菌门 Actinobacteria | Gaiellales科未定属 (Gaiellales_unclassified) | 0.0087 | |
浮霉菌门 Planctomycetes | 出芽科未定属 (Gemmataceae_unclassified) | 0.0209 | |
疣微菌门 Verrucomicrobia | Candidatus_Udaeobacter属 (Candidatus_Udaeobacter) | 0.0087 | |
CL-PM | 酸杆菌门 Acidobacteria | Subgroup_6纲未定属 (Subgroup_6_unclassified) | 0.046 |
放线菌门 Actinobacteria | 热酸菌属 (Acidothermus) | 0.0016 | |
变形菌门 Proteobacteria | α-变形杆菌纲未定属 (Alphaproteobacteria_unclassified) | 0.046 | |
变形菌门 Proteobacteria | Elsterales目未定属 (Elsterales_unclassified) | 0.0023 | |
绿弯菌门 Chloroflexi | JG30-KF-AS9科未定属 (JG30-KF-AS9_unclassified) | 0.0046 | |
绿弯菌门 Chloroflexi | AD3纲未定属 (AD3_unclassified) | 0.0087 | |
疣微菌门 Verrucomicrobia | Candidatus_Udaeobacter属 (Candidatus_Udaeobacter) | 0.0033 | |
疣微菌门 Verrucomicrobia | ADurb.Bin063-1属 (ADurb.Bin063-1) | 0.0063 |
Table 5 Statistical results of Wilcoxon pair-to-pair comparison test at soil bacterial genera levels among PE, CL and PM
林分比较类型 Types of stand comparison | 门 Phylum | 属 Genus | P值 P value |
---|---|---|---|
PE-PM | 酸杆菌门 Acidobacteria | Subgroup_6纲未定属 (Subgroup_6_unclassified) | 0.0016 |
酸杆菌门 Acidobacteria | Candidatus_Solibacter属 (Candidatus_Solibacter) | 0.0357 | |
酸杆菌门 Acidobacteria | Subgroup_2目未定属 (Subgroup_2_unclassified) | 0.046 | |
变形菌门 Proteobacteria | Elsterales目未定属 (Elsterales_unclassified) | 0.0011 | |
变形菌门 Proteobacteria | 黄色杆菌科未定属 (Xanthobacteraceae_unclassified) | 0.0011 | |
放线菌门 Actinobacteria | Gaiellales科未定属 (Gaiellales_unclassified) | 0.0087 | |
浮霉菌门 Planctomycetes | 出芽科未定属 (Gemmataceae_unclassified) | 0.0209 | |
疣微菌门 Verrucomicrobia | Candidatus_Udaeobacter属 (Candidatus_Udaeobacter) | 0.0087 | |
CL-PM | 酸杆菌门 Acidobacteria | Subgroup_6纲未定属 (Subgroup_6_unclassified) | 0.046 |
放线菌门 Actinobacteria | 热酸菌属 (Acidothermus) | 0.0016 | |
变形菌门 Proteobacteria | α-变形杆菌纲未定属 (Alphaproteobacteria_unclassified) | 0.046 | |
变形菌门 Proteobacteria | Elsterales目未定属 (Elsterales_unclassified) | 0.0023 | |
绿弯菌门 Chloroflexi | JG30-KF-AS9科未定属 (JG30-KF-AS9_unclassified) | 0.0046 | |
绿弯菌门 Chloroflexi | AD3纲未定属 (AD3_unclassified) | 0.0087 | |
疣微菌门 Verrucomicrobia | Candidatus_Udaeobacter属 (Candidatus_Udaeobacter) | 0.0033 | |
疣微菌门 Verrucomicrobia | ADurb.Bin063-1属 (ADurb.Bin063-1) | 0.0063 |
土壤理化性质 Physicochemical properties | 细菌群落结构 Bacterial community structure | |
---|---|---|
r | P | |
pH | 0.4993 | 0.001 |
EC | 0.3297 | 0.002 |
SWC | 0.0849 | 0.173 |
SOC | -0.0329 | 0.601 |
TN | -0.038 | 0.609 |
NH4+-N | -0.0289 | 0.54 |
NO3--N | 0.0648 | 0.189 |
C/N | 0.0017 | 0.463 |
Table 6 Correlation between bacterial community structure and soil environmental factors tested by Mantel
土壤理化性质 Physicochemical properties | 细菌群落结构 Bacterial community structure | |
---|---|---|
r | P | |
pH | 0.4993 | 0.001 |
EC | 0.3297 | 0.002 |
SWC | 0.0849 | 0.173 |
SOC | -0.0329 | 0.601 |
TN | -0.038 | 0.609 |
NH4+-N | -0.0289 | 0.54 |
NO3--N | 0.0648 | 0.189 |
C/N | 0.0017 | 0.463 |
Figure 4 Heat map of correlation between relative abundance of dominant phylum (a), relative abundance of dominant genera with differences (b) and soil physical and chemical properties
[1] |
AVERILL C, HAWKES C V, 2016. Ectomycorrhizal fungi slow soil carbon cycling[J]. Ecology Letters, 19(8): 937-947.
DOI URL |
[2] |
BÁRCENAS-MORENO G, BÅÅTH E, ROUSK J, 2016. Functional implications of the pH-trait distribution of the microbial community in a re-inoculation experiment across a pH gradient[J]. Soil Biology and Biochemistry, 93:69-78.
DOI URL |
[3] |
BELL T, NEWMAN J A, SILVERMAN B W, et al., 2005. The contribution of species richness and composition to bacterial services[J]. Nature, 436(7054): 1157-1160.
DOI URL |
[4] |
BENJAMIN C J, MCMURDIE P J, ROSEN M J, et al., 2016. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 13(7): 581-583.
DOI URL |
[5] |
BRUUN T B, ELBERLING B, NEERGAARD A, et al., 2015. Organic carbon dynamics in different soil types after conversion of forest to agriculture[J]. Land Degradation & Development, 26(3): 272-283.
DOI URL |
[6] |
CHEN Y P, CHEN G S, ROBINSON D, et al., 2016. Large amounts of easily decomposable carbon stored in subtropical forest subsoil are associated with r-strategy-dominated soil microbes[J]. Soil Biology and Biochemistry, 95: 233-242.
DOI URL |
[7] |
DE ROCHELI S, AMBROSINI A, PASSAGLIA-LUCIANE M P, 2015. Plant growth-promoting bacteria as inoculants in agricultural soils[J]. Genetics and Molecular Biology, 38(4): 401-19.
DOI URL |
[8] |
DENNIS P G, NEWSHAM K K, Rushton S P, et al., 2013. Warming constrains bacterial community responses to nutrient inputs in a southern, but not northern, maritime Antarctic soil[J]. Soil Biology and Biochemistry, 57: 248-255.
DOI URL |
[9] |
FAZI S, AMALFITANO S, PERNTHALER J, et al., 2005. Bacterial communities associated with benthic organic matter in headwater stream microhabitats[J]. Environmental Microbiology, 7(10): 1633-1640.
DOI URL |
[10] |
FELSKE A, WOLTERINK A, VAN L R, et al., 2000. Response of a soil bacterial community to grassland succession as monitored by 16S rRNA levels of the predominant ribotypes[J]. Applied and Environmental Microbiology, 66(9): 3998-4003.
DOI URL |
[11] |
FENG Y Z, GROGAN P J, CAPORASO G, et al., 2014. pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in Arctic soils[J]. Soil Biology and Biochemistry, 74: 193-200.
DOI URL |
[12] |
FIERER N, BRADFORD M A, JACKSON R B, 2007. Toward an ecological classification of soil bacteria[J]. Ecology, 88(6): 1354-1364.
DOI URL |
[13] | HARTMAN W H, RICHARDSON C J, VILGALYS R, et al., 2008. Environmental and Anthropogenic Controls over Bacterial Communities in Wetland Soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(46): 17842-17847. |
[14] |
LAUBER C L, MICAH H, KNIGHT R, et al., 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 75(15): 5111-5120.
DOI URL |
[15] |
LI X, SUN M L, ZHANG H H, et al., 2016. Use of mulberry-soybean intercropping in salt-alkali soil impacts the diversity of the soil bacterial community[J]. Microbial Biotechnology, 9(3): 293-304.
DOI URL |
[16] |
LIU T, WU X H, LI H W, et al., 2020. Soil organic matter, nitrogen and pH driven change in bacterial community following forest conversion[J]. Forest Ecology and Management, DOI: 10.1016/j.foreco.2020.118473.
DOI |
[17] |
LIU X, ZHANG B, ZHAO W R, et al., 2017. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region[J]. Science of the Total Environment, 601-602: 669-678.
DOI URL |
[18] | MARK B, JENNA M, CHAPMAN T, et al., 2005. Defining operational taxonomic units using DNA barcode data[J]. Philosophical Transactions of the Royal Society, 360(1462): 1935-1943. |
[19] |
MENG M J, LIN J, GUO X P, et al., 2019. Impacts of forest conversion on soil bacterial community composition and diversity in subtropical forests[J]. Catena, 175: 167-173.
DOI URL |
[20] |
NAKAYAMA M, IMAMURA S, TANIGUCHI T, et al., 2019. Does conversion from natural forest to plantation affect fungal and bacterial biodiversity, community structure, and co-occurrence networks in the organic horizon and mineral soil?[J]. Forest Ecology and Management, 446: 238-250.
DOI URL |
[21] |
NAVARRETE I A, TSUTSUKI K, 2008. Land-use impact on soil carbon, nitrogen, neutral sugar composition and related chemical properties in a degraded Ultisol in Leyte, Philippines[J]. Soil Science and Plant Nutrition, 54(3): 321-331.
DOI URL |
[22] |
RHOADES J D, SHOUSE P J, ALVES W J, et al. 1990. Determining soil salinity from soil electrical conductivity using different models and estimates[J]. Soil Science Society of America Journal, 54(1): 46-54.
DOI URL |
[23] |
SHEN C C, XIONG J B, ZHANG H Y, et al., 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 57: 204-211.
DOI URL |
[24] | SHEREMET A, JONES G M, JARETT J, et al., 2020. Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil[J]. Environmental Microbiology, 22(8): 1462-2920. |
[25] |
SUN H, TERHONEN E, KOSKINEN K, et al., 2014. Bacterial diversity and community structure along different peat soils in boreal forest[J]. Applied Soil Ecology, 74: 37-45.
DOI URL |
[26] |
SUN Y T, LUO C L, JIANG L F, et al., 2020. Land-use changes alter soil bacterial composition and diversity in tropical forest soil in China[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2020.136526.
DOI |
[27] |
ZHANG C, LIU G B, XUE S, et al., 2016. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau[J]. Soil Biology and Biochemistry, 97: 40-49.
DOI URL |
[28] |
ZHANG X F, XU S J, LI C M, et al., 2014. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan Plateau[J]. Research in Microbiology, 165(2): 128-139.
DOI URL |
[29] |
ZHAO J, WAN S Z, LI Z A, et al., 2012. Dicranopteris-dominated understory as major driver of intensive forest ecosystem in humid subtropical and tropical region[J]. Soil Biology and Biochemistry, 49: 78-87.
DOI URL |
[30] |
ZHOU Z H, WANG C K, LUO Y Q, 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature communications, 11(1): 3072.
DOI URL |
[31] | 邓娇娇, 周永斌, 殷有, 等, 2019. 辽东山区典型人工针叶林土壤细菌群落多样性特征[J]. 生态学报, 39(3): 997-1008. |
DENG J J, ZHOU Y B, YIN Y, et al., 2019. Soil bacterial community structure characteristics in coniferous forests of Montane Regions of eastern Liaoning Province, China[J]. Acta Ecologica Sinica, 39(3): 997-1008. | |
[32] | 韩芳, 包媛媛, 刘项宇, 等, 2021. 不同轮作方式对马铃薯根际土壤真菌群落结构的影响[J]. 生态环境学报, 30(7): 1412-1419. |
HAN F, BAO Y Y, LIU X Y, et al., 2021. Effects of different potato rotation patterns on fungal community structure in rhizosphere soil[J]. Ecology and Environmental Sciences, 30(7): 1412-1419. | |
[33] | 黄庆阳, 杨帆, 谢立红, 等, 2021. 五大连池火山土壤细菌多样性及其群落结构[J]. 生态学报, 41(20): 8276-8284. |
HUANG Q Y, YANG F, XIE L H, et al., 2021. Diversity and community structure of soil bacteria in different volcanoes, Wudalianchi[J]. Acta Ecologica Sinica, 41(20): 8276-8284. | |
[34] | 何斌, 梁伟克, 陈文军, 等, 2002. 湿地松、杉木林取代马尾松林后土壤肥力的差异[J]. 东北林业大学学报, 30(6): 11-13. |
HE B, LIANG W K, CHEN W J, et al., 2002. Difference of Soil Fertilities Following Replacement of Pinus massoniana Plantation by Pinus elliottii Plantation and Cunninghamia lanceolata Plantation[J]. Journal of Northeast Forestry University, 30(6): 11-13. | |
[35] | 姜雪薇, 马大龙, 臧淑英, 等, 2021. 高通量测序分析大兴安岭典型森林土壤细菌和真菌群落特征[J]. 微生物学通报, 48(4): 1093-1105. |
JIANG X W, MA D L, ZANG S Y, et al., 2021. Characteristics of soil bacterial and fungal community of typical forest in the Greater Khingan Mountains based on high-throughput sequencing[J]. Microbiology China, 48(4): 1093-1105. | |
[36] | 李明, 毕江涛, 王静, 等, 2020. 宁夏不同地区盐碱化土壤细菌群落多样性分布特征及其影响因子[J]. 生态学报, 40(4): 1316-1330. |
LI M, BI J T, WANG J, et al., 2020. Bacterial community structure and key influence factors in saline soil of different sites in Ningxia[J]. Acta Ecologica Sinica, 40(4): 1316-1330. | |
[37] | 梁国华, 吴建平, 熊鑫, 等, 2015. 鼎湖山不同演替阶段森林土壤pH值和土壤微生物量碳氮对模拟酸雨的响应[J]. 生态环境学报, 24(6): 911-918. |
LIANG G H, WU J P, XIONG X, WU X, et al., 2015. Responses of Soil pH Value and Soil Microbial Biomass Carbon and Nitrogen to Simulated Acid Rain in Three Successional Subtropical Forests at Dinghushan Nature Reserve[J]. Ecology and Environmental Sciences, 24(6): 911-918 | |
[38] | 刘海洋, 张仁福, 王伟, 等, 2021. 新疆黄萎病发病程度不同棉田土壤细菌群落结构差异分析[J]. 生态环境学报, 30(1): 72-80. |
LIU H Y, ZHANG R F, WANG W, et al., 2021. Characteristics of soil bacterial community structure in cotton fields with different incidence of Verticillium wilt in Xinjiang[J]. Ecology and Environmental Sciences, 30(1): 72-80. | |
[39] | 潭洪治, 1988. 微生物学[M]. 北京: 高等教育出版社: 1-8. |
TAN H Z, 1988. Microbiology[M]. Beijing: Higher Education Press: 1-8. | |
[40] | 万春红, 陶楚, 杨小波, 等, 2015. 森林群落物种组成对凋落物组成的影响[J]. 生态学报, 35(22): 7435-7443. |
WANG C H, TAO C, YANG X B, et al., 2015. Impact of forest community species composition on litter species composition[J]. Acta Ecologica Sinica, 35(22): 7435-7443. | |
[41] | 王鹏, 陈波, 张华, 2017. 基于高通量测序的鄱阳湖典型湿地土壤细菌群落特征分析[J]. 生态学报, 37(5): 1650-1658. |
WANG P, CHEN B, ZHANG H, 2017. High throughput sequencing analysis of bacterial communities in soils of a typical Poyang Lake wetland[J]. Acta Ecologica Sinica, 37(5): 1650-1658. | |
[42] |
吴林坤, 林向民, 林文雄, 2014. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 38(3): 298-310.
DOI |
WU L K, LING X M, LIN W X, 2014. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 38(3): 298-310.
DOI URL |
|
[43] | 于少鹏, 史传奇, 胡宝忠, 等, 2020. 古大湖湿地盐碱土壤微生物群落结构及多样性分析[J]. 生态学报, 40(11): 3764-3775. |
YU S P, SHI C Q, HU B Z, et al., 2020. Analysis of microbial community structure and diversity of saline soil in Gudahu Wetland[J]. Acta Ecologica Sinica, 40(11): 3764-3775. | |
[44] | 赵凤艳, 张勇勇, 张玥琦, 等, 2019. 有机物料对设施番茄长期连作土壤细菌群落结构的影响[J]. 生态学杂志, 38(6): 1732-1740. |
ZHAO F Y, ZHANG Y Y, ZHANG Y Q, et al., 2019. Effects of organic amendments on soil bacterial community structure with long-term tomato planting in greenhouse[J]. Chinese Journal of Ecology, 38(6): 1732-1740. | |
[45] | 张红霞, 张舒雅, 张玉涛, 等, 2019. 山药根际土壤微生物16S rRNA多样性及影响因素[J]. 土壤学报, 56(5): 1235-1246. |
ZHANG H X, ZHANG S Y, ZHANG Y T, et al., 2019. Genetic 16S rRNA Diversity of Soil Microbes in Rhizosphere of Chinese Yam and Its Influencing Factors[J]. Acta Pedologica Sinica, 56(5): 1235-1246. | |
[46] | 张坤, 包维楷, 杨兵, 等, 2017. 林下植被对土壤微生物群落组成与结构的影响[J]. 应用与环境生物学报, 23(6): 1178-1184. |
ZHANG K, BAO W K, YANG B, et al., 2017. The effects of understory vegetation on soil microbial community composition and structure[J]. Chinese Journal of Applied & Environmental Biology, 23(6): 1178-1184. | |
[47] | 曾婷婷, 张玲玲, 李意德, 等, 2016. 林型转化对土壤pH、有机碳组分和交换性矿质元素的影响[J]. 生态环境学报, 25(4): 576-582. |
ZENG T T, ZHANG L L, LI Y D, et al., 2015. Effect of Forest Conversion on Soil pH, Organic Carbon Fractions and Exchangeable Mineral Nutrients[J]. Ecology and Environmental Sciences, 25(4): 576-582. | |
[48] | 朱教君, 2002. 次生林经营基础研究进展[J]. 应用生态学报, 13(12): 1689-1694. |
ZHU J J, 2002. A review on fundamental studies of secondary forest management[J]. Chinese Journal of Applied Ecology, 13(12): 1689-1694. |
[1] | LI Haipeng, HUANG Yuehua, SUN Xiaodong, CAO Qimin, FU Fangxing, SUN Chuhan. Correlation Analysis of the Occurrence of the Tomato Bacterial Wilt and Different Types of Texture of Latosols and Its Bacterial Community in Cropland in Hainan [J]. Ecology and Environment, 2023, 32(6): 1062-1069. |
[2] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environment, 2022, 31(8): 1537-1546. |
[3] | ZHU Yihao, LI Qingmei, LIU Xiaoli, LI Na, SONG Fengling, CHEN Weifeng. Characteristics of Soil Microbial Community in Newly Cultivated Land under Different Land Consolidation Types [J]. Ecology and Environment, 2022, 31(5): 909-917. |
[4] | WANG Yingcheng, YAO Shiting, JIN Xin, YU Wenzhen, LU Guangxin, WANG Junbang. Comparative Study on Soil Bacterial Diversity of Degraded Alpine Meadow in the Sanjiangyuan Region [J]. Ecology and Environment, 2022, 31(4): 695-703. |
[5] | LIU Hongmei, HAI Xiang, AN Kerui, ZHANG Haifang, WANH Hui, ZHANG Yanjun, WANG Lili, ZHANG Guilong, YANG Dianlin. Effects of Different Fertilization Regimes on Community Structure Diversity of CO2-assimilating Bacteria in Maize Field of Fluvo-aquic Soil in North China [J]. Ecology and Environment, 2022, 31(4): 715-722. |
[6] | SONG Xiuli, HUANG Ruilong, KE Caijie, HUANG Wei, ZHANG Wu, TAO Bo. Effects of Different Cropping Systems on Bacterial Community Structure and Diversity in Continuous Cropping Soil [J]. Ecology and Environment, 2022, 31(3): 487-496. |
[7] | YANG Hu, WANG Peiyao, LI Xiaowei, WANG Jifei, YANG Junlong. Distribution of Soil Fungal Diversity and Community Structure in Different Vegetation Types on the Eastern Slopes of Helan Mountains [J]. Ecology and Environment, 2022, 31(2): 239-247. |
[8] | ZHANG Xiaoli, WANG Guoli, CHANG Fangdi, ZHANG Hongyuan, PANG Huancheng, ZHANG Jianli, WANG Jing, JI Hongjie, LI Yuyi. Effects of Microbial Agents on Physicochemical Properties and Microbial Flora of Rhizosphere Saline-alkali Soil [J]. Ecology and Environment, 2022, 31(10): 1984-1992. |
[9] | JIA Chenbo, GUO Yang, MA Chenglian, SU Jianyu, XU Chunyan. Difference on Soil Microbial Community and Function of Healthy and Diseased Plants of Lycium barbarum Ningqi-1 [J]. Ecology and Environment, 2021, 30(9): 1831-1841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn