Ecology and Environment ›› 2022, Vol. 31 ›› Issue (12): 2341-2349.DOI: 10.16258/j.cnki.1674-5906.2022.12.008
Previous Articles Next Articles
ZHANG Yaping1(), CHEN Huimin1,2, WU Zhiyu2,3, TANG Jia2, Xie Zhangzhang2,*(
), LIU Fanghua2,*(
)
Received:
2022-03-24
Online:
2022-12-18
Published:
2023-02-15
Contact:
Xie Zhangzhang,LIU Fanghua
张亚平1(), 陈慧敏1,2, 吴志宇2,3, 汤佳2, 谢章彰2,*(
), 刘芳华2,*(
)
通讯作者:
谢章彰,刘芳华
作者简介:
张亚平(1985年生),男,副教授,研究方向为有机污染物资源化。E-mail: zhangyaping911@foxmail.com
基金资助:
CLC Number:
ZHANG Yaping, CHEN Huimin, WU Zhiyu, TANG Jia, Xie Zhangzhang, LIU Fanghua. Low Concentration of Ferrihydrite Promoted the Hydrogen Production Efficiency of Clostridium sp. BY-1 Isolated from Rice Paddy Soil[J]. Ecology and Environment, 2022, 31(12): 2341-2349.
张亚平, 陈慧敏, 吴志宇, 汤佳, 谢章彰, 刘芳华. 低量水铁矿促进稻田梭菌Clostridium sp. BY-1产氢效率[J]. 生态环境学报, 2022, 31(12): 2341-2349.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.12.008
参数 Parameters | 水铁矿质量浓度 ρ(ferrihydrite)/(mg∙L−1) | ||||
---|---|---|---|---|---|
0 | 1 | 5 | 15 | 50 | |
最大产氢能力 Maximum hydrogen production capacity/mmol | 1.447 | 2.241 | 2.339 | 2.682 | 2.665 |
最大产氢速率 Maximum hydrogen production rate/(mmol∙h−1) | 0.057 | 0.097 | 0.104 | 0.174 | 0.112 |
产氢延迟时间 Hydrogen production delay time/h | 5.634 | 3.340 | 3.048 | 5.848 | 3.832 |
相关系数 R2 | 0.998 | 0.993 | 0.996 | 0.999 | 0.998 |
Table 1 Kinetic parameters of hydrogen production by Clostridium sp. BY-1 at different concentrations of ferrihydrite
参数 Parameters | 水铁矿质量浓度 ρ(ferrihydrite)/(mg∙L−1) | ||||
---|---|---|---|---|---|
0 | 1 | 5 | 15 | 50 | |
最大产氢能力 Maximum hydrogen production capacity/mmol | 1.447 | 2.241 | 2.339 | 2.682 | 2.665 |
最大产氢速率 Maximum hydrogen production rate/(mmol∙h−1) | 0.057 | 0.097 | 0.104 | 0.174 | 0.112 |
产氢延迟时间 Hydrogen production delay time/h | 5.634 | 3.340 | 3.048 | 5.848 | 3.832 |
相关系数 R2 | 0.998 | 0.993 | 0.996 | 0.999 | 0.998 |
[1] | ANTONOPOULOU G, NTAIKOU I, STAMATELATOU K, et al., 2011. Biological and fermentative production of hydrogen[J]. Handbook of Biofuels Production, 305-346. |
[2] |
CALUSINSKA M, HAPPE T, JORIS B, et al., 2010. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective[J]. Microbiology, 156(Part 6): 1575-1588.
DOI URL |
[3] | CHENG P F, WANG J, ZHAO Z S, et al., 2021. Molecular hydrogen increases quantitative and qualitative traits of rice grain in field trials[J]. Plants-Basel, 10(11): 2331. |
[4] | CORNELL R M, SCHWERTMANN U, 2004. The Iron Oxides:Structure, Properties, Reactions, Occurences and Uses[M]. 2nd edition, WILEY-VCH. |
[5] |
FANG H H P, LIU H, 2002. Effect of pH on hydrogen production from glucose by a mixed culture[J]. Bioresource Technology, 82(1): 87-93.
PMID |
[6] |
FU M M, DAWOOD M, WANG N H, et al., 2019. Exogenous hydrogen sulfide reduces cadmium uptake and alleviates cadmium toxicity in barley[J]. Plant Growth Regulation, 89(2): 227-237.
DOI URL |
[7] |
GADHE A, SONAWANE S S, VARMA M N, et al., 2015. Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater[J]. International Journal of Hydrogen Energy, 40(13): 4502-4511.
DOI URL |
[8] |
LATIFI A, AVILAN L, BRUGNA M, 2019. Clostridial whole cell and enzyme systems for hydrogen production: current state and perspectives[J]. Applied Microbiology and Biotechnology, 103(2): 567-575.
DOI PMID |
[9] |
LI S S, CHEN S B, WANG M, et al., 2020. Iron fractions responsible for the variation of Cd bioavailability in paddy soil under variable pe plus pH conditions[J]. Chemosphere, 251(1): 126355.
DOI URL |
[10] | LOVLEY D R, PHILLIPS E J P, 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments[J]. Applied & Environmental Microbiology, 51(4): 683-9. |
[11] | MICHELLE MV S, UM W, 2014. Adsorption mechanisms and transport behavior between selenate and selenite on different sorbents[J]. International Journal of Waste Resources, 4(2): 1-8. |
[12] |
MORITA R Y, 1999. Is H2 the universal energy source for long-term survival?[J]. Microbial Ecology, 38(4): 307-320.
DOI URL |
[13] |
MULLER V, 2003. Energy conservation in acetogenic bacteria[J]. Applied and Environmental Microbiology, 69(11): 6345-6353.
DOI PMID |
[14] |
PEAK D, REGIER T, 2012. Direct Observation of Tetrahedrally Coordinated Fe(III) in Ferrihydrite[J]. Environmental Science & Technology, 46(6): 3163-3168.
DOI URL |
[15] |
PETERS J W, MILLER A F, JONES A K, et al., 2016. Electron bifurcation[J]. Current Opinion in Chemical Biology, 31: 146-152.
DOI PMID |
[16] |
REN Y, SI B C, LIU Z D, et al., 2021. Promoting dark fermentation for biohydrogen production: Potential roles of iron-based additives[J]. International Journal of Hydrogen Energy, 47(3): 1499-1515.
DOI URL |
[17] |
TAO L, ZHANG W, LI H, et al., 2012. Effect of pH and weathering indices on the reductive transformation of 2-nitrophenol in south China[J]. Soil Science Society of America Journal, 76(5): 1579-1591.
DOI URL |
[18] |
WANG J L, YIN Y N, 2021. Clostridium species for fermentative hydrogen production: An overview[J]. International Journal of Hydrogen Energy, 46(70): 34599-34625.
DOI URL |
[19] |
WINSOR C P, 1932. The gompertz curve as a growth curve[J]. Proceedings of the National Academy of Sciences of the United States of America, 18(1): 1-8.
PMID |
[20] |
XU D K, CAO H, FANG W, et al., 2017. Linking hydrogen-enhanced rice aluminum tolerance with the reestablishment of GA/ABA balance and miRNA-modulated gene expression: A case study on germination[J]. Ecotoxicology and Environmental Safety, 145: 303-312.
DOI PMID |
[21] | XU S, ZHU S S, JIANG Y L, et al., 2013. Hydrogen-rich water alleviates salt stress in rice during seed germination[J]. Plant & Soil, 370(1-2): 47-57. |
[22] |
YANG F, ZHAI W W, LI Z J, et al., 2021. Immobilization of lead and cadmium in agricultural soil by bioelectrochemical reduction of sulfate in underground water[J]. Chemical Engineering Journal, 422: 130010.
DOI URL |
[23] |
YU R S, WANG R F, BI T, et al., 2013. Blocking the butyrate-formation pathway impairs hydrogen production in Clostridium perfringens[J]. Acta Biochimica et Biophysica Sinica, 45(5): 408-415.
DOI URL |
[24] |
ZHANG Y C, LIU F H, HAO Q Q, et al., 2020a. Target-oriented recruitment of Clostridium to promote biohydrogen production by nano-ferrihydrite[J]. Fuel, 276: 118049.
DOI URL |
[25] |
ZHANG Y C, LIU F H, XU H D, et al., 2019a. Extraction of electrons by magnetite and ferrihydrite from hydrogen-producing Clostridium bifermentans by strengthening the acetate production pathway[J]. Science China (Technological Sciences), 62(10): 1719-1725.
DOI URL |
[26] | ZHANG Y C, XIAO L L, HAO Q Q, et al., 2020b. Ferrihydrite reduction exclusively stimulated hydrogen production by Clostridium with community metabolic pathway bifurcation[J]. ACS Sustainable Chemistry & Engineering, 8(20): 7574-7580. |
[27] |
ZHANG Y C, XIAO L L, WANG S N, et al., 2019b. Stimulation of ferrihydrite nanorods on fermentative hydrogen production by Clostridium pasteurianum[J]. Bioresource Technology, 283: 308-315.
DOI URL |
[28] |
ZHANG Y S, LIN X Y, WERNER W, 2003. The effect of soil flooding on the transformation of Fe oxides and the adsorption desorption behavior of phosphate[J]. Journal of Plant Nutrition and Soil Science, 166(1): 68-75.
DOI URL |
[29] |
ZHU H H, SETO P, PARKER W J, 2014. Enhanced dark fermentative hydrogen production under the effect of zero-valent iron shavings[J]. International Journal of Hydrogen Energy, 39(33): 19331-19336.
DOI URL |
[30] | ZIGOVA J, TURDIK E S, 2000. Advances in biotechnological production of butyric acid[J]. Journal of Industrial Microbiology & Biotechnology, 24(3): 153-160. |
[31] | 陈娅婷, 李芳柏, 李晓敏, 2016. 水稻土嗜中性微好氧亚铁氧化菌多样性及微生物成矿研究[J]. 生态环境学报, 25(4): 547-554. |
CHEN Y T, LI F B, LI X M, 2016. Diversity and biomineralization of microaerophilic iron-oxidizing bacteria in paddy soil[J]. Ecology and Environmental Sciences, 25(4): 547-554. | |
[32] | 国家环境保护总局, 2007. 水质铁的测定邻菲啰啉分光光度法 (试行): HJ/T 345—2007[S]. 北京: 国家环境保护总局. |
State Environmental Protection Administration, 2007. Determination of Iron in Water Quality by Phenanthroline-spectrophotometry: HJ/T 345—2007[S]. Beijing: State Environmental Protection Administration. | |
[33] | 郝钦钦, 张月超, 李新, 等, 2020. 一株促甲烷氧化假单胞菌Pseudomonas putida P7的分离及电活性特征[J]. 微生物学报, 60(9): 2062-2071. |
HAO Q Q, ZHANG Y C, LI X, et al., 2020. Isolation and electroactive characteristics of a methane-oxidation promoting Pseudomonas putida P7[J]. Acta Microbiologica Sinica, 60(9): 2062-2071. | |
[34] | 刘进超, 刘芳华, 张月超, 等, 2020. 铁锰氧化物提高巴斯德梭菌电子输出率[J]. 微生物学通报, 47(1): 24-34. |
LIU J Z, XIAO L L, ZHANG Y C, et al., 2020. Iron and manganese oxides enhance electron output efficiency of Clostridium pasteurianum[J]. Microbiology China, 47(1): 24-34. | |
[35] | 张月超, 肖雷雷, 王欧美, 等, 2018. 异化铁还原梭菌Clostridium bifermentans EZ-1产氢与电化学特性[J]. 微生物学报, 58(4): 525-537. |
ZHANG Y C, XIAO L L, WANG O M, et al., 2018. Hydrogen-producing and electrochemical properties of a dissimilatory FE(III) reducer Clostridium bifermentans EZ-1[J]. Acta Microbiologica Sinica, 58(4): 525-537. |
[1] | HU Qirui, JI Chunrong, LI Yingchun, WANG Xuejiao, YANG Mingfeng, GUO Yanyun. Effects of Drought Stress on Photosynthetic Characteristics and Yield of Cotton at Bud Stage under Mulched Drip Irrigation [J]. Ecology and Environment, 2023, 32(6): 1045-1052. |
[2] | LI Haipeng, HUANG Yuehua, SUN Xiaodong, CAO Qimin, FU Fangxing, SUN Chuhan. Correlation Analysis of the Occurrence of the Tomato Bacterial Wilt and Different Types of Texture of Latosols and Its Bacterial Community in Cropland in Hainan [J]. Ecology and Environment, 2023, 32(6): 1062-1069. |
[3] | ZHENG Qingzhou, HE Jun, LI Shenzhi, DENG Chengzhi, WU Zhipeng, HUANG Xiaolin, WU Xia. Analysis on the Differences and Influencing Factors of Human Comfort between Urban and Rural Areas in Chongqing [J]. Ecology and Environment, 2023, 32(6): 1089-1097. |
[4] | WANG Jing, MENG Ke, CHEN Xuan, ZHANG Jiaen, XIANG Huimin, ZHONG Jiawen, SHI Zhaoji. Effects of Acid Rain on Yield, Quality and Physiological Characteristics of Lettuce and Brassica chinensis L. [J]. Ecology and Environment, 2023, 32(6): 1098-1107. |
[5] | WANG Jiayi, SUN Tingting, SHA Runyu, CHEN Tinghong, XING Ran, QIN Boqiang, SHI Wenqing. Study on the Synergic Effect of Algae Salvage on Pollution Control and Carbon Emission Reduction in Eutrophic Lakes [J]. Ecology and Environment, 2023, 32(6): 1108-1114. |
[6] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[7] | WANG Chao, YANG Qiannan, ZHANG Chi, LIU Tongxu, ZHANG Xialong, CHEN Jing, LIU Kexue. The Characteristics of Soil Phosphorus Fractions and Their Availability under Different Land Use Types in Danxia Mountain [J]. Ecology and Environment, 2023, 32(5): 889-897. |
[8] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[9] | WANG Tiezheng, QU Xinyue, LIU Chunxiang, LI Youzhi. Spatial and Temporal Changes in Water Quality in the Dongjiang Lake and Their Relationships with Land Use in the Watershed [J]. Ecology and Environment, 2023, 32(4): 722-732. |
[10] | WANG Xinyu, GAO Dengzhou, LIU Bolin, WANG Bin, ZHENG Yanling, LI Xiaofei, HOU Lijun. The Tidal-cycle Variation and Influencing Factors of Dark Carbon Fixation Process in the Yangtze Estuary [J]. Ecology and Environment, 2023, 32(4): 733-743. |
[11] | HU Fang, LIU Jutao, WEN Chunyun, HAN Liu, WEN Hui. Phytoplankton Community Structure and Evaluation of Aquatic Ecological Conditions in Fu River Basin [J]. Ecology and Environment, 2023, 32(4): 744-755. |
[12] | YU Fei, ZENG Hailong, FANG Huaiyang, FU Lingfang, LIN Shu, DONG Jiahao. Spatio-temporal Variation Characteristics of Phytoplankton Functional Groups and Water Quality Evaluation in the Typical Tidal River Network [J]. Ecology and Environment, 2023, 32(4): 756-765. |
[13] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[14] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[15] | DAI Demin, JIANG Xusheng, LIU Jie, WANG Luyang, CHEN Shiqi, HAN Qingkun. Study on Suitability of Pb/Zn Mine Tailings Using Three Different Organic Amendments [J]. Ecology and Environment, 2023, 32(4): 784-793. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn