Ecology and Environment ›› 2022, Vol. 31 ›› Issue (2): 400-408.DOI: 10.16258/j.cnki.1674-5906.2022.02.021
• Reviews • Previous Articles Next Articles
ZHANG Yun1,2(), SHU Shu1, LUO Xin1, ZHONG Qin3, ZOU Hua1,2,*(
)
Received:
2021-02-20
Online:
2022-02-18
Published:
2022-04-14
Contact:
ZOU Hua
张云1,2(), 舒抒1, 罗鑫1, 钟琴3, 邹华1,2,*(
)
通讯作者:
邹华
作者简介:
张云(1986年生),女(仫佬族),副研究员,博士,从事新污染物的环境行为和生态毒理研究。E-mail: zhangyun@jiangnan.edu.cn
基金资助:
CLC Number:
ZHANG Yun, SHU Shu, LUO Xin, ZHONG Qin, ZOU Hua. Fate and Ecological Risks of Glucocorticoids in Aquatic Environment: A Review[J]. Ecology and Environment, 2022, 31(2): 400-408.
张云, 舒抒, 罗鑫, 钟琴, 邹华. 水环境中糖皮质激素的环境行为及生态风险研究进展[J]. 生态环境学报, 2022, 31(2): 400-408.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.02.021
糖皮质激素 Glucocorticoids | 地表水 Surface Water | 质量浓度范围 ρ/(ng∙L-1) | 平均质量浓度 ρmean/(ng∙L-1) | 检出率 Detection Frequency/% | 参考文献 References |
---|---|---|---|---|---|
可的松(天然) Cortisone (Natural) | 温榆河及其支流, 北京 | 0.05‒28 | 96‒100 | Chang et al., | |
0.58‒27 | 4.02 | 100 | 郭文景, | ||
49‒433 | 173.8 | Shen et al., | |||
淡水河, 广州 | Upstream 0.6 | Liu et al., | |||
Downstream 1.9 | |||||
太湖, 中国 | ND‒3.66 | 0.61 | 53.1 | Zhou et al., | |
北海, 比利时 | 4.13‒28.18 | 9.21 | Huysman et al., | ||
氢化可的松(天然) Cortisol (Natural) | 温榆河及其支流, 北京 | 0.11‒20 | 96‒100 | Chang et al., | |
ND‒13 | 2.69 | 66.7 | 郭文景, | ||
1.2‒11 | 4.67 | 100 | Shen et al., | ||
多瑙河, 匈牙利 | <0.17‒2.67 | Tölgyesi et al., | |||
太湖, 中国 | ND‒9.28 (夏) | 2.37 | 97 | Zhou et al., | |
2.78‒17.5 (冬) | 6.04 | 100 | |||
北海, 比利时 | 0.89‒7.48 | 2.98 | Huysman et al., | ||
流沙湾, 中国南海 | ND‒0.50 | 0.25 | 10 | 杨雷等, | |
醋酸氢化可的松(合成) Cortisol acetate (Synthetic) | 温榆河及其支流, 北京 | ND‒476 | 144.75 | 44.4 | 郭文景, |
2.1‒21 | 10.23 | Shen et al., | |||
秦淮河等, 南京* | 1.29‒2.38 | 1.84 | 25 | 谭丽超等, | |
泼尼松(合成) Prednisone (Synthetic) | 温榆河及其支流, 北京 | 0.12‒0.86 | 53 | Chang et al., | |
<0.02‒1.2 | Shen et al., | ||||
秦淮河等, 南京* | 1.31‒8.36 | 5.33 | 100 | 谭丽超等, | |
北海, 比利时 | 9.17‒39.14 | 20.5 | Huysman et al., | ||
泼尼松龙(合成) Prednisolone (Synthetic) | 温榆河及其支流, 北京 | 0.25‒1.8 | 96‒100 | Chang et al., | |
ND‒1.4 | 1.4 | 11.1 | 郭文景, | ||
2.7‒94 | 24.8 | Shen et al., | |||
多瑙河, 匈牙利 | <0.04‒0.58 | Tölgyesi et al., | |||
秦淮河等, 南京* | 4.14‒4.69 | 4.42 | 25 | 谭丽超等, | |
太湖, 中国 | ND‒4.91 | 2.43 | 96.9 | Zhou et al., | |
北海, 比利时 | 6.36‒15.17 | 8.99 | Huysman et al., | ||
醋酸泼尼松龙(合成) Prednisolone acetate (Synthetic) | 温榆河及其支流, 北京 | 0.04‒2.4 | 0.62 | Chang et al., | |
秦淮河等, 南京* | 4.98‒18.17 | 10.6 | 50 | 谭丽超等, | |
北海, 比利时 | <10 | Huysman et al., | |||
甲基泼尼松龙(合成) Methylprednisolone (Synthetic) | 温榆河及其支流, 北京 | 0.20‒0.41 | 6.7 | Chang et al., | |
<0.03‒12 | <2.66 | Shen et al., | |||
瑞士的多条河流 | 3‒5 | Ammann et al., | |||
秦淮河等, 南京* | 3.85‒52.03 | 18.26 | 100 | 谭丽超等, | |
地塞米松(合成) Dexamethasone (Synthetic) | 温榆河及其支流, 北京 | 0.05‒8 | 96‒100 | Chang et al., | |
ND‒0.77 | 0.44 | 郭文景, | |||
0.51‒8.2 | 4.05 | Shen et al., | |||
多瑙河, 匈牙利 | <0.01‒0.07 | Tölgyesi et al., | |||
秦淮河等, 南京* | 1.12‒10.73 | 7.06 | 62.5 | 谭丽超等, |
Table 1 Major glucocorticoids detected in surface water
糖皮质激素 Glucocorticoids | 地表水 Surface Water | 质量浓度范围 ρ/(ng∙L-1) | 平均质量浓度 ρmean/(ng∙L-1) | 检出率 Detection Frequency/% | 参考文献 References |
---|---|---|---|---|---|
可的松(天然) Cortisone (Natural) | 温榆河及其支流, 北京 | 0.05‒28 | 96‒100 | Chang et al., | |
0.58‒27 | 4.02 | 100 | 郭文景, | ||
49‒433 | 173.8 | Shen et al., | |||
淡水河, 广州 | Upstream 0.6 | Liu et al., | |||
Downstream 1.9 | |||||
太湖, 中国 | ND‒3.66 | 0.61 | 53.1 | Zhou et al., | |
北海, 比利时 | 4.13‒28.18 | 9.21 | Huysman et al., | ||
氢化可的松(天然) Cortisol (Natural) | 温榆河及其支流, 北京 | 0.11‒20 | 96‒100 | Chang et al., | |
ND‒13 | 2.69 | 66.7 | 郭文景, | ||
1.2‒11 | 4.67 | 100 | Shen et al., | ||
多瑙河, 匈牙利 | <0.17‒2.67 | Tölgyesi et al., | |||
太湖, 中国 | ND‒9.28 (夏) | 2.37 | 97 | Zhou et al., | |
2.78‒17.5 (冬) | 6.04 | 100 | |||
北海, 比利时 | 0.89‒7.48 | 2.98 | Huysman et al., | ||
流沙湾, 中国南海 | ND‒0.50 | 0.25 | 10 | 杨雷等, | |
醋酸氢化可的松(合成) Cortisol acetate (Synthetic) | 温榆河及其支流, 北京 | ND‒476 | 144.75 | 44.4 | 郭文景, |
2.1‒21 | 10.23 | Shen et al., | |||
秦淮河等, 南京* | 1.29‒2.38 | 1.84 | 25 | 谭丽超等, | |
泼尼松(合成) Prednisone (Synthetic) | 温榆河及其支流, 北京 | 0.12‒0.86 | 53 | Chang et al., | |
<0.02‒1.2 | Shen et al., | ||||
秦淮河等, 南京* | 1.31‒8.36 | 5.33 | 100 | 谭丽超等, | |
北海, 比利时 | 9.17‒39.14 | 20.5 | Huysman et al., | ||
泼尼松龙(合成) Prednisolone (Synthetic) | 温榆河及其支流, 北京 | 0.25‒1.8 | 96‒100 | Chang et al., | |
ND‒1.4 | 1.4 | 11.1 | 郭文景, | ||
2.7‒94 | 24.8 | Shen et al., | |||
多瑙河, 匈牙利 | <0.04‒0.58 | Tölgyesi et al., | |||
秦淮河等, 南京* | 4.14‒4.69 | 4.42 | 25 | 谭丽超等, | |
太湖, 中国 | ND‒4.91 | 2.43 | 96.9 | Zhou et al., | |
北海, 比利时 | 6.36‒15.17 | 8.99 | Huysman et al., | ||
醋酸泼尼松龙(合成) Prednisolone acetate (Synthetic) | 温榆河及其支流, 北京 | 0.04‒2.4 | 0.62 | Chang et al., | |
秦淮河等, 南京* | 4.98‒18.17 | 10.6 | 50 | 谭丽超等, | |
北海, 比利时 | <10 | Huysman et al., | |||
甲基泼尼松龙(合成) Methylprednisolone (Synthetic) | 温榆河及其支流, 北京 | 0.20‒0.41 | 6.7 | Chang et al., | |
<0.03‒12 | <2.66 | Shen et al., | |||
瑞士的多条河流 | 3‒5 | Ammann et al., | |||
秦淮河等, 南京* | 3.85‒52.03 | 18.26 | 100 | 谭丽超等, | |
地塞米松(合成) Dexamethasone (Synthetic) | 温榆河及其支流, 北京 | 0.05‒8 | 96‒100 | Chang et al., | |
ND‒0.77 | 0.44 | 郭文景, | |||
0.51‒8.2 | 4.05 | Shen et al., | |||
多瑙河, 匈牙利 | <0.01‒0.07 | Tölgyesi et al., | |||
秦淮河等, 南京* | 1.12‒10.73 | 7.06 | 62.5 | 谭丽超等, |
糖皮质激素 Glucocorticoids | logKoc | logKow | 其他甾体激素 Other steroids | logKoc | logKow |
---|---|---|---|---|---|
可的松(天然) Cortisone (Natural) | 1.31a, 3.02‒3.12b, c | 1.81a | 雌酚酮 (雌) | 2.60‒3.47d, e, f | 2.45‒3.43d |
氢化可的松(天然) Cortisol (Natural) | 1.38a, 1.76‒2.76b | 1.62a | 雌二醇 (雌) | 3.04‒3.64d, e, f | 3.10‒4.01d |
皮质酮(天然) Corticosterone (Natural) | 1.57a | 2.16b | 乙炔雌二醇 (雌) | 2.91‒3.68e, f, g | 3.67‒4.15e |
地塞米松(合成) Dexamethasone (Synthetic) | 1.57a | 1.72a | 睾酮 (雄) | 2.22‒3.52d, e, h | 3.22d |
泼尼松(合成) Prednisone (Synthetic) | 1.30a | 1.59a | 雄烯二酮 (雄) | 2.13‒3.77b, e | 2.75 |
泼尼松龙(合成) Prednisolone (Synthetic) | 1.39a, 2.96b | 1.40a | 孕酮 (孕) | 3.91‒4.16d | 3.67‒3.87d |
甲基泼尼龙(合成) Methylprednisolone (Synthetic) | 1.5a | 2.09b | 左炔诺孕酮 (孕) | 2.98‒3.40c, i | 3.48 |
Table 2 LogKoc and logKow of four groups of steroid hormones
糖皮质激素 Glucocorticoids | logKoc | logKow | 其他甾体激素 Other steroids | logKoc | logKow |
---|---|---|---|---|---|
可的松(天然) Cortisone (Natural) | 1.31a, 3.02‒3.12b, c | 1.81a | 雌酚酮 (雌) | 2.60‒3.47d, e, f | 2.45‒3.43d |
氢化可的松(天然) Cortisol (Natural) | 1.38a, 1.76‒2.76b | 1.62a | 雌二醇 (雌) | 3.04‒3.64d, e, f | 3.10‒4.01d |
皮质酮(天然) Corticosterone (Natural) | 1.57a | 2.16b | 乙炔雌二醇 (雌) | 2.91‒3.68e, f, g | 3.67‒4.15e |
地塞米松(合成) Dexamethasone (Synthetic) | 1.57a | 1.72a | 睾酮 (雄) | 2.22‒3.52d, e, h | 3.22d |
泼尼松(合成) Prednisone (Synthetic) | 1.30a | 1.59a | 雄烯二酮 (雄) | 2.13‒3.77b, e | 2.75 |
泼尼松龙(合成) Prednisolone (Synthetic) | 1.39a, 2.96b | 1.40a | 孕酮 (孕) | 3.91‒4.16d | 3.67‒3.87d |
甲基泼尼龙(合成) Methylprednisolone (Synthetic) | 1.5a | 2.09b | 左炔诺孕酮 (孕) | 2.98‒3.40c, i | 3.48 |
[1] |
AMMANN A A, MACIKOVA P, GROH K J, et al., 2014. LC-MS/MS determination of potential endocrine disruptors of cortico signalling in rivers and wastewaters[J]. Analytical and Bioanalytical Chemistry, 406(29): 7653-7665.
DOI URL |
[2] |
ANACKER C, ZUNSZAIN P A, CARVALHO L A, et al., 2011. The glucocorticoid receptor: Pivot of depression and of antidepressant treatment?[J]. Psychoneuroendocrinology, 36(3): 415-425.
DOI URL |
[3] |
BURKINA V, SAKALLI S, RASMUSSEN M K, et al., 2015. Does dexamethasone affect hepatic CYP450 system of fish? Semi-static in-vivo experiment on juvenile rainbow trout[J]. Chemosphere, 139: 155-162.
DOI URL |
[4] |
CASEY F X M, SIMUNEK J, LEE J, et al., 2005. Sorption, mobility, and transformation of estrogenic hormones in natural soil[J]. Journal of Environmental Quality, 34(4): 1372-1379.
DOI URL |
[5] |
CHANG H, HU J Y, SHAO B, 2007. Occurrence of natural and synthetic glucocorticoids in sewage treatment plants and receiving river waters[J]. Environmental Science and Technology, 41(10): 3462-3468.
DOI URL |
[6] |
CHANG H, WAN Y, HU J Y, 2009. Determination and source apportionment of five classes of steroid hormones in urban rivers[J]. Environmental Science and Technology, 43(20): 7691-7698.
DOI URL |
[7] |
CHEN Q Y, LI C X, GONG Z Y, et al., 2017. Common deregulated gene expression profiles and morphological changes in developing zebrafish larvae exposed to environmental-relevant high to low concentrations of glucocorticoids[J]. Chemosphere, 172: 429-439.
DOI URL |
[8] |
COUTINHO A E, CHAPMAN K E, 2011. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights[J]. Molecular and Cellular Endocrinology, 335(1): 2-13.
DOI URL |
[9] |
CREUSOT N, AIET-AIESSA S, TAPIE N, et al., 2014. Identification of synthetic steroids in river water downstream from pharmaceutical manufacture discharges based on a bioanalytical approach and passive sampling[J]. Environmental Science and Technology, 48(7): 3649-3657.
DOI URL |
[10] |
DANIELS K D, DARCY V D, WU S, et al., 2018. Downstream trends of invitro bioassay responses in a wastewater effluent-dominated river[J]. Chemosphere, 212: 182-192.
DOI URL |
[11] |
FALTERMANN S, HETTICH T, KÜNG N, et al., 2020. Effects of the glucocorticoid clobetasol propionate and its mixture with cortisol and different class steroids in adult female zebrafish[J]. Aquatic Toxicology, DOI: 10.1016/j.aquatox.2019.105372.
DOI |
[12] |
FAN Z L, WU S M, CHANG H, et al., 2011. Behaviors of glucocorticoids, androgens and progestogens in a municipal sewage treatment plant: Comparison to estrogens[J]. Environmental Science and Technology, 45(7): 2725-2733.
DOI URL |
[13] |
GILMOUR K M, DIBATTISTA J, THOMAS J B, 2005. Physiological causes and consequences of social status in salmonid fish[J]. Integrative and Comparative Biology, 45(2): 263-273.
DOI URL |
[14] | GINEYS N, GIROUD B, GINEYS M, et al., 2012. Retention of selected steroids on a silt-loam soil[J]. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 47(13): 2133-2140. |
[15] |
GOUARNE C, FOURY A, DUCLOS M, 2004. Critical study of common conditions of storage of glucocorticoids and catecholamines in 24-h urine collected during resting and exercising conditions[J]. Clinica Chimica Acta, 348(1-2): 207-214.
DOI URL |
[16] |
GUILOSKI I C, RIBAS C, LUIZ J, et al., 2015. Effects of trophic exposure to dexamethasone and diclofenac in freshwater fish[J]. Ecotoxicology and Environmental Safety, 114(103): 204-211.
DOI URL |
[17] |
HORBY P, LIM W S, EMBERSON J R, et al., 2021. Dexamethasone in hospitalized patients with COVID-19[J]. The New England Journal of Medicine, 384(8): 693-704.
DOI URL |
[18] |
HUYSMAN S, MEULEBROEK L V, VANRYCKEGHEM F, et al., 2017. Development and validation of an ultra-high performance liquid chromatographic high resolution Q-Orbitrap mass spectrometric method for the simultaneous determination of steroidal endocrine disrupting compounds in aquatic matrices[J]. Analytica Chimica Acta, 984: 140-150.
DOI URL |
[19] |
ISOBE T, SATO K, KIM J W, et al., 2015. Determination of natural and synthetic glucocorticoids in effluent of sewage treatment plants using ultrahigh performance liquid chromatography-tandem mass spectrometry[J]. Environmental Science and Pollution Research, 22(18): 14127-14135.
DOI URL |
[20] | JEREZ-CEPA I, GORISSEN M, MANCERA J M, et al., 2019. What can we learn from glucocorticoid administration in fish? Effects of cortisol and dexamethasone on intermediary metabolism of gilthead seabream (Sparus aurata L.)[J]. Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology, 231: 1-10. |
[21] |
JIA A, WU S M, DANIELS K D, et al., 2016. Balancing the budget: Accounting for glucocorticoid bioactivity and fate during water treatment[J]. Environmental Science and Technology, 50(6): 2870-2880.
DOI URL |
[22] |
KUGATHAS S, RUNNALLS T J, SUMPTER J P, 2013. Metabolic and reproductive effects of relatively low concentrations of beclomethasone dipropionate, a synthetic glucocorticoid, on fathead minnows[J]. Environmental Science and Technology, 47(16): 9487-9495.
DOI URL |
[23] |
LALONE C A, VILLENEUVE D L, OLMSTEAD A W, et al., 2012. Effects of a glucocorticoid receptor agonist, dexamethasone, on fathead minnow reproduction, growth, and development[J]. Environmental Toxicology and Chemistry, 31(3): 611-622.
DOI URL |
[24] |
LEE L S, STROCK T J, SARMAH A K, et al., 2003. Sorption and dissipation of testosterone, estrogens, and their primary transformation products in soils and sediment[J]. Environmental Science and Technology, 37(18): 4098-105.
DOI URL |
[25] |
LEET J K, LEE L S, GALL H E, et al., 2012. Assessing impacts of land-applied manure from concentrated animal feeding operations on fish populations and communities[J]. Environmental Science and Technology, 46(24): 13440-13447.
DOI URL |
[26] |
LESLIE M, 2017. The case of the macho crocs[J]. Science, 357(6354): 859-861.
DOI URL |
[27] |
LI X Y, MA M S, RENE E R, et al., 2019. Changes in microbial communities during the removal of natural and synthetic glucocorticoids in three types of river-based aquifer media[J]. Environmental Science and Pollution Research, 26: 33953-33962.
DOI URL |
[28] |
LIU S, YING G G, ZHAO J L, et al., 2011. Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Journal of Chromatography A, 1218(10): 1367-1378.
DOI URL |
[29] |
LIU S, YING G G, ZHAO J L, et al., 2012a. Occurrence and fate of androgens, estrogens, glucocorticoids and progestagens in two different types of municipal wastewater treatment plants[J]. Journal of Environmental Monitoring, 14(2): 482-491.
DOI URL |
[30] |
LIU S, YING G G, ZHOU L J, et al., 2012b. Steroids in a typical swine farm and their release into the environment[J]. Water Research, 46(12): 3754-3768.
DOI URL |
[31] |
LIU S, CHEN H, ZHOU G J, et al., 2015. Occurrence, source analysis and risk assessment of androgens, glucocorticoids and progestagens in the Hailing Bay region, South China Sea[J]. Science of the Total Environment, 536: 99-107.
DOI URL |
[32] |
LIU S, CHEN H, XU X R, et al., 2017a. Three classes of steroids in typical freshwater aquaculture farms: Comparison to marine aquaculture farms[J]. Science of the Total Environment, 609: 942-950.
DOI URL |
[33] |
LIU S, XU X R, QI Z H, et al., 2017b. Steroid bioaccumulation profiles in typical freshwater aquaculture environments of South China and their human health risks via fish consumption[J]. Environmental Pollution, 228: 72-81.
DOI URL |
[34] |
LIU S, YING G G, ZHANG R Q, et al., 2012c. Fate and occurrence of steroids in swine and dairy cattle farms with different farming scales and wastes disposal systems[J]. Environmental Pollution, 170: 190-201.
DOI URL |
[35] |
MILLER K A, KENTER L W, BRETON T S, et al., 2019. The effects of stress, cortisol administration and cortisol inhibition on black sea bass (Centropristis striata) sex differentiation[J]. Comparative Biochemistry and Physiology Part A, Molecular and Integrative Physiology, 227: 154-160.
DOI URL |
[36] |
MIYAMOTO A, KITAICHI Y, UCHIKURA K, 2014. Degradation of corticosteroids during activated sludge processing[J]. Chemical and Pharmaceutical Bulletin, 62(1): 72-76.
DOI URL |
[37] |
MOHSENI S N, AMOOEY A A, TASHAKKORIAN H, et al., 2016. Removal of dexamethasone from aqueous solutions using modified clinoptilolite zeolite (equilibrium and kinetic)[J]. International Journal of Environmental Science and Technology, 13(9): 1-8.
DOI URL |
[38] |
NAKAYAMA K, INOUE Y, IKEDA N, et al., 2014. Uptake and biological effects of synthetic glucocorticoids in common carp (Cyprinus carpio)[J]. Marine Pollution Bulletin, 85(2): 370-375.
DOI URL |
[39] |
PATCHEV V K, HAYASHI S, ORIKASA C, et al., 1995. Implications of estrogen-dependent brain organization for gender differences in hypothalamo-pituitary-adrenal regulation[J]. The FASEB Journal, 9(5): 419-423.
DOI URL |
[40] | PAVLOVIC D M, CURKOVIC L, MACAN J, et al., 2017. Eggshell as a new biosorbent for the removal of the pharmaceuticals from aqueous solutions[J]. Clean-Soil, Air and Water, 45(12): 1700082.1-1700082.14. |
[41] |
QI Y, ZHANG T C, REN Y, 2014. Testosterone sorption and desorption: Effects of soil particle size[J]. Journal of Hazardous Materials, 279: 493-501.
DOI URL |
[42] |
ROMAO J S, HAMDY M S, MUL G, et al., 2015. Photocatalytic decomposition of cortisone acetate in aqueous solution[J]. Journal of Hazardous Materials, 282(23): 208-215.
DOI URL |
[43] |
RUNNALLS T J, MARGIOTTA-CASALUCI L, KUGATHAS S, et al., 2010. Pharmaceuticals in the aquatic environment: steroids and anti-steroids as high priorities for research[J]. Human and Ecological Risk Assessment: An International Journal, 16(6): 1318-1338.
DOI URL |
[44] |
SACDAL R, MADRIAGA J, ESPINO M P, 2020. Overview of the analysis, occurrence and ecological effects of hormones in lake waters in Asia[J]. Environmental Research, DOI: 10.1016/j.envres.2019.109091.
DOI |
[45] |
SANGSTER J L, OKE H, ZHANG Y, et al., 2015. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment[J]. Journal of Hazardous Materials, 299: 112-121.
DOI URL |
[46] |
SCHRIKS M, VAN LEERDAM J A, VAN DER LINDEN S C, et al., 2010. High-resolution mass spectrometric identification and quantification of glucocorticoid compounds in various wastewaters in The Netherlands[J]. Environmental Science and Technology, 44(12): 4766-4774.
DOI URL |
[47] |
SHEN X, CHANG H, SUN Y, et al., 2020. Determination and occurrence of natural and synthetic glucocorticoids in surface waters[J]. Environment International, DOI: 10.1016/j.envint.2019.105278.
DOI |
[48] |
TANG T, SHI T Y, LI D G, et al., 2012. Adsorption properties and degradation dynamics of endocrine-disrupting chemical levonorgestrel in soils[J]. Journal of Agricultural and Food Chemistry, 60: 3999-4004.
DOI URL |
[49] |
THRUPP T J, RUNNALLS T J, SCHOLZE M, et al., 2018. The consequences of exposure to mixtures of chemicals: Something from ‘nothing' and ‘a lot from a little' when fish are exposed to steroid hormones[J]. Science of the Total Environment, 619-620: 1482-1492.
DOI URL |
[50] |
TÖLGYESI A, VEREBEY Z, SHARMA V K, et al., 2010. Simultaneous determination of corticosteroids, androgens, and progesterone in river water by liquid chromatography-tandem mass spectrometry[J]. Chemosphere, 78(8): 972-979.
DOI URL |
[51] | WANG P J, LUN X X, RENE E R, et al., 2018. Hydrocortisone biotransformation pathway in three types of river-based aquifers media and changes in microbial community[J]. International Biodeterioration & Biodegradation, 130: 76-83. |
[52] |
WEIZEL A, MICHAEL P. SCHLÜSENER, DIERKES G, et al., 2018. Occurrence of glucocorticoids, mineralocorticoids and progestogens in various treated wastewater, rivers and streams[J]. Environmental Science and Technology, 52(9): 5296-5307.
DOI URL |
[53] |
WILLI R A, FALTERMANN S, HETTICH T, et al., 2018. Active glucocorticoids have a range of important adverse developmental and physiological effects on developing zebrafish embryos[J]. Environmental Science and Technology, 52(2): 877-885.
DOI URL |
[54] |
WILLI R A, SALGUEIRO-GONZÁLEZ N, CARCAISO G, et al., 2019. Glucocorticoid mixtures of fluticasone propionate, triamcinolone acetonide and clobetasol propionate induce additive effects in zebrafish embryos[J]. Journal of Hazardous Materials, 374: 101-109.
DOI URL |
[55] | XIANG Y Y, RENE E R, LUN X X, et al., 2020. Enhanced reductive defluorination and inhibited infiltration of fluoroglucocorticoids in a river receiving reclaimed water amended by nano zero-valent iron-modified biochar: Performance and mechanisms[J]. Bioresource Technology, 306: 123-127. |
[56] |
XIANG Y Y, RENE E R, MA W F, 2022. Enhanced bio-reductive degradation of fluoroglucocorticoids in the groundwater fluctuation zone by external electron donors: Performance, microbial community, and functional genes[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2021.127015.
DOI |
[57] |
XIN N, JIANG Y, LIU S, et al., 2020. Effects of prednisolone on behavior and hypothalamic-pituitary-interrenal axis activity in zebrafish[J]. Environmental toxicology and pharmacology, DOI: 10.1016/j.etap.2020.103325.
DOI |
[58] |
YIN G J, CAO L P, DU J L, et al., 2017. Dexamethasone-induced hepatomegaly and steatosis in larval zebrafish[J]. Journal of Toxicological Sciences, 42(4): 455-459.
DOI URL |
[59] |
YING G G, KOOKANA R S, DILLON P, 2003. Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material[J]. Water Research, 37(15): 3785-3791.
DOI URL |
[60] |
ZHANG J N, YANG L, ZHANG M, et al., 2019. Persistence of androgens, progestogens, and glucocorticoids during commercial animal manure composting process[J]. Science of The Total Environment, 665: 91-99.
DOI URL |
[61] |
ZHONG R Y, ZOU H Y, GAO J, et al., 2021. A critical review on the distribution and ecological risk assessment of steroid hormones in the environment in China[J]. Science of The Total Environment, DOI: 10.1016/j.scitotenv.2021.147452.
DOI |
[62] |
ZHOU L J, ZHANG B B, ZHAO Y G, et al., 2016. Occurrence, spatiotemporal distribution, and ecological risks of steroids in a large shallow Chinese lake, Lake Taihu[J]. Science of the Total Environment, 557-558: 68-79.
DOI URL |
[63] | 崔波蕾, 2018. 四种医用糖皮质激素的厌氧行为研究[D]. 郑州: 河南大学. |
CUI B L, 2018. Anaerobic behavior of four medical glucocorticoids[D]. Zhengzhou: Henan University. | |
[64] | 郭文景, 2015. 地表水中糖皮质激素检测方法的建立和优化及其在北京市清河水体中的应用[D]. 南京: 南京师范大学. |
GUO W J, 2015. Analytical method for detecting glucocorticoids in surface water and its application in Qing River of Beijing[D]. Nanjing: Nanjing Normal University. | |
[65] | 郭雅婷, 2020. 生物电化学系统同步预处理地下水中含氟糖皮质激素和硝态氮的效能研究[D]. 北京: 北京林业大学. |
GUO Y T, 2020. Performance of simultaneous pretreatment of fluoroglucocorticoid and nitrate nitrogen from groundwater[D]. Beijing: Beijing Forestry University. | |
[66] | 沈晓艳, 2016. 糖皮质激素及代谢产物的识别与污水处理厂中的环境行为研究[D]. 北京: 北京林业大学. |
SHEN X Y, 2016. Identification and environmental behaviors of glucocorticoid and its metabolites in sewage treatment plant[D]. Beijing: Beijing Forestry University. | |
[67] | 谭丽超, 葛峰, 孔德洋, 等, 2014. 南京市地表水中18种类固醇激素的检测分析[J]. 环境化学, 33(2): 298-305. |
TAN L C, GE F, KONG D Y, et al., 2014. Detection method and occurrence of 18 steroid hormone compounds in surface water of Nanjing[J]. Environmental Chemistry, 33(2): 298-305. | |
[68] | 向雅芸, 2020. 复合河床系统中糖皮质激素入渗过程的强化控制研究[D]. 北京: 北京林业大学. |
XIANG Y Y, 2020. Study on enhanced control of glucocorticoid infiltration in complex riverbed system[D]. Beijing: Beijing Forestry University. | |
[69] | 杨雷, 张晋娜, 徐敏, 等, 2019. 中国南海流沙湾中雄激素、糖皮质激素和孕激素的污染特征及其生态风险评价[J]. 环境科学, 40(11): 4879-4888. |
YANG L, ZHANG J N, XU M, et al., 2019. Contamination characteristics and ecological risk assessment of androgens, glucocorticoids, and progesterone in the Liusha Bay, South China Sea[J]. Environmental Science, 40(11): 4879-4888. | |
[70] | 张晋娜, 2019. 类固醇雄激素、孕激素和糖皮质激素的环境污染特征及其生物降解转化规律[D]. 广州: 中国科学院大学 (中国科学院广州地球化学研究所). |
ZHANG J N, 2019. Occurrence and biotransformation of androgens, progestogens, and glucocorticoids in the environment[D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry,Chinese Academy of Science). |
[1] | YANG Nie, SUN Xiaoxun, KONG Tianle, SUN Weimin, CHEN Quanyuan, GAO Pin. Response of Microbial Communities to Changes in Antimony Pollution Concentrations in Fluvial Sediment [J]. Ecology and Environment, 2023, 32(3): 609-618. |
[2] | LI Haiyan, YANG Xiaoqin, JAN Meipeng, ZHANG Xiaoran. [J]. Ecology and Environment, 2023, 32(2): 407-420. |
[3] | HUANG Qiaoyi, YU Junhong, HUANG Jianfeng, HUANG Xu, LI Ping, FU Hongting, TANG Shuanhu, LIU Yifeng, XU Peizhi. Nutrient Resources of Main Crop Straw and Its Potential of Substituting for Chemical Fertilizer in Guangdong Province [J]. Ecology and Environment, 2022, 31(2): 297-306. |
[4] | LI Chunhuan, WANG Pan, HAN Cui, XU Yixin, HUANG Juying. Variation Characteristics of Soil Properties Around A Northwest Desert Coal-mining Region under Sulphur and Nitrogen Deposition [J]. Ecology and Environment, 2022, 31(1): 170-180. |
[5] | YUAN Jie, ZHAO Yanqiang. Trends in Research on Wetland Restoration based on Web of Science Database [J]. Ecology and Environment, 2021, 30(7): 1541-1548. |
[6] | WANG Qin, LI Wei. Research Progress and Prospect of Regional Resources and Environment Carrying Capacity Evaluation [J]. Ecology and Environment, 2020, 29(7): 1487-1498. |
[7] | ZHAO Qiguo, TENG Ying, HUANG Guoqin. Consideration about Exploring Pilot Program of Farmland Rotation and Fallow System in China [J]. Ecology and Environment, 2017, 26(1): 1-5. |
[8] | ZHAO Qiguo, SHEN Renfang, TENG Ying. The Belt and Road Development Strategy of Soil Security in China [J]. Ecology and Environment, 2016, 25(3): 365-371. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn