Ecology and Environment ›› 2021, Vol. 30 ›› Issue (5): 1034-1041.DOI: 10.16258/j.cnki.1674-5906.2021.05.016
• Research Articles • Previous Articles Next Articles
ZHANG Peng1(), LIU Wei2,*(
), WANG Tiegan1, ZHONG Chenhui3, TAO Yueliang4
Received:
2020-12-14
Online:
2021-05-18
Published:
2021-08-06
Contact:
LIU Wei
张鹏1(), 刘玮2,*(
), 王铁杆1, 钟晨辉3, 陶月良4
通讯作者:
刘玮
作者简介:
张鹏(1982年生),男,高级工程师,硕士,主要从事大型藻类生理生态和遗传育种。E-mail:zhangpeng20011918@163.com
基金资助:
CLC Number:
ZHANG Peng, LIU Wei, WANG Tiegan, ZHONG Chenhui, TAO Yueliang. Impacts of Short-term Inorganic Arsenic Stress on Oxidative Damage, Antioxidant Enzymes and Antioxidant in Germlings of Sargassum horneri[J]. Ecology and Environment, 2021, 30(5): 1034-1041.
张鹏, 刘玮, 王铁杆, 钟晨辉, 陶月良. 无机砷短期胁迫对铜藻幼苗氧化损伤、抗氧化酶及抗氧化物的影响[J]. 生态环境学报, 2021, 30(5): 1034-1041.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.05.016
Fig. 1 Relative conductivity changes of S. horneri under different concentrations of arsenic stressn=3. Different lowercase letters indicate significant differences (α=0.05) between treatments. The same below
砷胁迫实验组 As stress treatment | 综合得分 Composite Score | 排序 Ranking |
---|---|---|
(As3+, As5+) 0 mmol∙L-1 | -2.13 | 9 |
(As3+) 50 mmol∙L-1 | 1.05 | 2 |
(As3+) 100 mmol∙L-1 | 0.38 | 4 |
(As3+) 150 mmol∙L-1 | 0.15 | 5 |
(As3+) 200 mmol∙L-1 | -0.71 | 8 |
(As5+) 50 mmol∙L-1 | -0.06 | 6 |
(As5+) 100 mmol∙L-1 | 1.09 | 1 |
(As5+) 150 mmol∙L-1 | 0.46 | 3 |
(As5+) 200 mmol∙L-1 | -0.23 | 7 |
Table 1 Ranking arsenic stress treatments with antioxidant comprehensive score
砷胁迫实验组 As stress treatment | 综合得分 Composite Score | 排序 Ranking |
---|---|---|
(As3+, As5+) 0 mmol∙L-1 | -2.13 | 9 |
(As3+) 50 mmol∙L-1 | 1.05 | 2 |
(As3+) 100 mmol∙L-1 | 0.38 | 4 |
(As3+) 150 mmol∙L-1 | 0.15 | 5 |
(As3+) 200 mmol∙L-1 | -0.71 | 8 |
(As5+) 50 mmol∙L-1 | -0.06 | 6 |
(As5+) 100 mmol∙L-1 | 1.09 | 1 |
(As5+) 150 mmol∙L-1 | 0.46 | 3 |
(As5+) 200 mmol∙L-1 | -0.23 | 7 |
[1] |
BANKAJI I, CA ADOR I, SLEIMI N, 2015. Physiological and biochemical responses ofSuaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels[J]. Environmental Science and Pollution Research International, 22(17): 13058-13069.
DOI URL |
[2] |
BASU A, MAHATA J, GUPTA S, et al., 2001. Genetic toxicology of a paradoxical human carcinogen, arsenic: a review[J]. Mutation Research, 488(2): 171-194.
DOI URL |
[3] |
COOPER K L, KE J L, HUDSON L G, 2009. Enhanced ROS production and redox signaling with combined arsenite and UVA exposure: Contribution of NADPH oxidase[J]. Free Radical Biology and Medicine, 47(4): 381-388.
DOI URL |
[4] |
FERRERI C, PANAGIOTAKI M, CHATGILIALOGLU C, 2007. Trans fatty acids in membranes: the free radical path[J]. Molecular Biotechnology, 37(1): 19-25.
DOI URL |
[5] |
FLORA S J S, 2011. Arsenic-induced oxidative stress and its reversibility[J]. Free Radical Biology and Medicine, 51(2): 257-281.
DOI URL |
[6] |
HEI T K, FILIPIC M, 2004. Role of oxidative damage in the genotoxicity of arsenic[J]. Free Radical Biology and Medicine, 37(5): 574-581.
DOI URL |
[7] |
KOCH I, MCPHERSON K, SMITH P, et al., 2007. Arsenic bioaccessibility and speciation in clams and seaweed from a contaminated marine environment[J]. Marine Pollution Bulletin, 54(5): 586-594.
DOI URL |
[8] |
LUNA A L, ACOSTA-SAAVEDRA L C, LOPEZ-CARRILLO L, et al., 2010. Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children[J]. Toxicology and Applied Pharmacology, 245(2): 244-251.
DOI URL |
[9] |
NAKAJIMA Y, ENDO Y, INOUE Y, et al., 2010. Ingestion of Hijiki seaweed and risk of arsenic poisoning[J]. Applied Organometallic Chemistry, 20(9): 557-564.
DOI URL |
[10] |
PU F, REN X, 2014. Ascorbate levels and activities of enzymes related to the glutathione-ascorbate cycle in fruits of Chinese persimmon cultivars[J]. Horticulture, Environment and Biotechnology, 55(4): 315-321.
DOI URL |
[11] | RAO M V, AVANI G, 2004. Arsenic induced free radical toxicity in brain of mice[J]. Indian Journal of Experimental Biology, 42(5): 495-498. |
[12] |
SANITÀ DI TOPPI L, PAWLIK-SKOWROŃSKA B, VURRO E, et al., 2008. First and second line mechanisms of cadmium detoxification in the lichen photobiontTrebouxia impressa (Chlorophyta)[J]. Environmental Pollution, 151(2): 280-286.
DOI URL |
[13] |
WOJAS S, CLEMENS S, SKŁODOWSKA A, et al., 2010. Arsenic response ofAtPCS1- andCePCS-expressing plants - Effects of external As(V) concentration on As-accumulation pattern and NPT metabolism[J]. Journal of Plant Physiology, 167(3): 169-175.
DOI URL |
[14] | 陈贵, 胡文玉, 谢甫绨, 等, 1991. 提取植物体内MDA的溶剂及MDA作为衰老指标的探讨[J]. 植物生理学通讯, 27(1): 46-48. |
CHEN G, HU W Y, XIE P T, et al., 1991. Solvent for extracting malondialdehyde in plant as an index of senescence[J]. Plant Physiology Communication, 27(1): 46-48. | |
[15] | 陈露, 嵇晶, 金佳颖, 等, 2020. 高效液相色谱-电感耦合等离子体质谱法测定海藻中5种砷形态[J]. 食品与发酵工业, 46(15): 270-275. |
CHEN L, JI J, JIN J Y, et al., 2020. Determination of five arsenic species in seaweed by HPLC-ICP-MS[J]. Food and Fermentation Industries, 46(15): 270-275. | |
[16] | 陈天, 包宁颖, 杜崇宣, 等, 2020. 不同砷污染程度下香蒲生长与砷富集特征[J]. 浙江农业学报, 32(9): 1672-1682. |
CHEN T, BAO N Y, DU C X, et al., 2020. Growth and arsenic enrichment characteristics ofTypha angustifolia L. under different arsenic pollution levels[J]. Acta Agriculturae Zhejiangensis, 32(9): 1672-1682. | |
[17] | 杜森, 张黎, 2019. 砷在海洋食物链中的生物放大潜力及发生机制探讨[J]. 生态毒理学报, 14(1): 54-66. |
DU S, ZHANG L, 2019. Biomagnification potential and the mechanisms of arsenic in marine food chains[J]. Asian Journal of Ecotoxicology, 14(1): 54-66. | |
[18] | 段美红, 杨益, 李庆卫, 2020. 电导法结合Logistic方程鉴定嫁接繁殖梅花的抗寒性[J]. 中国园林, 36(S1): 67-70. |
DUAN M H, YANG Y, LI Q W, 2020. Identification of cold resistance based on conductance method and logistic equation in the top-grafting ofPrunus mume[J]. Chinese Landscape Architecture, 36(S1): 67-70. | |
[19] | 樊香绒, 尹黎燕, 李伟, 等, 2013. 中国莲 (Nelumbo nucifera) 幼苗抗氧化系统对砷胁迫的响应[J]. 植物科学学报, 31(6): 570-575. |
FAN X R, YIN L Y, LI W, et al., 2013. Responses of the antioxidant system inNelumbo nucifera seedlings to arsenic toxicity[J]. Plant Science Journal, 31(6): 570-575.
DOI URL |
|
[20] |
范宁波, 周俊学, 江凯, 等, 2020. 不同成熟期烤烟主脉中膜脂过氧化及其与衰老相关基因的关系探究[J]. 中国农业科技导报, DOI:10.13304/j.nykjdb.2019.0835.
DOI |
FAN N B, ZHOU J X, JIANG K, et al., 2020. Study on menbrane lipid peroxidation and its relationship with senescence-related genes in main veins of flue-cured tobacoo at different maturity stages[J]. Journal of Agricultural Science and Technology, DOI:10.13304/j.nykjdb.2019.0835.
DOI |
|
[21] | 胡家恕, 1995. 大豆种子萌发过程中砷毒害与膜脂过氧化作用[J]. 浙江农业大学学报, 21(4): 435-440. |
HU J S, 1995. The injury study of arsenic compound effect on germination of soybean and peroxidation of menbrane lipid[J]. Journal of Zhejiang Agricultural University, 21(4): 435-440. | |
[22] | 胡立成, 张金怀, 2017. 乐清市水产品中的重金属及砷污染状况调查[J]. 中国卫生检验杂志, 27(13): 1937-1939. |
HU L C, ZHANG J H, 2017. Investigation of heavy metal and arsenic pollutionin aquatic products in Yueqing[J]. Chinese Journal of Health Laboratory Technology, 27(13): 1937-1939. | |
[23] | 胡拥军, 王海娟, 王宏镔, 等, 2015. 砷胁迫下不同砷富集能力植物内源生长素与抗氧化酶的关系[J]. 生态学报, 35(10): 3214-3224. |
HU Y J, WANG H J, WANG H B, et al., 2015. The relationship between endogenous auxin and antioxidative enzymes in two plants with different arsenic-accumulative ability under arsenic stress[J]. Acta Ecologica Sinica, 35(10): 3214-3224. | |
[24] | 马思思, 辛建攀, 陈宜栋, 等, 2020. 铜对梭鱼草叶片保护酶活性、抗氧化物质及非蛋白巯基肽含量的影响[J]. 草业科学, 37(3): 459-468. |
MA S S, XIN J P, CHEN Y D, et al., 2020. Effects of copper on antixoidant enzyme activities, antioxidant and non-protein thiol content inPontederia cordata’s leaves[J]. Pratacultural Science, 37(3): 459-468. | |
[25] | 芮海云, 张兴兴, 庄凯, 等, 2018. 根非蛋白巯基化合物在箭舌豌豆两个品种镉耐性中的作用及机理[J]. 植物生理学报, 54(11): 1687-1694. |
RUI H Y, ZHANG X X, ZHUANG K, et al., 2018. The role of root non-protein thiols in cadmium tolerance of twoVicia sativa varieties and the underlying mechanism[J]. Plant Physiology Journal, 54(11): 1687-1694. | |
[26] | 史静, 潘根兴, 2015. 外加镉对水稻镉吸收、亚细胞分布及非蛋白巯基含量的影响[J]. 生态环境学报, 24(5): 853-859. |
SHI J, PAN G X, 2015. Effects of Cd-spiking treatment on Cd accumulation, subcellular distribution and content of nonprotein thiols in rice[J]. Ecology and Environmental Sciences, 24(5): 853-859. | |
[27] | 吴桂容, 洪华龙, 严重玲, 2016. S对As胁迫下桐花树幼苗巯基化合物含量的影响[J]. 厦门大学学报 (自然科学版),55(1): 55-59. |
WU G R, HONG H L, YAN C L, 2016. Influence of sulfur supply on thiols inAegiceras corniculation (L.) blanco under As stress[J]. Journal of Xiamen University (Natural Science), 55(1): 55-59. | |
[28] | 杨承虎, 蔡景波, 张鹏, 等, 2017. 南麂列岛大型海藻重金属元素含量特征分析[J]. 海洋环境科学, 36(3): 372-378, 384. |
YANG C H, CAI J B, ZHANG P, et al., 2017. Determination of heavy metal contents in macroalgae from the Nanji Islands, China[J]. Marine Environmental Science, 36(3): 372-378, 384. | |
[29] | 杨婉玲, 赖子尼, 曾艳艺, 等, 2015. 珠三角河网水、沉积物中As含量分布特征及污染评价[J]. 生态环境学报, 24(5): 831-837. |
YANG W L, LAI Z N, ZENG Y Y, et al., 2015. The distribution and contamination levels of arsenicinwater and sediment of the Pearl River Delta[J]. Ecology and Environmental Sciences, 24(5): 831-837. | |
[30] | 叶鹏浩, 韩婷婷, 付贵权, 等, 2019. 半叶马尾藻对重金属镉胁迫的生理响应[J]. 南方水产科学, 15(5): 35-40. |
YE P H, HAN T T, FU G Q, et al., 2019. Physiological response ofSargassum hemiphyllum to cadmium stress[J]. South China Fisheries Science, 15(5): 35-40. | |
[31] | 袁付红, 赵丽丽, 逄锦龙, 2019. 褐藻多酚提取、分离和抗氧化活性的研究进展[J]. 食品研究与开发, 40(18): 219-224. |
YUAN F H, ZHAO L L, PANG X L, 2019. Study on extraction, separation and antioxidant activity of phlorotannins[J]. Food Research and Development, 40(18): 219-224. | |
[32] | 原海燕, 黄钢, 佟海英, 等, 2013. Cd胁迫下马蔺根和叶中非蛋白巯基肽含量的变化[J]. 生态环境学报, 22(7): 1214-1219. |
YUAN H Y, HUANG G, DONG H Y, et al., 2013. The change of non-protein thiol content in roots and leaves ofIris lactea var.chinensis under Cd stress[J]. Ecology and Environmental Sciences, 22(7): 1214-1219. | |
[33] | 张玉, 张绵松, 史亚萍, 等, 2018. 铜藻活性组分多糖的体外抗氧化性研究[J]. 食品研究与开发, 39(6): 12-18. |
ZHANG Y, ZHANG M S, SHI Y P, et al., 2018. Comparison on Antioxidant Activity of Polysaccharide Fraction fromSargassum horneri in vitro [J]. Food Research and Development, 39(6): 12-18. | |
[34] | 赵宁宁, 杜芮萍, 邱丹, 等, 2019. 蜈蚣草-玉米套作模式对玉米砷胁迫的缓解效应[J]. 生态环境学报, 28(5): 1021-1028. |
ZHAO N N, DU R P, QIU D, et al., 2019. Alleviating effects ofPteris vittata L.-maize intercropping system on arsenic stress in maize[J]. Ecology and Environmental Sciences, 28(5): 1021-1028. | |
[35] | 郑丽杰, 缪晓冬, 韩威, 等, 2020. 铜藻主要化学成分分析及抗氧化活性评价[J]. 食品工业科技, 41(22): 232-239. |
ZHENG L J, MIAO X D, HAN W, et al., 2020. Analysis of main chemical components and evaluation of antioxidant activity ofSargassum horneri [J]. Science and Technology of Food Industry, 41(22): 232-239. | |
[36] | 朱濛, 程楠楠, 杨如意, 等, 2020. 土壤-水环境中苯砷酸类化合物修复研究进展[J]. 生态环境学报, 29(7): 1475-1486. |
ZHU M, CHENG N N, YANG R Y, et al., 2020. Progress in researches on remediation of phenyl arsonic acid compounds in soil-water environment[J]. Ecology and Environmental Sciences, 29(7): 1475-1486. |
[1] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[2] | LI Chengcheng, ZHANG Zirui, SONG Xiaoxuan, KONG Juanjuan, HAN Yang, RUAN Yanan. Effects of Ozone Stress on Antioxidant Metabolism and Reproductive Growth of Soybean [J]. Ecology and Environment, 2022, 31(7): 1383-1392. |
[3] | CHEN Jinfeng, YU Shiqin, FU Jiafang, XU Guoliang, YU Bo, LAI Xiaoqun, HU Siyuan, ZHANG Kaiqu, LIU Jiahua. Soil Quality Characteristics and Influencing Factors of Different Land Use in the Red Bed Landform Region of South China: Taking Nanxiong Basin as An Example [J]. Ecology and Environment, 2022, 31(5): 918-930. |
[4] | CHEN Shuangshuang, ZHU Ninghua, ZHOU Guangyi, YUAN Xingming, SHANG Hai, WANG Yixuan. Vegetation and Soil Physical Characteristics of Artificial Arbor Forests under Different Grades of Rocky Desertification [J]. Ecology and Environment, 2022, 31(1): 52-61. |
[5] | ZHAO Li, GUO Chunyan, ZHANG Wenjun, WANG Xiaojiang, LIU Pingsheng. Community Characteristics and Their Correlation Analysis of Typical Natural Forest in Zhalantun [J]. Ecology and Environment, 2021, 30(7): 1353-1359. |
[6] | SUN Wentai, MA Ming, DONG Tie, NIU Junqiang, YIN Xiaoning, LIU Xinglu. Response of Fine Root Distribution and Hydraulic Characteristics of Apple to Long-term Plastic Mulching in Dryland of Northwest China [J]. Ecology and Environment, 2021, 30(7): 1375-1385. |
[7] | ZHANG Jinlong, HUANG Ying, WU Lifang, GONG Yunhui, LIU Yungen, WANG Yan, YANG Silin. As Subcellular Distribution and Physiological Response of Typha angustifolia L. to As Exposure [J]. Ecology and Environment, 2021, 30(5): 1042-1050. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn