Ecology and Environment ›› 2022, Vol. 31 ›› Issue (12): 2350-2357.DOI: 10.16258/j.cnki.1674-5906.2022.12.009
Previous Articles Next Articles
LU Hui1,2(), LÜ Gang1,*(
), LIU Jianhua3, ZHANG Zhuo4, WANG Fengbai3
Received:
2022-09-20
Online:
2022-12-18
Published:
2023-02-15
Contact:
Lü Gang
卢慧1,2(), 吕刚1,*(
), 刘建华3, 张卓4, 王锋佰3
通讯作者:
吕刚
作者简介:
卢慧(1981年生),女,讲师,博士研究生,主要从事生态修复的教学和科研工作。E-mail: luhui0315@126.com
基金资助:
CLC Number:
LU Hui, LÜ Gang, LIU Jianhua, ZHANG Zhuo, WANG Fengbai. Study on Soil Priority Flow Characteristics of Pinus sylvestris var. mongolica Plantation at Different Ages in Wind Sandy Land of Northwest Liaoning Province[J]. Ecology and Environment, 2022, 31(12): 2350-2357.
卢慧, 吕刚, 刘建华, 张卓, 王锋佰. 辽西北风沙地不同林龄樟子松人工林土壤优先流特征[J]. 生态环境学报, 2022, 31(12): 2350-2357.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.12.009
樟子松林龄 Age of Pinus sylvestris var. mongolica/a | 株密度 Nuclear density/ (plant∙hm−2) | 样地内樟子松数量 Number of Pinus sylvestris var. mongolica in sample plot/plant | 冠幅Canopy | 树高 Hight of tree/m | 胸径 DBH/cm | |
---|---|---|---|---|---|---|
南北 North and south/m | 东西 East and west/m | |||||
24 | 400 | 16 | 5.03 | 3.84 | 8.79 | 13.78 |
38 | 400 | 16 | 5.77 | 6.3 | 9.14 | 19.79 |
49 | 375 | 15 | 8.1 | 7.81 | 11.62 | 29.47 |
Table 1 Basic characteristics of Pinus sylvestris var. mongolica plantation at different ages
樟子松林龄 Age of Pinus sylvestris var. mongolica/a | 株密度 Nuclear density/ (plant∙hm−2) | 样地内樟子松数量 Number of Pinus sylvestris var. mongolica in sample plot/plant | 冠幅Canopy | 树高 Hight of tree/m | 胸径 DBH/cm | |
---|---|---|---|---|---|---|
南北 North and south/m | 东西 East and west/m | |||||
24 | 400 | 16 | 5.03 | 3.84 | 8.79 | 13.78 |
38 | 400 | 16 | 5.77 | 6.3 | 9.14 | 19.79 |
49 | 375 | 15 | 8.1 | 7.81 | 11.62 | 29.47 |
样地 Sample plot | 土层深度 Soil depth/ cm | 含水率 Moisture content/ % | 容重 Unit weight/ (g∙cm−3) | 总孔隙度 Total porosity/ % | 毛管孔隙度 Capillary porosity/ % | 有机质 Organic matter/ (g∙kg−1) | 机械组成 Mechanical composition/% | |||
---|---|---|---|---|---|---|---|---|---|---|
2‒0.2 mm | 0.2‒0.02 mm | 0.02‒0.002 mm | <0.002 mm | |||||||
24年 24 a | 10 | 7.28 | 1.54 | 43.3 | 27.65 | 0.83 | 66.75 | 27.94 | 4.18 | 1.13 |
20 | 6.26 | 1.55 | 42.72 | 27.33 | 0.74 | 76.45 | 16.36 | 5.83 | 1.36 | |
30 | 5.76 | 1.6 | 41.1 | 25.49 | 0.72 | 77.31 | 16.51 | 5.09 | 1.09 | |
40 | 5.45 | 1.6 | 41.07 | 25.07 | 0.54 | 71.69 | 22.83 | 4.48 | 1.00 | |
50 | 4.88 | 1.61 | 40.89 | 23.39 | 0.52 | 72.83 | 19.16 | 6.71 | 1.30 | |
38年 38 a | 10 | 8.38 | 1.55 | 42.95 | 34.22 | 1.07 | 57.02 | 30.2 | 10.83 | 1.95 |
20 | 6.45 | 1.56 | 42.53 | 33.24 | 0.63 | 35.09 | 42.88 | 18.61 | 3.42 | |
30 | 5.33 | 1.56 | 42.32 | 28.79 | 0.61 | 70.36 | 23.28 | 5.18 | 1.18 | |
40 | 4.35 | 1.57 | 42.22 | 27.1 | 0.32 | 68.21 | 21.75 | 8.54 | 1.50 | |
50 | 3.99 | 1.60 | 41.27 | 26.52 | 0.08 | 86.3 | 8.21 | 4.77 | 0.72 | |
49年 49 a | 10 | 10.5 | 1.13 | 43.68 | 29.04 | 1.59 | 92.62 | 5.08 | 1.76 | 0.54 |
20 | 8.49 | 1.16 | 42.94 | 25.5 | 1.11 | 59.74 | 32.93 | 6.08 | 1.25 | |
30 | 8.11 | 1.17 | 42.82 | 24.55 | 1.04 | 75.77 | 18.74 | 4.63 | 0.86 | |
40 | 7.36 | 1.20 | 42.48 | 24.11 | 0.87 | 55.44 | 29.98 | 12.46 | 2.12 | |
50 | 7.09 | 1.22 | 39.48 | 20.84 | 0.65 | 41.12 | 40.62 | 15.59 | 2.67 | |
对照Comparison | 10 | 6.53 | 1.60 | 41.24 | 34.81 | 0.51 | 74.58 | 21.01 | 3.79 | 0.62 |
20 | 6.39 | 1.64 | 40 | 32.78 | 0.42 | 72.38 | 22.69 | 4.34 | 0.59 | |
30 | 5.01 | 1.68 | 38.39 | 32.05 | 0.38 | 69.88 | 26.27 | 3.39 | 0.46 | |
40 | 4.37 | 1.71 | 37.65 | 31.14 | 0.22 | 68.94 | 25.7 | 4.89 | 0.47 | |
50 | 3.16 | 1.71 | 37.48 | 30.01 | 0.04 | 66.77 | 26.82 | 5.96 | 0.45 |
Table 2 Physical and chemical properties of soil
样地 Sample plot | 土层深度 Soil depth/ cm | 含水率 Moisture content/ % | 容重 Unit weight/ (g∙cm−3) | 总孔隙度 Total porosity/ % | 毛管孔隙度 Capillary porosity/ % | 有机质 Organic matter/ (g∙kg−1) | 机械组成 Mechanical composition/% | |||
---|---|---|---|---|---|---|---|---|---|---|
2‒0.2 mm | 0.2‒0.02 mm | 0.02‒0.002 mm | <0.002 mm | |||||||
24年 24 a | 10 | 7.28 | 1.54 | 43.3 | 27.65 | 0.83 | 66.75 | 27.94 | 4.18 | 1.13 |
20 | 6.26 | 1.55 | 42.72 | 27.33 | 0.74 | 76.45 | 16.36 | 5.83 | 1.36 | |
30 | 5.76 | 1.6 | 41.1 | 25.49 | 0.72 | 77.31 | 16.51 | 5.09 | 1.09 | |
40 | 5.45 | 1.6 | 41.07 | 25.07 | 0.54 | 71.69 | 22.83 | 4.48 | 1.00 | |
50 | 4.88 | 1.61 | 40.89 | 23.39 | 0.52 | 72.83 | 19.16 | 6.71 | 1.30 | |
38年 38 a | 10 | 8.38 | 1.55 | 42.95 | 34.22 | 1.07 | 57.02 | 30.2 | 10.83 | 1.95 |
20 | 6.45 | 1.56 | 42.53 | 33.24 | 0.63 | 35.09 | 42.88 | 18.61 | 3.42 | |
30 | 5.33 | 1.56 | 42.32 | 28.79 | 0.61 | 70.36 | 23.28 | 5.18 | 1.18 | |
40 | 4.35 | 1.57 | 42.22 | 27.1 | 0.32 | 68.21 | 21.75 | 8.54 | 1.50 | |
50 | 3.99 | 1.60 | 41.27 | 26.52 | 0.08 | 86.3 | 8.21 | 4.77 | 0.72 | |
49年 49 a | 10 | 10.5 | 1.13 | 43.68 | 29.04 | 1.59 | 92.62 | 5.08 | 1.76 | 0.54 |
20 | 8.49 | 1.16 | 42.94 | 25.5 | 1.11 | 59.74 | 32.93 | 6.08 | 1.25 | |
30 | 8.11 | 1.17 | 42.82 | 24.55 | 1.04 | 75.77 | 18.74 | 4.63 | 0.86 | |
40 | 7.36 | 1.20 | 42.48 | 24.11 | 0.87 | 55.44 | 29.98 | 12.46 | 2.12 | |
50 | 7.09 | 1.22 | 39.48 | 20.84 | 0.65 | 41.12 | 40.62 | 15.59 | 2.67 | |
对照Comparison | 10 | 6.53 | 1.60 | 41.24 | 34.81 | 0.51 | 74.58 | 21.01 | 3.79 | 0.62 |
20 | 6.39 | 1.64 | 40 | 32.78 | 0.42 | 72.38 | 22.69 | 4.34 | 0.59 | |
30 | 5.01 | 1.68 | 38.39 | 32.05 | 0.38 | 69.88 | 26.27 | 3.39 | 0.46 | |
40 | 4.37 | 1.71 | 37.65 | 31.14 | 0.22 | 68.94 | 25.7 | 4.89 | 0.47 | |
50 | 3.16 | 1.71 | 37.48 | 30.01 | 0.04 | 66.77 | 26.82 | 5.96 | 0.45 |
样地 Sample plot | 土层深度 Soil depth/ cm | 根质量密度 Root mass density/ (mg∙cm−3) | 根长密度 Root length density/ (cm∙cm−3) | 根表面积 密度 Root surface density/ (cm2∙cm−3) | 根体积 密度 Root bulk density/ (cm3∙cm−3) |
---|---|---|---|---|---|
24年 24 a | 10 | 9.12 | 4.86 | 957.38 | 16.85 |
20 | 8.97 | 2.97 | 714.99 | 14.25 | |
30 | 10.60 | 2.29 | 510.39 | 10.08 | |
40 | 2.96 | 2.08 | 400.74 | 6.23 | |
50 | 3.90 | 2.10 | 416.12 | 6.84 | |
38年 38 a | 10 | 2.47 | 3.80 | 452.28 | 4.45 |
20 | 2.60 | 2.34 | 355.32 | 4.67 | |
30 | 2.94 | 1.52 | 324.48 | 5.56 | |
40 | 2.55 | 1.09 | 343.85 | 9.57 | |
50 | 1.23 | 1.07 | 198.76 | 3.21 | |
49年 49 a | 10 | 6.34 | 7.30 | 849.53 | 8.71 |
20 | 1.88 | 3.80 | 529.78 | 13.67 | |
30 | 1.51 | 3.62 | 504.86 | 15.33 | |
40 | 3.02 | 1.56 | 369.86 | 9.67 | |
50 | 6.95 | 0.96 | 322.59 | 8.59 | |
对照 Comparison | 10 | 3.60 | 6.93 | 482.20 | 4.12 |
20 | 2.74 | 3.08 | 345.26 | 2.86 | |
30 | 2.56 | 2.32 | 304.19 | 2.14 | |
40 | 1.23 | 0.35 | 256.15 | 1.62 | |
50 | 0.98 | 0.30 | 188.79 | 0.58 |
Table 3 Root index
样地 Sample plot | 土层深度 Soil depth/ cm | 根质量密度 Root mass density/ (mg∙cm−3) | 根长密度 Root length density/ (cm∙cm−3) | 根表面积 密度 Root surface density/ (cm2∙cm−3) | 根体积 密度 Root bulk density/ (cm3∙cm−3) |
---|---|---|---|---|---|
24年 24 a | 10 | 9.12 | 4.86 | 957.38 | 16.85 |
20 | 8.97 | 2.97 | 714.99 | 14.25 | |
30 | 10.60 | 2.29 | 510.39 | 10.08 | |
40 | 2.96 | 2.08 | 400.74 | 6.23 | |
50 | 3.90 | 2.10 | 416.12 | 6.84 | |
38年 38 a | 10 | 2.47 | 3.80 | 452.28 | 4.45 |
20 | 2.60 | 2.34 | 355.32 | 4.67 | |
30 | 2.94 | 1.52 | 324.48 | 5.56 | |
40 | 2.55 | 1.09 | 343.85 | 9.57 | |
50 | 1.23 | 1.07 | 198.76 | 3.21 | |
49年 49 a | 10 | 6.34 | 7.30 | 849.53 | 8.71 |
20 | 1.88 | 3.80 | 529.78 | 13.67 | |
30 | 1.51 | 3.62 | 504.86 | 15.33 | |
40 | 3.02 | 1.56 | 369.86 | 9.67 | |
50 | 6.95 | 0.96 | 322.59 | 8.59 | |
对照 Comparison | 10 | 3.60 | 6.93 | 482.20 | 4.12 |
20 | 2.74 | 3.08 | 345.26 | 2.86 | |
30 | 2.56 | 2.32 | 304.19 | 2.14 | |
40 | 1.23 | 0.35 | 256.15 | 1.62 | |
50 | 0.98 | 0.30 | 188.79 | 0.58 |
Figure 3 Vertical staining image characteristics of soil preferential flow patterns A. B and C respectively represent the three excavation profile numbers of the same soil preferential flow observation sample point
植物根系指标 Plant root index | 相关系数 Correlation coefficient | 双侧显著性检验 Bilateral significance test | 样本数 Number of samples |
---|---|---|---|
根质量密度 Root mass density | 0.186 | 0.578 | 15 |
根长密度 Root length density | 0.799** | 0.002 | 15 |
根表面积密度 Root surface area density | 0.533 | 0.059 | 15 |
根体积密度 Root bulk density | 0.244 | 0.389 | 15 |
Table 4 Correlation Analysis between Dye Area Ratio and Spearman of Plant Roots
植物根系指标 Plant root index | 相关系数 Correlation coefficient | 双侧显著性检验 Bilateral significance test | 样本数 Number of samples |
---|---|---|---|
根质量密度 Root mass density | 0.186 | 0.578 | 15 |
根长密度 Root length density | 0.799** | 0.002 | 15 |
根表面积密度 Root surface area density | 0.533 | 0.059 | 15 |
根体积密度 Root bulk density | 0.244 | 0.389 | 15 |
[1] |
GRAHAM C B, LIN H S, 2011. Controls and frequency of preferential flow occurrence: A 175-Event analysis[J]. Vadose Zone Journal, 10(3): 816-831.
DOI URL |
[2] |
HOU F, CHENG J H, GUAN N, et al., 2023. Influence of rock fragments on preferential flow in stony soils of karst graben basin, southwest China[J]. CATENA, 220(PartA): 106684.
DOI URL |
[3] | JORGENSEN P R, HOFFMANN M, KISTRUP J P, et al., 2002. Preferential flow and pesticide transport in a clay-rich till: Field, laboratory, and modeling analysis[J]. Water Resources Research, 38(11): 215-218. |
[4] |
LÜ G, LI J, LI Y X, et al., 2017. Preferential flow characteristics of reclaimed mine soils in a surface coal mine dump[J]. Environmental Monitoring and Assessment, 189(6): 266-288.
DOI PMID |
[5] |
YAN J L, ZHAO W Z, 2016. Characteristics of preferential flow during simulated rainfall events in an arid region of China[J]. Environmental Earth Sciences, 75(7): 1-12.
DOI URL |
[6] | 阿拉木萨, 蒋德明, 裴铁璠, 2004. 科尔沁沙地人工小叶锦鸡儿植被水分入渗动态研究[J]. 生态学杂志, 23(1): 56-59. |
ALAMUSA, JIANG D M, PEI T F, 2004. Dynamic study on water infiltration of artificial Caragana microphylla vegetation in Horqin sandy land[J]. Journal of Ecology, 23(1): 56-59.
DOI URL |
|
[7] | 段晓倩, 倪晨, 陈姣, 等, 2016. 基于含水量高频监测的花岗岩崩岗侵蚀红壤优先流研究[J]. 水土保持学报, 30(5): 82-88. |
DUAN X Q, NI C, CHEN J, et al., 2016. Study on preferential flow of red soil eroded by granite collapse based on high-frequency monitoring of water content[J]. Journal of Soil and Water Conservation, 30(5): 82-88. | |
[8] | 高前兆, 仵彦卿, 2004. 河西内陆河流域的水循环分析[J]. 水科学进展, 15(3): 391-396. |
GAO Q Z, WU Y Q, 2004. Water cycle analysis of Hexi Inland River Basin[J]. Progress in Water Science, 15(3): 391-396. | |
[9] | 林代杰, 郑子成, 张锡洲, 等, 2010. 不同土地利用方式下土壤入渗特征及其影响因素[J]. 水土保持学报, 24(1): 33-36. |
LIN D J, ZHENG Z C, ZHANG X Z, et al., 2010. Soil infiltration characteristics and influencing factors under different land use modes[J]. Journal of Water and Soil Conservation, 24(1): 33-36. | |
[10] | 刘目兴, 杜文正, 2013. 山地土壤优先流路径的染色示踪研究[J]. 土壤学报, 50(5): 871-880. |
LIU M X, DU W Z, 2013. Dye tracing study on preferential flow path of mountain soil[J]. Acta Pedologica Sinica, 50(5): 871-880. | |
[11] | 刘元波, 陈荷生, 高前兆, 等, 1995. 沙地降雨入渗水分动态[J]. 中国沙漠, 15(2): 143-150. |
LIU Y B, CHEN H S, GAO Q Z, et al., 1995. Dynamics of rainfall infiltration water in sandy land[J]. Desert of China, 15(2): 143-150. | |
[12] | 吕刚, 金兆梁, 凌帅, 等, 2019. 浑河源头水源涵养林土壤优先流特征[J]. 水土保持学报, 33(4): 287-292. |
LÜ G, JIN Z L, LING S, et al., 2019. Characteristics of soil preferential flow in the headwater water conservation forest of Hunhe River[J]. Journal of Soil and Water Conservation, 33(4): 287-292. | |
[13] | 吕刚, 翟景轩, 李叶鑫, 等, 2018. 辽西北风沙地不同植物群落土壤入渗特性[J]. 干旱地区农业研究, 36(4): 133-139. |
LÜ G, ZHAI J X, LI Y X, et al., 2018. Soil infiltration characteristics of different plant communities in the north wind sandy land of western Liaoning[J]. Agricultural Research in Arid Areas, 36(4): 133-139. | |
[14] | 吕海深, 崔逸凡, 朱永华, 2020. 大孔隙对径流过程影响的研究进展[J]. 水文, 40(1): 13-17. |
LÜ H S, CUI Y F, ZHU Y H, 2020. Research progress on the influence of macropores on runoff process[J]. Hydrology, 40(1): 13-17. | |
[15] | 孟晨, 牛健植, 骆紫藤, 等, 2019. 华北土石山区森林土壤大孔隙对土壤理化性质及根系的响应[J]. 水土保持学报, 33(3): 94-100. |
MENG C, NIU J Z, LUO Z T, et al., 2019. Response of soil macropore to soil phychemical properties and root in forest in rocky mountain area of north China[J]. Journal of Soil and Water Conservation, 33(3): 94-100. | |
[16] | 牛健植, 余新晓, 张志强, 2007. 贡嘎山暗针叶林生态系统基于KDW运动-弥散波模型的优先流研究[J]. 生态学报, 27(9): 3541-3555. |
NIU J Z, YU X X, ZHANG Z Q, et al., 2007. Study on soil preferential in the dark coniferous forest of Gonga Mountain based on the kinetic wave model with dispersion wave (KDW preferential flow model)[J]. Acta Ecologica Sinica, 27(9): 3541-3555.
DOI URL |
|
[17] |
邵一敏, 赵洋毅, 段旭, 等, 2020. 金沙江干热河谷典型林草地植物根系对土壤优先流的影响[J]. 应用生态学报, 31(3): 725-734.
DOI |
SHAO Y M, ZHAO Y Y, DUAN X, et al., 2020. Effects of typical forest and grassland plant roots on soil preferential flow in Jinsha River dry hot valley[J]. Journal of Applied Ecology, 31(3): 725-734. | |
[18] | 王金悦, 邓羽松, 李典云, 等, 2021. 连栽桉树人工林土壤大孔隙特征及其对饱和导水率的影响[J]. 生态学报, 41(19): 7689-7699. |
WANG J Y, DENG Y S, LI D Y, et al., 2021. Characteristics of soil macropores and their influence on saturated hydraulic conductivity of successive Eucalyptus plantation[J]. Acta Ecologica Sinica, 41(19): 7689-7699. | |
[19] | 吴祥云, 姜凤岐, 李晓丹, 等, 2004. 樟子松人工固沙林衰退的规律和原因[J]. 应用生态学报, 15(12): 2225-2228. |
WU X Y, JIANG F Q, LI X D, et al., 2004. Laws and causes of decline of Pinus sylvestris var. mongolica artificial sand fixation forest[J]. Journal of Applied Ecology, 15(12): 2225-2228. | |
[20] | 徐宗恒, 徐则民, 曹军尉, 等, 2012. 土壤优先流研究现状与发展趋势[J]. 土壤, 44(6): 905-916. |
XU Z H, XU Z M, CAO J W, et al., 2012. Research status and development trend of soil preferential flow[J]. Soil, 44(6): 905-916. | |
[21] | 闫加亮, 赵文智, 张勇勇, 2015. 绿洲农田土壤优先流特征及其对灌溉量的响应[J]. 应用生态学报, 26(5): 1454-1460. |
YAN J L, ZHAO W Z, ZHANG Y Y, 2015. Characteristics of preferential flow in oasis farmland and its response to irrigation[J]. Journal of Applied Ecology, 26(5): 1454-1460. | |
[22] | 姚淑霞, 赵传成, 张铜会, 2013. 科尔沁不同沙地土壤饱和导水率比较研究[J]. 土壤学报, 50(3): 469-477. |
YAO S X, ZHAO C C, ZHANG T H, 2013. Comparative study on saturated hydraulic conductivity of different sandy lands in Horqin[J]. Acta Pedologica Sinica, 50(3): 469-477. | |
[23] |
余海龙, 樊瑾, 牛玉斌, 等, 2019. 灌丛树干茎流与根区优先流对灌丛沙堆 “土壤沃岛效应” 的影响研究[J]. 草地学报, 27(1): 1-7.
DOI |
YU H L, FAN J, NIU Y B, et al., 2019. Study on the influence of stem flow and preferential flow in root zone of shrub trees on the “fertile island effect of soil” of shrub sand pile[J]. Journal of Grassland Science, 27(1): 1-7. | |
[24] | 张洪江, 2013. 水土保持与荒漠化防治实践教程[M]. 北京: 科学出版社. |
ZHANG H J, 2013. Practical course of soil and water conservation and desertification control[M]. Beijing: Science Press. | |
[25] | 张英虎, 牛健植, 朱蔚利, 等, 2015. 森林生态系统林木根系对优先流的影响[J]. 生态学报, 35(6): 1788-1797. |
ZHANG Y H, NIU J Z, ZHU W L, et al., 2015. Effects of forest ecosystem tree roots on preferential flow[J]. Acta Ecologica Sinica, 35(6): 1788-1797. | |
[26] | 张勇勇, 富利, 赵文智, 等, 2017. 荒漠绿洲土壤优先流研究进展[J]. 中国沙漠, 37(6): 1189-1195. |
ZHANG Y Y, FU L, ZHAO W Z, et al., 2017. Research progress on preferential flow of desert oasis soil[J]. Desert of China, 37(6): 1189-1195. | |
[27] | 张中彬, 彭新华, 2015. 土壤裂隙及其优先流研究进展[J]. 土壤学报, 52(3): 477-488. |
ZHANG Z B, PENG X H, 2015. Research progress on soil fissures and their preferential flow[J]. Acta Pedologica Sinica, 52(3): 477-488. | |
[28] | 郑欣, 程金花, 张洪江, 等, 2018. 北京地区2种类型土壤优先流染色形态特征及其影响因素[J]. 水土保持学报, 32(3): 113-119. |
ZHENG X, CHENG J H, ZHANG H J, et al., 2018. Morphological characteristics and influencing factors of preferential flow dyeing of two types of soils in Beijing[J]. Journal of Soil and Water Conservation, 32(3): 113-119. | |
[29] | 中国科学院南京土壤研究所土壤物理研究室, 1978. 土壤物理性质测定法[M]. 北京: 科学出版社. |
Laboratory of Soil Physics, Nanjing Institute of Soil Research, Chinese Academy of Sciences, 1978. Determination of soil physical properties[M]. Beijing: Science Press. |
[1] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn