Ecology and Environment ›› 2021, Vol. 30 ›› Issue (12): 2411-2422.DOI: 10.16258/j.cnki.1674-5906.2021.12.017
• Reviews • Previous Articles Next Articles
LI Fengmin1,*(), CHEN Lin1, JIANG Xiaohua1, LI Chenguang1, ZHAO Shasha1, CHONG Yunxiao2, HU Hongying3, GAO Shuaiqiang1
Received:
2021-07-09
Online:
2021-12-18
Published:
2022-01-04
Contact:
LI Fengmin
李锋民1,*(), 陈琳1, 姜晓华1, 李晨光1, 赵莎莎1, 种云霄2, 胡洪营3, 高帅强1
通讯作者:
李锋民
作者简介:
李锋民(1975年生),男,教授,博士,主要研究方向为水生态环境修复。E-mail: lifengmin@ouc.edu.cn
基金资助:
CLC Number:
LI Fengmin, CHEN Lin, JIANG Xiaohua, LI Chenguang, ZHAO Shasha, CHONG Yunxiao, HU Hongying, GAO Shuaiqiang. The Construction of Index System for Selecting Aquatic Plant in Water Purification and Ecological Restoration[J]. Ecology and Environment, 2021, 30(12): 2411-2422.
李锋民, 陈琳, 姜晓华, 李晨光, 赵莎莎, 种云霄, 胡洪营, 高帅强. 水质净化与生态修复的水生植物优选指标体系构建[J]. 生态环境学报, 2021, 30(12): 2411-2422.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.12.017
一级指标 First grade indexes | 二级指标 Second-grade indexes | 三级指标 Third-grade indexes |
---|---|---|
功能指标 Function indexes | 水质净化能力 The ability of water purification | 促进悬浮物沉降 Promoting the sedimentation of suspended solids; 水体增氧 Increasing oxygen in water; 藻类抑制 Inhibiting algae growth; 氮、磷吸收及蓄积 Absorbing and accumulating nitrogen and phosphorus; 促进有机物降解 Enhancing degradation of organic pollutants; 重金属吸附沉淀 Promoting sorption and precipitation of heavy metals |
生态修复能力 The ability of ecological restoration | 水生植物群落构建能力 (生态位宽度、繁殖能力); The construction ability of aquatic plant community (niche breadth, fecundity); 提高水生动物多样性 (提供饵料、产卵介质、育幼场和避难所); Enhancing the diversity of aquatic animals (Providing food, oviposition media and shelter); 生态风险(入侵性、毒性) Ecological risk (invasiveness, toxicity) | |
生长特性指标 Growth characteristics indexes | 生活型 Life form | 0—1.5 m, 茎叶挺出水面 (挺水植物) stems and leaves emerging from the water (emergent plant); 0.3—6 m, 茎叶在水面以下 (沉水植物) stems and leaves below water surface (submerged plant); 0.15—5 m, 茎在水面以下, 叶漂浮水面(浮叶植物) stems below water surface, leaves floating water (floating-leaves plant); 水深使植株漂浮即可, 茎叶浮悬水面 (漂浮植物) Plants can be floated, stems and leaves suspending water surface (floating plant) |
适宜温度 Suitable temperature | 耐低温 (<10 ℃) Low temperature resistant type (<10 ℃); 常温 (10—30 ℃) Normal-temperature type (10—30 ℃); 耐高温 (>30 ℃) High temperature resistant type (>30 ℃) | |
适宜水体pH Suitable pH of water | 偏酸性 (pH 5—6.5) Weak acidity type (pH 5—6.5);中性 (pH 6.5—8) Neutrality (pH 6.5—8); 偏碱性 (pH 8—10) Weak alkaline type (pH 8—10) | |
生物量 Biomass | 大 (>1 kg∙m-2) Large (>1 kg∙m-2); 小 (<0.5 kg∙m-2) Small (<0.5 kg∙m-2) | |
生长速率 Growth rate | 快Fast (AGR>10 g∙m-2·d-1或RGR>100 mg∙g-1·d-1) 慢 Slow (AGR<5 g∙m-2·d-1或RGR>50 mg∙g-1·d-1) | |
营养吸收主要部位 Main parts of nutrition absorption | 茎叶 (水中N、P) stems and leaves (N, P from water); 根或根状茎 (底泥中N、P)Root or rhizome (N, P from sediment) | |
锚定(抗水流冲击、风浪扰动)能力 Anchoring ability (resistance to flow shock and wind wave disturbance) | 强 (挺水植物) Strong (emergent plant); 弱 (沉水植物、漂浮植物、浮叶植物) Weak (submerged plant, floating plant, floating-leaves plant, floating-leaves plant) | |
生物量资源化 利用指标 Biomass resource utilization index | 能源燃料生产 Energy fuel production | 固体燃料、液体燃料、气体燃料 Solid fuel, liquid fuel, gas fuel |
工业原料利用 Utilization of industrial raw materials | 造纸、工艺品编制、制作香料 Papermaking, crafts preparation, spices making | |
食药用 (健康安全保障) Edible and medicinal value (health and safety guarantee) | 食用 Edible value; 药用 Medicinal value | |
其他 Others | 制备生物炭、作饲料、肥料 Preparation of biochar, feed and fertilizer |
Table 1 The optimization index system of water purification and ecological restoration plant
一级指标 First grade indexes | 二级指标 Second-grade indexes | 三级指标 Third-grade indexes |
---|---|---|
功能指标 Function indexes | 水质净化能力 The ability of water purification | 促进悬浮物沉降 Promoting the sedimentation of suspended solids; 水体增氧 Increasing oxygen in water; 藻类抑制 Inhibiting algae growth; 氮、磷吸收及蓄积 Absorbing and accumulating nitrogen and phosphorus; 促进有机物降解 Enhancing degradation of organic pollutants; 重金属吸附沉淀 Promoting sorption and precipitation of heavy metals |
生态修复能力 The ability of ecological restoration | 水生植物群落构建能力 (生态位宽度、繁殖能力); The construction ability of aquatic plant community (niche breadth, fecundity); 提高水生动物多样性 (提供饵料、产卵介质、育幼场和避难所); Enhancing the diversity of aquatic animals (Providing food, oviposition media and shelter); 生态风险(入侵性、毒性) Ecological risk (invasiveness, toxicity) | |
生长特性指标 Growth characteristics indexes | 生活型 Life form | 0—1.5 m, 茎叶挺出水面 (挺水植物) stems and leaves emerging from the water (emergent plant); 0.3—6 m, 茎叶在水面以下 (沉水植物) stems and leaves below water surface (submerged plant); 0.15—5 m, 茎在水面以下, 叶漂浮水面(浮叶植物) stems below water surface, leaves floating water (floating-leaves plant); 水深使植株漂浮即可, 茎叶浮悬水面 (漂浮植物) Plants can be floated, stems and leaves suspending water surface (floating plant) |
适宜温度 Suitable temperature | 耐低温 (<10 ℃) Low temperature resistant type (<10 ℃); 常温 (10—30 ℃) Normal-temperature type (10—30 ℃); 耐高温 (>30 ℃) High temperature resistant type (>30 ℃) | |
适宜水体pH Suitable pH of water | 偏酸性 (pH 5—6.5) Weak acidity type (pH 5—6.5);中性 (pH 6.5—8) Neutrality (pH 6.5—8); 偏碱性 (pH 8—10) Weak alkaline type (pH 8—10) | |
生物量 Biomass | 大 (>1 kg∙m-2) Large (>1 kg∙m-2); 小 (<0.5 kg∙m-2) Small (<0.5 kg∙m-2) | |
生长速率 Growth rate | 快Fast (AGR>10 g∙m-2·d-1或RGR>100 mg∙g-1·d-1) 慢 Slow (AGR<5 g∙m-2·d-1或RGR>50 mg∙g-1·d-1) | |
营养吸收主要部位 Main parts of nutrition absorption | 茎叶 (水中N、P) stems and leaves (N, P from water); 根或根状茎 (底泥中N、P)Root or rhizome (N, P from sediment) | |
锚定(抗水流冲击、风浪扰动)能力 Anchoring ability (resistance to flow shock and wind wave disturbance) | 强 (挺水植物) Strong (emergent plant); 弱 (沉水植物、漂浮植物、浮叶植物) Weak (submerged plant, floating plant, floating-leaves plant, floating-leaves plant) | |
生物量资源化 利用指标 Biomass resource utilization index | 能源燃料生产 Energy fuel production | 固体燃料、液体燃料、气体燃料 Solid fuel, liquid fuel, gas fuel |
工业原料利用 Utilization of industrial raw materials | 造纸、工艺品编制、制作香料 Papermaking, crafts preparation, spices making | |
食药用 (健康安全保障) Edible and medicinal value (health and safety guarantee) | 食用 Edible value; 药用 Medicinal value | |
其他 Others | 制备生物炭、作饲料、肥料 Preparation of biochar, feed and fertilizer |
资源化利用途径 Ways for resource utilization | 水生植物 Aquatic plant | 植物特点 Plant feature | 参考文献 Refference |
---|---|---|---|
能源燃料生产(乙醇、沼气等)Energy fuel production(ethyl alcohol, marsh gas) | 凤眼莲Eichhornia crassipes、大薸Pistia stratiotes、浮萍Lemna minor、香蒲Typha orientalis、再力花Thalia dealbata | 淀粉和糖类含量丰富 High content in starch and sugar | Mishima et al., Toyama et al., |
造纸Papermaking | 水葱Scirpus validus、香蒲Typha orientalis、短叶茳芏Cyperus malaccensis、芦苇Phragmites australis、莎草Cyperus rotundus | 纤维含量高且质量优 High fiber content and good quality | 陈耀东等, |
制备生物炭 Preparation of biochar | 凤眼莲Eichhornia crassipes、香蒲Typha orientalis、芦苇Phragmites australis、美人蕉Canna indica、菖蒲Acorus calamus、菰Zizania latifolia、喜旱莲子草Alternanthera philoxeroides | 纤维素、半纤维素、木质素含量高High content in cellulose, hemicellulose and lignin | 杭嘉祥等, (Hang et al. Yang et al., Cui et al., |
作肥料 Fertilizer | 凤眼莲Eichhornia crassipes、伊乐藻Elodea nuttallii、狐尾藻Myriophyllum verticillatum | 矿质元素含量丰富 Rich in mineral elements | Liu et al., |
作饲料 Feed | 黑藻Hydrilla verticillata、金鱼藻Ceratophyllum demersum、菹草Potamogeton crispus、浮萍Lemna minor、紫萍Spirodela polyrrhiza、菰Zizania latifolia、喜旱莲子草Alternanthera philoxeroides | 植物粗蛋白、粗纤维含量高,适口性较好High content of crude protein and crude fiber in plants, good palatability | 陈耀东等, (Chen et al., 陈守钜, (Chen et al., |
食用(健康安全保障) Edible value (health and safety guarantee) | 茭白Zizania latifolia、水芹Oenanthe javanica、慈姑Sagittaria trifolia、芡实Euryale ferox、菱Trapa bispinosa、莲藕Nelumbo nucifera | 营养丰富、口感佳 Rich nutrition and good taste | 陈耀东等, (Chen et al., Toyama et al., |
药用(健康安全保障)Medicinal value (health and safety guarantee) | 苦草Vallisneria natans、金鱼藻Ceratophyllum demersum、浮萍Lemna minor、芡实Euryale ferox、芦苇Phragmites australis、菖蒲Acorus calamus、莲Nelumbo nucifera、水烛Typha angustifolia | 内含药用活性成分 Containing medicinal active components | 曹岚等, (Cao et al., 任全进等, (Ren et al., |
Table 2 Resource utilization ways of common aquatic plants
资源化利用途径 Ways for resource utilization | 水生植物 Aquatic plant | 植物特点 Plant feature | 参考文献 Refference |
---|---|---|---|
能源燃料生产(乙醇、沼气等)Energy fuel production(ethyl alcohol, marsh gas) | 凤眼莲Eichhornia crassipes、大薸Pistia stratiotes、浮萍Lemna minor、香蒲Typha orientalis、再力花Thalia dealbata | 淀粉和糖类含量丰富 High content in starch and sugar | Mishima et al., Toyama et al., |
造纸Papermaking | 水葱Scirpus validus、香蒲Typha orientalis、短叶茳芏Cyperus malaccensis、芦苇Phragmites australis、莎草Cyperus rotundus | 纤维含量高且质量优 High fiber content and good quality | 陈耀东等, |
制备生物炭 Preparation of biochar | 凤眼莲Eichhornia crassipes、香蒲Typha orientalis、芦苇Phragmites australis、美人蕉Canna indica、菖蒲Acorus calamus、菰Zizania latifolia、喜旱莲子草Alternanthera philoxeroides | 纤维素、半纤维素、木质素含量高High content in cellulose, hemicellulose and lignin | 杭嘉祥等, (Hang et al. Yang et al., Cui et al., |
作肥料 Fertilizer | 凤眼莲Eichhornia crassipes、伊乐藻Elodea nuttallii、狐尾藻Myriophyllum verticillatum | 矿质元素含量丰富 Rich in mineral elements | Liu et al., |
作饲料 Feed | 黑藻Hydrilla verticillata、金鱼藻Ceratophyllum demersum、菹草Potamogeton crispus、浮萍Lemna minor、紫萍Spirodela polyrrhiza、菰Zizania latifolia、喜旱莲子草Alternanthera philoxeroides | 植物粗蛋白、粗纤维含量高,适口性较好High content of crude protein and crude fiber in plants, good palatability | 陈耀东等, (Chen et al., 陈守钜, (Chen et al., |
食用(健康安全保障) Edible value (health and safety guarantee) | 茭白Zizania latifolia、水芹Oenanthe javanica、慈姑Sagittaria trifolia、芡实Euryale ferox、菱Trapa bispinosa、莲藕Nelumbo nucifera | 营养丰富、口感佳 Rich nutrition and good taste | 陈耀东等, (Chen et al., Toyama et al., |
药用(健康安全保障)Medicinal value (health and safety guarantee) | 苦草Vallisneria natans、金鱼藻Ceratophyllum demersum、浮萍Lemna minor、芡实Euryale ferox、芦苇Phragmites australis、菖蒲Acorus calamus、莲Nelumbo nucifera、水烛Typha angustifolia | 内含药用活性成分 Containing medicinal active components | 曹岚等, (Cao et al., 任全进等, (Ren et al., |
[1] | ALI H, KHAN E, SAJAD M A, 2013. Phytoremediation of heavy metals-Concepts and applications[J]. Chemosphere, 91(7): 869-881. |
[2] |
ALIOTTA G, GRECA M D, MONACO P, et al., 1990. In vitro algal growth inhibition by phytotoxins of Typha latifolia L.[J]. Journal of Chemical Ecology, 16(9): 2637-2646.
DOI URL |
[3] |
ARTS G H P, VAN D V G, ROELOFS J G M, et al., 1990. Successional changes in the soft-water macrophyte vegetation of (sub) atlantic, sandy, lowland regions during this century[J]. Freshwater Biology, 24(2): 287-294.
DOI URL |
[4] | BARKO J W, GUNNISON D, CARPENTER S R, 1991. Sediment interactions with submersed macrophyte growth and community dynamics[J]. Aquatic Botany Ecology of Submersed Aquatic Macrophytes, 41(1): 41-65. |
[5] |
BHUI I, MATHEW A K, CHAUDHURY S, et al., 2018. Influence of volatile fatty acids in different inoculum to substrate ratio and enhancement of biogas production using water hyacinth and salvinia[J]. Bioresource Technology, 270: 409-415.
DOI URL |
[6] |
BOUDOURESQUE C F, VERLAQUE M, 2002. Biological pollution in the Mediterranean Sea: invasive versus introduced macrophytes[J]. Marine Pollution Bulletin, 44(1): 32-38.
DOI URL |
[7] |
BRUNDU G, 2015. Plant invaders in European and Mediterranean inland waters: profiles, distribution, and threats[J]. Hydrobiologia, 746(1): 61-79.
DOI URL |
[8] |
CHANDRA R, PRADHAN S, PATEL A, et al., 2021. An approach for dairy wastewater remediation using mixture of microalgae and biodiesel production for sustainable transportation[J]. Journal of Environmental Management, 297: 113210.
DOI URL |
[9] |
CHEN J, QUAN X, YAZHI Z, et al., 2001. Quantitative structure-property relationship studies on n-octanol/water partitioning coefficients of PCDD/Fs[J]. Chemosphere, 44(6): 1369-1374.
DOI URL |
[10] | CUI W, CHENG J J, APPENROTH K, 2015. Growing duckweed for biofuel production: A review[J]. Plant Biology, 17(S1): 16-23. |
[11] |
CUI X Q, DAI X, KHAN K Y, et al., 2016. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata[J]. Bioresource Technology, 218: 1123-1132.
DOI URL |
[12] | DU Y D, WANG R Q, FENG J H, et al., 2014. Screening anti-tumor constituents from Potamogeton crispus for potential utilisation of constructed wetland plant resources[J]. Biology and Environment, 114(2): 79-87. |
[13] |
El-SHEEKH M M, HAROON A M, SABAE S, 2018. Seasonal and spatial variation of aquatic macrophytes and phytoplankton community at El-Quanater El-Khayria River Nile, Egypt[J]. Beni-Suef University Journal of Basic and Applied Sciences, 7(3): 344-352.
DOI URL |
[14] |
FERNANDEZ-GOING B, EVEN T, SIMPSON J, 2013. The effect of different nutrient concentrations on the growth rate and nitrogen storage of watercress (Nasturtium officinale R. Br.)[J]. Hydrobiologia, 705(1): 63-74.
DOI URL |
[15] | HANAFIAH M M, MOHAMAD N, ABD A, et al., 2018. Salvinia molesta and Pistia stratiotes as Phytoremediation Agents in Sewage Wastewater Treatment[J]. Sains Malaysiana, 1: 44-70. |
[16] | HAVENS K E, JIN K R, RODUSKY A J, et al., 2001. Hurricane effects on a Shallow Lake ecosystem and its response to a controlled manipulation of water level[J]. The Scientific World Journal, 1: 44-70. |
[17] |
HECK K L, THOMAN T A, 1981. Experiments on predator-prey interactions in vegetated aquatic habitats[J]. Journal of Experimental Marine Biology and Ecology, 53(2): 125-134.
DOI URL |
[18] |
HIERRO J L, CALLAWAY R M, 2003. Allelopathy and exotic plant invasion[J]. Plant and Soil, 256(1): 29-39.
DOI URL |
[19] |
HIJOSA-VALSERO M, MATAMOROS V, SIDRACH-CARDONA R, et al., 2010. Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters[J]. Water Research, 44(12): 3669-3678.
DOI URL |
[20] |
IAMCHATURAPATR J, YI S W, RHEE J S, 2007. Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland[J]. Ecological Engineering, 29(3): 287-293.
DOI URL |
[21] |
JAMPEETONG A, BRIX H, KANTAWANICHKUL S, 2012. Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides)[J]. Aquatic Botany, 97(1): 10-16.
DOI URL |
[22] | LIU J N, WANG J M, ZHAO C C, ANTHONY G H, et al., 2016. Triclosan removal in wetlands constructed with different aquatic plants[J]. Applied Microbiology & Biotechnology, 100(3): 1459-1467. |
[23] |
LI B, YIN Y, KANG L, et al., 2021. A review: Application of allelochemicals in water ecological restoration--algal inhibition[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2020.128869.
DOI |
[24] |
LI J H, YANG X Y, WANG Z F, et al., 2015. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water[J]. Bioresource Technology, 179: 1-7.
DOI URL |
[25] | LIU F, ZHANG S, LUO P, et al., 2018. Purification and reuse of non-point source wastewater via Myriophyllum-based integrative biotechnology: A review[J]. Bioresource Technology, 248(Pt B): 3-11. |
[26] |
LV T, ZHANG Y, CASAS M E, et al., 2016. Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium[J]. Chemosphere, 148: 459-466.
DOI URL |
[27] | MADSEN T V, CEDERGREEN N, 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream[J]. Freshwater Biology, 2(47): 283-291. |
[28] |
MATAMOROS V, NGUYEN L X, ARIAS C A, et al., 2012. Evaluation of aquatic plants for removing polar microcontaminants: A microcosm experiment[J]. Chemosphere, 88(10): 1257-1264.
DOI URL |
[29] |
MISHIMA D, KUNIKI M, SEI K, et al., 2008. Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.)[J]. Bioresource Technology, 99(7): 2495-2500.
DOI URL |
[30] |
NAKAI S, INOUE Y, HOSOMI M, et al., 2000. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa[J]. Water Research, 34(11): 3026-3032.
DOI URL |
[31] | NAKAI S, ZOU G, OKUDA T, et al., 2010. Anti-cyanobacterial allelopathic effects of plants used for artificial floating islands[J]. Allelopathy Journal, 26(1): 113-121. |
[32] |
ODOH C K, ZABBEY N, SAM K, et al., 2019. Status, progress and challenges of phytoremediation - An African scenario[J]. Journal of Environmental Management, 237(6): 365-378.
DOI URL |
[33] |
PORTIELJE R, VAN D M D T, 1999. Relationships between eutrophication variables: From nutrient loading to transparency[J]. Hydrobiologia, 408-409: 375-387.
DOI URL |
[34] |
QIN Z R, ZHAO Z H, XIA L L, et al., 2019. The dissipation and risk alleviation mechanism of PAHs and nitrogen in constructed wetlands: The role of submerged macrophytes and their biofilms-leaves[J]. Environment International, DOI: 10.1016/j.envint.2019.104940.
DOI |
[35] |
CARIGNAN R, 1982. An Empirical Model to Estimate the Relative Importance of Roots in Phosphorus Uptake by Aquatic Macrophytes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 39(2): 243-247.
DOI URL |
[36] |
RAVICHANDRAN M, 2004. Interactions between mercury and dissolved organic matter--a review[J]. Chemosphere, 55(3): 319-331.
DOI URL |
[37] |
RIIS T, TANK J, REISINGER A, et al., 2019. Riverine macrophytes control seasonal nutrient uptake via both physical and biological pathways[J]. Freshwater Biology, 65(2): 178-192.
DOI URL |
[38] |
RIXEN T, BAUM A, SEPRYANI H, et al., 2010. Dissolved oxygen and its response to eutrophication in a tropical black water river[J]. Journal of Environmental Management, 91(8): 1730-1737.
DOI URL |
[39] | ROBERT G. WETZEL, 1983. Structure and Productivity of Aquatic Ecosystems[M]. 2ed. New York: CBS College Publishing: Limnology. |
[40] |
RORSLETT B, 1991. Principal determinants of aquatic macrophyte richness in northern European lakes[J]. Aquatic Botany, 39(1-2): 173-193.
DOI URL |
[41] |
SCHUTTEN J, DAVY J D J, 2005. Root anchorage and its significance for submerged plants in shallow lakes[J]. Journal of Ecology, 93(3): 556-571.
DOI URL |
[42] |
SHAHID M J, ALI S, SHABIR , et al., 2020. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2019.125353.
DOI |
[43] |
SRIVASTAVA D S, STAICER C A, FREEDMAN B, 1995. Aquatic vegetation of Nova Scotian lakes differing in acidity and trophic status[J]. Aquatic Botany, 51(3): 181-196.
DOI URL |
[44] |
SUDIARTO S I A, RENGGAMAN A, CHOI H L, 2019. Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics[J]. Journal of Environmental Management, 231: 763-769.
DOI URL |
[45] |
SUN H S, XU S J, WU S H, et al., 2019. Enhancement of facultative anaerobic denitrifying communities by oxygen release from roots of the macrophyte in constructed wetlands[J]. Journal of Environmental Management, 246: 157-163.
DOI URL |
[46] |
THOMPSON V F, MARSHALL D L, REALE J K, et al., 2019. The effects of a catastrophic forest fire on the biomass of submerged stream macrophytes[J]. Aquatic Botany, 152: 36-42.
DOI URL |
[47] |
TOYAMA T, HANAOKA T, TANAKA Y, et al., 2018. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent[J]. Bioresource Technology, 250: 464-473.
DOI URL |
[48] | WANG W, 1991. Ammonia toxicity to macrophytes (common duckweed and rice) using static and renewal methods[J]. Environmental Toxicology & Chemistry, 10(9): 1173-1177. |
[49] | WETZEL R G, 2001. Limnology: Lake and River Ecosystems[M]. San Diego: Academic Press. |
[50] |
WU Z, DENG P, WU X, et al., 2007. Allelopathic effects of the submerged macrophyte Potamogeton malaianus on Scenedesmus obliquus[J]. Hydrobiologia., 592(1): 465-474.
DOI URL |
[51] | XIAN Q M, CHEN H D, ZOU H X, et al., 2007. Allelopathic activity and nutrient competition between Ceratophyllum demersum and Microcystis aeruginosa[J]. Allelopathy Journal, 19(1): 227-232. |
[52] |
XU W W, HU W P, DENG J C, et al., 2014. Effects of harvest management of Trapa bispinosa on an aquatic macrophyte community and water quality in a eutrophic lake[J]. Ecological Engineering, 64: 120-129.
DOI URL |
[53] |
YANG Y, WEI Z B, ZHANG X L, et al., 2014. Biochar from Alternanthera philoxeroides could remove Pb(II) efficiently [J]. Bioresource Technology, 171: 227-232.
DOI URL |
[54] |
ZHANG D Q, HUA T, GERSBERG R M, et al., 2012. Fate of diclofenac in wetland mesocosms planted with Scirpus validus[J]. Ecological Engineering, 49: 59-64.
DOI URL |
[55] |
ZHANG L, LIU B Y, GE F J, et al., 2019. Interspecific competition for nutrients between submerged macrophytes (Vallisneria natans, Ceratophyllum demersum) and filamentous green algae (Cladophora oligoclona) in a co-culture system[J]. Polish Journal of Environmental Studies, 28(3): 1483-1494.
DOI URL |
[56] |
ZHANG P Y, KURAMAE A, VAN L C H A, et al., 2020. Interactive Effects of Rising Temperature and Nutrient Enrichment on Aquatic Plant Growth, Stoichiometry, and Palatability[J]. Frontiers in Plant Science, DOI: 10.3389/fpls.2020.00058.
DOI |
[57] |
ZHOU X H, HE Z L, JONES K D, et al., 2017. Dominating aquatic macrophytes for the removal of nutrients from waterways of the Indian River Lagoon basin, South Florida, USA[J]. Ecological Engineering, 101: 107-119.
DOI URL |
[58] |
ZHOU Y W, ZHOU X H, HAN R M, et al., 2017. Reproduction capacity of Potamogeton crispus fragments and its role in water purification and algae inhibition in eutrophic lakes[J]. Science of the Total Environment, 580: 1421-1428.
DOI URL |
[59] |
ZHU X Q, DAO G H, HU H Y, et al., 2021. A review on control of harmful algal blooms by plant-derived allelochemicals[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2020.123403.
DOI |
[60] |
ZUO S P, WAN K, MA S M, 2015. Combined effect of predatory zooplankton and allelopathic aquatic macrophytes on algal suppression[J]. Environmental Technology, 36(1-4): 54-59.
DOI URL |
[61] | 白明, 2014. 水草栽培与造景[M]. 北京: 化学工业出版社. |
BAI M, 2014. Water grass cultivation and landscaping[M]. Beijing: Chemical Industry Press. | |
[62] | 曹岚, 裴建国, 2000. 江西省药用水生植物资源考查[J]. 时珍国医国药, 11(6): 574-576. |
CAO L, PEI J G, 2000. The resource of the medicinal aquatic plants in Jiangxi province[J]. Lishizhen Medicine and Materia Medica Research, 11(6): 574-576. | |
[63] | 陈守钜, 1982. 经济水生植物[M]. 北京: 农业出版社: 5-50. |
CHEN S J, 1982. Economic aquatic plants[M]. Beijing: China Agricultural Press: 5-50. | |
[64] | 陈耀东, 马欣堂, 杜玉芬, 2012. 中国水生植物[M]. 郑州: 河南科学技术出版社: 1-10. |
CHEN Y D, MA X T, DU Y F, 2012. The Chinese aquatic plants[M]. Zhenzhou: Henan Science and Technology Press: 1-10. | |
[65] | 种云霄, 胡洪营, 钱易, 2003. pH及无机氮化合物对小浮萍生长的影响[J]. 环境科学, 24(4): 35-40. |
CHONG Y X, HU H Y, QIAN Y, 2003. Effect of inorganic nitrogen compounds and pH on the growth of duckweed[J]. Environmental Science, 24(4): 35-40.
DOI URL |
|
[66] | 种云霄, 胡洪营, 钱易, 2003. 无机氮化合物及pH值对紫背浮萍生长的影响[J]. 中国环境科学, 23(4): 82-86. |
CHONG Y X, HU H Y, QIAN Y, 2003. Studies on the effect of inorganic nitrogen compounds and pH on the growth of Spriodela polyrrhiza[J]. China Environmental Science, 23(4): 82-86. | |
[67] | 高冲, 杨肖娥, 向律成, 等, 2008. pH和温度对薏苡植物床去除富营养化水中氮磷的影响[J]. 农业环境科学学报, 27(4): 1495-1500. |
GAO C, YANG X E, XIANG L C, et al., 2008. The effects of pH and temperature on removal of nitrogen and phosphorus from eutrophicated water by Coix Lachryma-jobi. L[J]. Journal of Agro-Environment Science, 27(4): 1495-1500. | |
[68] | 谷孝鸿, 张圣照, 白秀玲, 等, 2005. 东太湖水生植物群落结构的演变及其沼泽化[J]. 生态学报, 25(7): 1541-1548. |
GU X H, ZHANG S Z, BAI X L, et al., 2005. Evolution of community structure of aquat ic macrophytes in East Taihu Lake and its wetlands[J]. Acta Ecologica Sinica, 25(7): 1541-1548. | |
[69] | 杭嘉祥, 李法云, 梁晶, 等, 2020. 镁改性芦苇生物炭对水环境中磷酸盐的吸附特性[J]. 生态环境学报, 29(6): 1235-1244. |
HANG J X, LI F Y, LIANG J, et al, 2020. The characteristics of phosphate adsorption in water environment by magnesium modified biochar from wetland reed[J]. Ecology and Environmental Sciences, 29(6): 1235-1244. | |
[70] | 侯端环, 张晨光, 宋印刚, 等, 2008. 关于南四湖区引种芦竹之商榷[J]. 湿地科学与管理, 4(4): 59-60. |
HOU R H, ZHANG C G, SONG Y G, et al., 2008. Discussionsonthe Introduction of Arund donax L. in Nansi Lake Area[J]. Wetland Science and Management, 4(4): 59-60. | |
[71] | 胡绵好, 奥岩松, 朱建坤, 等, 2008. pH和曝气对水生植物去除富营养化水体中氮磷等物质的影响[J]. 水土保持学报, 22(4): 168-173. |
HU M H, AO Y S, ZHU J K, et al., 2008. Effect of pH and aeration on removal for nitrogen and phosphorus in eutrophic water by aquatic plant[J]. Journal of Soil and Water Conservation, 22(4): 168-173. | |
[72] | 金树权, 周金波, 包薇红, 等, 2017. 5种沉水植物的氮、磷吸收和水质净化能力比较[J]. 环境科学, 38(1): 156-161. |
JIN S C, ZHOU J B, BAO W H, et al., 2017. Comparison of nitrogen and phosphorus uptake and water purification ability of five submerged macrophytes[J]. Environmental Science, 38(1): 156-161.
DOI URL |
|
[73] | 李春华, 叶春, 孔祥臻, 等, 2018. 浅水湖泊水生植物适宜生物量评估方法的探讨[J]. 中国环境科学, 38(12): 4644-4652. |
LI C H, YE C, KONG X Z, et al., 2018. Preliminary idea on assessment of macrophyte optimal biomass in shallow lake[J]. China Environmental Science, 38(12): 4644-4652. | |
[74] | 李恒, 1987. 横断山区的湖泊植被[J]. 云南植物研究, 9(3): 257-270. |
LI H, 1987. The lake vegetation of Hengduan Mountains[J]. Acta Botanica Yunnanica, 9(3): 257-270. | |
[75] | 李伟, 钟扬, 1992. 水生植被研究的理论与方法[M]. 武汉: 华中师范大学出版社: 20-50. |
LI W, CHONG Y, 1992. Theories and methods of aquatic vegetation research[M]. Wuhan: Central China Normal University Press. | |
[76] | 李益健, 任南, 严国安, 等, 1996. 环境因子对东湖几种沉水植物生理的影响研究[J]. 武汉大学学报(自然科学版), 42(2): 213-218. |
LI Y J, REN N, YAN G A, et al., 1996. The study on the influence of environmental factors of the sumberged macrophytes in the East Lake[J]. Journal of Wuhan University (Natural Science Edition), 42(2): 213-218. | |
[77] | 梁莉莉, 于泉洲, 邓焕广, 等, 2019. 基于时序NDVI的东平湖菹草 (Potamogeton crispus L.) 遥感提取及时空格局[J]. 湖泊科学, 31(2): 529-538. |
LIANG L L, YU Q Z, DENG H G, et al., 2019. Spatio-temporal pattern of Potamogeton crispus L. in Lake Dongping based on NDVI time series[J]. Journal of Lake Sciences, 31(2): 529-538.
DOI URL |
|
[78] | 林剑华, 杨扬, 李丽, 等, 2015. 8种湿地植物的生长状况及泌氧能力[J]. 湖泊科学, 27(06): 1042-1048. |
LIN J H, YANG Y, LI L, et al., 2015. Characteristics of growth and radial oxygen loss of eight wetland plants[J]. Journal of Lake Sciences, 27(06): 1042-1048.
DOI URL |
|
[79] | 柳后起, 方正, 孟岩, 等, 2020. 环太湖水体污染现状分析[J]. 生态环境学报, 29(11): 2262-2269. |
LIU H Q, FANG Z, MENG Y, et al, 2020. Water quality assessment around Lake Taihu[J]. Ecology and Environmental Sciences, 29(11): 2262-2269. | |
[80] | 刘小菊, 单奇, 李园园, 2020. 喀纳斯泰加林林下72种植物叶片的碳、氮、磷化学计量特征[J]. 生态环境学报, 29(7): 1302-1309. |
LIU X J, SHAN Q, LI Y Y, 2020. Leaf carbon, nitrogen and phosphorus stoichiometry in 72 understory plants species in Kanas Taiga[J]. Ecology and Environmental Sciences, 29(7): 1302-1309. | |
[81] | 刘洋, 付文龙, 操瑜, 等, 2017. 沉水植物功能性状研究的思考[J]. 植物科学学报, 35(3): 444-451. |
LIU Y, FU W L, CAO Y, et al., 2017. Study on the functional traits of submerged macrophytes[J]. Plant Science Journal, 35(3): 444-451. | |
[82] | 孟祥雨, 宋学宏, 陈桂娟, 等, 2013. 利用湖泊内源性饵料饲喂中华绒螯蟹 (Eriocheir sinensis)的养殖与净水效应[J]. 湖泊科学, 25(5): 723-728. |
MENG X Y, SONG X H, CHEN G J, et al., 2013. Utilization of natural feed resources in a macrophyte-dominated lake for aquaculture of Chinese mitten crab (Eriocheir sinensis) and its purification effects on water environment[J]. Journal of Lake Sciences, 25(5): 723-728.
DOI URL |
|
[83] | 乔娜, 黄长平, 张立福, 等, 2016. 典型浅水草型湖泊水体悬浮物浓度遥感反演[J]. 湖北大学学报(自然科学版), 38(6): 510-516. |
QIAO N, HUANG C P, ZHANG L F, et al., 2016. Remote sensing inversion of total suspended matter concentration in typical shallow macrophytic lake[J]. Journal of Hubei University (Natural Science), 38(6): 510-516. | |
[84] | 秦伯强, 高光, 胡维平, 等, 2005. 浅水湖泊生态系统恢复的理论与实践思考[J]. 湖泊科学, 17(1): 9-16. |
QIN B Q, GAO G, HU W P, et al., 2005. Reflections on the theory and practice of shallow lake ecosystem restoration[J]. Journal of Lake Sciences, 17(1): 9-16.
DOI URL |
|
[85] | 秦红杰, 张志勇, 刘海琴, 等, 2016. 两种漂浮植物的生长特性及其水质净化作用[J]. 中国环境科学, 36(8): 2470-2479. |
QIN H J, ZHANG Z Y, LIU H Q, et al., 2016. Growth characteristics and water purification of two free-floating macrophytes[J]. China Environmental Science, 36(8): 2470-2479. | |
[86] | 邱念伟, 马宗琪, 王凤德, 等, 2007. 一种测定植物相对生长量的方法[J]. 山东科学, 20(2): 24-28. |
QIU N W, MA Z Q, WANG F D, et al., 2007. A method for mensurating plant relative growth yield[J]. Shandong Science, 20(2): 24-28. | |
[87] | 任全进, 于金平, 1998. 江苏省水生药用植物资源[J]. 国土与自然资源研究 (4): 69-70. |
REN Q J, DING J P, 1998. The utilization of medical hydophyte resources in Jiangsu province[J]. Territory & Natural Resources Study (4): 69-70. | |
[88] | 史广宇, 余志强, 施维林, 2021. 植物修复土壤重金属污染中外源物质的影响机制和应用研究进展[J]. 生态环境学报, 30(3): 655-666. |
SHI G Y, YU Z Q, SHI W L, 2021. Research progress on mechanism and application of exogenous substances in phytoremediation of heavy metal contaminated soil[J]. Ecology and Environmental Sciences, 30(3): 655-666. | |
[89] | 施文, 2011. 淀山湖水生植被动态格局及成因分析[D]. 上海: 华东师范大学: 10-50. |
SHI W, 2011. Study on the temporal and spatial pattern of aquatie vegetation and their influences in Dianshan lake[D]. Shanghai: East China Normal University: 10-50. | |
[90] | 宋超, 裘丽萍, 孟顺龙, 等, 2014. 人工模拟不同种植密度下四种水生植物的生长状况及对氮、磷的去除[J]. 农业环境科学学报, 33(1): 178-184. |
SONG C, QIU L P, MENG S L, et al., 2014. Growth of four aquatic plants and their removal of total nitrogen and total phosphorus in eutrophication water under different plant density: A laboratory experiment[J]. Journal of Agro-Environment Science, 33(1): 178-184. | |
[91] | 孙金昭, 李明杰, 林恒兆, 等, 2016. 湿地植物作为低C/N比生活污水反硝化碳源的研究[J]. 环境污染与防治, 38(10): 28-32. |
SUN J Z, LI M J, LIN Z H, et al., 2016. Research on wetland plants as carbon source for denitrification of sewage with low C/N ratio[J]. Environmental Pollution & Control, 38(10): 28-32. | |
[92] | 涂克环, 施文, 古旭, 等, 2013. 淀山湖不同生长型沉水植物分布及其性状研究[J]. 上海海洋大学学报, 22(6): 895-902. |
TU K H, SHI W, GU X, et al., 2013. Research on submerged vegetation distribution and traits of different growth forms in Dianshan Lake[J]. Journal of Shanghai Ocean University, 22(6): 895-902. | |
[93] | 王金庆, 宋祥甫, 邹国燕, 等, 2014. 龙延河几种挺水植物上麦穗鱼卵的分布及其孵化率[J]. 淡水渔业, 44(1): 46-52. |
WANG J Q, SONG X F, ZOU G Y, et al., 2014. Distribution and hatchability of Pseudorasbora parva eggs on several emergent plants of Longyanhe River[J]. Freshwater Fisheries, 44(1): 46-52. | |
[94] | 王琦, 高晓奇, 肖能文, 等, 2018. 滇池沉水植物的分布格局及其水环境影响因子识别[J]. 湖泊科学, 30(1): 157-170. |
WANG Q, GAO X Q, XIAO N W, et al., 2018. Distribution pattern of submerged macrophytes and its influencing factors of water environment in Lake Dianchi[J]. Journal of Lake Sciences, 30(1): 157-170.
DOI URL |
|
[95] | 王文林, 唐晓燕, 胡孟春, 等, 2009. 人工重建的水生植物群落演替动态研究[J]. 长江流域资源与环境, 18(9): 802-806. |
WANG W L, TANG X Y, HU M C, et al., 2009. On dynamics in the succession of artificial aquatic macrophyte community reconstruction[J]. Resources and Environment in the Yangtze Basin, 18(9): 802-806. | |
[96] | 韦三立, 2004. 水生花卉[M]. 北京: 中国农业出版社. |
WEI S L, 2004. Aquatic flower[M]. Beijing: China Agriculture Press. | |
[97] | 吴振斌, 2011. 水生植物与水体生态修复[M]. 北京: 科学出版社. |
WU Z B, 2011. Aquatic plants and water ecological restoration[M]. Beijing: Science Press. | |
[98] | 杨皓然, 2016. 湖南省常见水生植物的耐污与去污能力比较研究[D]. 长沙: 中南林业科技大学. |
YANG H R, 2016. A comparative study on the ability of pollution and decontamination of common aquatic plants in Hunan province[D]. Changsha: Central South University of Forestry and Technology. | |
[99] | 叶有华, 杨智中, 李思怡, 等, 2020. 生物入侵对自然资源资产的影响及其在自然资源资产负债表编制中的应用[J]. 生态环境学报, 29(12): 2465-2472. |
YE Y H, YANG Z Z, LI S Y, et al., 2020. Effects of biological invasion on natural resources assets and its application in natural resources balance sheet compile[J]. Ecology and Environmental Sciences, 29(12): 2465-2472. | |
[100] | 于丹, 1994. 水毛茛生理生态学研究[J]. 水生生物学报, 18(3): 254-262. |
YU D, 1994. The Physioecology of Ranunculus Bungei study[J]. Acta Hydrobiologica Sinica, 18(3): 254-262. | |
[101] | 张倩妮, 陈永华, 杨皓然, 等, 2019. 29种水生植物对农村生活污水净化能力研究[J]. 农业资源与环境学报, 36(3): 392-402. |
ZHANG Q N, CHEN Y H, YANG H R, et al., 2019. Study on the purification ability of 29 aquatic plants to rural domestic sewage[J]. Journal of Agricultural Resources and Environment, 36(3): 392-402. | |
[102] | 赵家荣, 秦八一, 2003. 水生观赏植物[M]. 北京: 化学工业出版社. |
HAO J R, QIN B Y, 2003. Aquatic ornamental plants[M]. Beijing: Chemical Industry Press. | |
[103] | 周金波, 金树权, 姚永如, 等, 2011. 冬季低温条件下6种水生植物水质氮、磷净化能力比较[J]. 浙江农业学报, 23(2): 369-372. |
ZHOU J B, JIN S Q, YAO Y R, et al., 2011. Comparison of nitrogen and phosphorus purification ability of six aquatic macrophytes under low temperature in winter[J]. Acta Agriculturae Zhejiangensis, 23(2): 369-372. | |
[104] | 周玥, 韩玉国, 张梦, 等, 2016. 4种不同生活型湿地植物对富营养化水体的净化效果[J]. 应用生态学报, 27(10): 3353-3360. |
ZHOU Y, HAN Y G, ZHANG M, et al., 2016. Purification efficiency of four different ecotypes of wetland plants on eutrophic water body[J]. Chinese Journal of Applied Ecology, 27(10): 3353-3360. | |
[105] | 祝国荣, 张萌, 王芳侠, 等, 2017. 从生物力学角度诠释富营养化引发的水生植物衰退机理[J]. 湖泊科学, 29(5): 1029-1042. |
ZHU G R, ZHANG M, WANG F X, et al., 2017. Role of biomechanics in decline of aquatic macrophytes during the progress of eutrophication[J]. Journal of Lake Sciences, 29(5): 1029-1042.
DOI URL |
[1] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environment, 2022, 31(8): 1537-1546. |
[2] | LIANG Junfen, CAI Xun, FENG Shanshan, TAO Liang. Evaluation of the Development Degree and Restriction Factors of Agricultural and Rural Modernization in the Pearl River Delta Region [J]. Ecology and Environment, 2022, 31(8): 1680-1689. |
[3] | LIU Ning, LIU Yang, XU Jingping, SONG Huiping, FENG Zhengjun, CHENG Fangqin. Effects of Arbuscular Mycorrhizal Fungi on Plant Growth and Water Purification in Constructed Wetlands [J]. Ecology and Environment, 2022, 31(7): 1434-1441. |
[4] | GU Chen, JIA Zhiqing, DU Bobo, HE Lingxianzi, LI Qingxue. Reviews and Prospects of Ecological Restoration Measures for Degraded Grasslands of China [J]. Ecology and Environment, 2022, 31(7): 1465-1475. |
[5] | LIU Xianghong, YIN Qinrui, XIN Jianbao, LIU Wei, XU Xiuquan, HUANG Zhanbin, AN Ruyi. Technology Research Progress and Prospects of Natural Vegetation Restoration and Its Artificial Promotion [J]. Ecology and Environment, 2022, 31(7): 1476-1488. |
[6] | ZHOU Dixuan, LIN Yongbiao, WANG Yanjia, LIU Zhanfeng, ZHOU Lixia. Assessment of Main Ecosystem Services in Subtropical Plantations [J]. Ecology and Environment, 2021, 30(5): 907-919. |
[7] | WANG Haoyue, GUO Yuefeng, XU Yajie, QI Wei, BU Fanjing, QI Huijuan. Coupling Relationship between Vegetation and Soil System in Ecological Restoration of Different Stand Types in Jiufeng Mountain [J]. Ecology and Environment, 2021, 30(12): 2309-2316. |
[8] | WANG Qin, LI Wei. Research Progress and Prospect of Regional Resources and Environment Carrying Capacity Evaluation [J]. Ecology and Environment, 2020, 29(7): 1487-1498. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn