Ecology and Environment ›› 2021, Vol. 30 ›› Issue (10): 2026-2032.DOI: 10.16258/j.cnki.1674-5906.2021.10.009
• Research Articles • Previous Articles Next Articles
SUI Yanghui1,2(), GAO Jiping2, WANG Yanbo1,*(
), XIAO Wanxin1, LIU Jing1, SHI Lei1, ZHAO Haiyan1, ZHANG Yang1
Received:
2021-04-12
Online:
2021-10-18
Published:
2021-12-21
Contact:
WANG Yanbo
隋阳辉1,2(), 高继平2, 王延波1,*(
), 肖万欣1, 刘晶1, 史磊1, 赵海岩1, 张洋1
通讯作者:
王延波
作者简介:
隋阳辉(1984年生),女,博士研究生,主要从事玉米栽培生理及生物炭应用基础研究。E-mail: suiyanghui@126.com
基金资助:
CLC Number:
SUI Yanghui, GAO Jiping, WANG Yanbo, XIAO Wanxin, LIU Jing, SHI Lei, ZHAO Haiyan, ZHANG Yang. Biochar and Nitrogen Fertilizer Effects on Soil Nutrient and Root Distribution in Dryland Maize[J]. Ecology and Environment, 2021, 30(10): 2026-2032.
隋阳辉, 高继平, 王延波, 肖万欣, 刘晶, 史磊, 赵海岩, 张洋. 氮肥配施生物炭对旱地土壤养分和玉米根系径级分布的影响[J]. 生态环境学报, 2021, 30(10): 2026-2032.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.10.009
处理 Treatment | 有机质 Organic matter/ (g∙kg-1) | 碱解氮 Alkaline hydrolysis nitrogen/ (mg∙kg-1) | 有效磷 Available phosphorus/ (mg∙kg-1) | 全氮 Total nitrogen/ (mg∙g-1) | 全碳 Total carbon/ (mg∙g-1) | 碳氮比 Carbon nitrogen ratio |
---|---|---|---|---|---|---|
CK | 16.33±0.34c | 114.65±1.35e | 9.47±0.39d | 0.91±0.00d | 9.47±0.02d | 10.36±0.02a |
N1C0 | 19.15±0.39a | 125.46±2.09cd | 17.17±0.66b | 1.00±0.04c | 8.93±0.00e | 8.97±0.33d |
N1C1 | 17.39±0.33b | 129.07±1.95bc | 13.42±0.41c | 1.09±0.00b | 10.66±0.01b | 9.82±0.05b |
N1C2 | 14.52±0.46d | 148.89±2.05a | 4.75±0.27f | 1.13±0.02a | 10.91±0.01a | 9.66±0.19bc |
N2C0 | 17.78±0.32b | 130.18±1.54b | 22.64±0.83a | 1.09±0.00b | 9.65±0.20c | 8.83±0.15d |
N2C1 | 15.67±0.49c | 121.66±2.24d | 6.91±0.20e | 1.13±0.01a | 10.69±0.01b | 9.42±0.09c |
N2C2 | 17.43±0.16b | 124.98±1.94d | 6.81±0.17e | 1.09±0.01b | 10.84±0.10a | 9.93±0.02b |
Table 1 Effect of biochar combined with nitrogen fertilizer on topsoil (0-20 cm) nutrient
处理 Treatment | 有机质 Organic matter/ (g∙kg-1) | 碱解氮 Alkaline hydrolysis nitrogen/ (mg∙kg-1) | 有效磷 Available phosphorus/ (mg∙kg-1) | 全氮 Total nitrogen/ (mg∙g-1) | 全碳 Total carbon/ (mg∙g-1) | 碳氮比 Carbon nitrogen ratio |
---|---|---|---|---|---|---|
CK | 16.33±0.34c | 114.65±1.35e | 9.47±0.39d | 0.91±0.00d | 9.47±0.02d | 10.36±0.02a |
N1C0 | 19.15±0.39a | 125.46±2.09cd | 17.17±0.66b | 1.00±0.04c | 8.93±0.00e | 8.97±0.33d |
N1C1 | 17.39±0.33b | 129.07±1.95bc | 13.42±0.41c | 1.09±0.00b | 10.66±0.01b | 9.82±0.05b |
N1C2 | 14.52±0.46d | 148.89±2.05a | 4.75±0.27f | 1.13±0.02a | 10.91±0.01a | 9.66±0.19bc |
N2C0 | 17.78±0.32b | 130.18±1.54b | 22.64±0.83a | 1.09±0.00b | 9.65±0.20c | 8.83±0.15d |
N2C1 | 15.67±0.49c | 121.66±2.24d | 6.91±0.20e | 1.13±0.01a | 10.69±0.01b | 9.42±0.09c |
N2C2 | 17.43±0.16b | 124.98±1.94d | 6.81±0.17e | 1.09±0.01b | 10.84±0.10a | 9.93±0.02b |
Fig. 2 Effects of biochar combined with nitrogen fertilizer on maize root develop Means±SD, n=3; Different letters meant significant difference at 0.05 level. The same below
处理 Treatment | 大喇叭口期 Large bell stage | 成熟期 Ripening stage | |||||||
---|---|---|---|---|---|---|---|---|---|
0<D<2 | 2<D<3 | 3<D<4 | D>4 | 0<D<2 | 2<D<3 | 3<D<4 | D>4 | ||
CK | 4671.42±102.77b | 253.27±29.74d | 125.72±28.76b | 160.84±31.71c | 6304.36±198.90c | 356.06±36.70ab | 218.55±25.79abc | 281.63±47.49bc | |
N1C0 | 6025.78±233.55a | 423.01±42.05a | 210.43±33.77a | 403.23±71.64ab | 7943.97±323.36b | 403.50±42.74a | 241.24±54.86a | 395.55±91.13a | |
N1C1 | 5575.51±179.41ab | 366.80±70.90ab | 198.17±42.61a | 442.39±63.32a | 8691.10±630.23a | 356.35±22.17ab | 169.08±29.88c | 266.41±29.46bc | |
N1C2 | 5492.36±1123.71ab | 337.89±79.47cd | 190.92±5.13a | 282.46±108.66bc | 6386.21±196.26c | 329.37±32.20b | 214.60±39.06abc | 245.40±42.79c | |
N2C0 | 5890.38±280.27a | 418.47±74.42bc | 230.54±51.05a | 412.96±92.69ab | 6516.58±448.54c | 349.37±16.82ab | 175.91±7.61bc | 260.19±39.34bc | |
N2C1 | 6488.36±205.90a | 462.11±54.74ab | 224.92±28.81a | 362.58±62.01ab | 6147.78±78.22c | 318.26±13.67b | 214.68±6.56abc | 346.19±61.30ab | |
N2C2 | 5943.47±562.81a | 333.99±52.67ab | 181.69±42.52ab | 303.98±52.22ab | 5584.62±98.27d | 332.22±58.63b | 232.85±20.87ab | 279.72±39.14bc |
Table 2 Effect of biochar combined with nitrogen fertilizer on maize root diameter class distribution
处理 Treatment | 大喇叭口期 Large bell stage | 成熟期 Ripening stage | |||||||
---|---|---|---|---|---|---|---|---|---|
0<D<2 | 2<D<3 | 3<D<4 | D>4 | 0<D<2 | 2<D<3 | 3<D<4 | D>4 | ||
CK | 4671.42±102.77b | 253.27±29.74d | 125.72±28.76b | 160.84±31.71c | 6304.36±198.90c | 356.06±36.70ab | 218.55±25.79abc | 281.63±47.49bc | |
N1C0 | 6025.78±233.55a | 423.01±42.05a | 210.43±33.77a | 403.23±71.64ab | 7943.97±323.36b | 403.50±42.74a | 241.24±54.86a | 395.55±91.13a | |
N1C1 | 5575.51±179.41ab | 366.80±70.90ab | 198.17±42.61a | 442.39±63.32a | 8691.10±630.23a | 356.35±22.17ab | 169.08±29.88c | 266.41±29.46bc | |
N1C2 | 5492.36±1123.71ab | 337.89±79.47cd | 190.92±5.13a | 282.46±108.66bc | 6386.21±196.26c | 329.37±32.20b | 214.60±39.06abc | 245.40±42.79c | |
N2C0 | 5890.38±280.27a | 418.47±74.42bc | 230.54±51.05a | 412.96±92.69ab | 6516.58±448.54c | 349.37±16.82ab | 175.91±7.61bc | 260.19±39.34bc | |
N2C1 | 6488.36±205.90a | 462.11±54.74ab | 224.92±28.81a | 362.58±62.01ab | 6147.78±78.22c | 318.26±13.67b | 214.68±6.56abc | 346.19±61.30ab | |
N2C2 | 5943.47±562.81a | 333.99±52.67ab | 181.69±42.52ab | 303.98±52.22ab | 5584.62±98.27d | 332.22±58.63b | 232.85±20.87ab | 279.72±39.14bc |
处理 Treatment | 大喇叭口期 Large bell stage | 成熟期 Ripening stage | |||||
---|---|---|---|---|---|---|---|
单株干物质 Dry matter/g | 根冠比 Root-shoot ratio | 比根长 Specific root length | 单株干物质 Dry matter/g | 根冠比 Root-shoot ratio | 比根长 Specific root length | ||
CK | 84.23±12.04c | 0.090±0.002a | 6.21±0.80a | 293.90±24.71b | 0.027±0.002ab | 8.09±0.71a | |
N1C0 | 149.87±41.85abc | 0.098±0.035a | 4.60±1.49a | 345.37±26.47a | 0.030±0.004a | 7.78±1.70a | |
N1C1 | 203.03±13.71a | 0.097±0.001a | 2.84±0.19a | 320.60±26.99ab | 0.029±0.003ab | 9.51±0.57a | |
N1C2 | 133.40±61.32bc | 0.093±0.019a | 4.99±1.88a | 317.53±43.07ab | 0.024±0.003b | 8.55±0.70a | |
N2C0 | 141.10±51.29abc | 0.096±0.006a | 4.84±1.95a | 293.30±16.11b | 0.027±0.000ab | 8.26±0.37a | |
N2C1 | 187.73±38.20ab | 0.097±0.011a | 3.77±1.23a | 291.43±51.15ab | 0.024±0.004b | 9.20±1.26a | |
N2C2 | 123.50±7.18bc | 0.110±0.001a | 4.35±0.15a | 289.57±21.82b | 0.023±0.003b | 8.70±1.68a |
Table 3 Effects of biochar combined with nitrogen fertilizer on the growth of shoot and roots
处理 Treatment | 大喇叭口期 Large bell stage | 成熟期 Ripening stage | |||||
---|---|---|---|---|---|---|---|
单株干物质 Dry matter/g | 根冠比 Root-shoot ratio | 比根长 Specific root length | 单株干物质 Dry matter/g | 根冠比 Root-shoot ratio | 比根长 Specific root length | ||
CK | 84.23±12.04c | 0.090±0.002a | 6.21±0.80a | 293.90±24.71b | 0.027±0.002ab | 8.09±0.71a | |
N1C0 | 149.87±41.85abc | 0.098±0.035a | 4.60±1.49a | 345.37±26.47a | 0.030±0.004a | 7.78±1.70a | |
N1C1 | 203.03±13.71a | 0.097±0.001a | 2.84±0.19a | 320.60±26.99ab | 0.029±0.003ab | 9.51±0.57a | |
N1C2 | 133.40±61.32bc | 0.093±0.019a | 4.99±1.88a | 317.53±43.07ab | 0.024±0.003b | 8.55±0.70a | |
N2C0 | 141.10±51.29abc | 0.096±0.006a | 4.84±1.95a | 293.30±16.11b | 0.027±0.000ab | 8.26±0.37a | |
N2C1 | 187.73±38.20ab | 0.097±0.011a | 3.77±1.23a | 291.43±51.15ab | 0.024±0.004b | 9.20±1.26a | |
N2C2 | 123.50±7.18bc | 0.110±0.001a | 4.35±0.15a | 289.57±21.82b | 0.023±0.003b | 8.70±1.68a |
[1] |
ARIF M, ILYAS M, RIAZ M, et al., 2017. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil[J]. Field Crops Research, 214:25-37.
DOI URL |
[2] |
BARBERON M, GELDNER N, 2014. Radial Transport of Nutrients: The Plant Root as a Polarized Epithelium[J]. Plant Physiology, 166(2):528-537.
DOI URL |
[3] | DING Y, LIU Y X, WU W X, et al., 2010. Evaluation of Biochar Effects on Nitrogen Retention and Leaching in Multi-Layered Soil Columns[J]. Water Air & Soil Pollution, 213(1-4):47-55. |
[4] |
GAO J P, ZHAO Y Z, ZHANG W Z, et al., 2019. Biochar prepared at different pyrolysis temperatures affects urea-nitrogen immobilization and N2O emissions in paddy fields[J]. Peer J, 7:e7027.
DOI URL |
[5] |
JIN Z W, CHEN C, CHEN X M, et al., 2019. Soil acidity, available phosphorus content, and optimal biochar and nitrogen fertilizer application rates: A five-year field trial in upland red soil, China[J]. Field Crops Research, 232:77-87.
DOI URL |
[6] |
KIM H S, KIM K R, YANG J E, et al., 2016. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response[J]. Chemosphere, 142:153-159.
DOI URL |
[7] |
LEE C H, WANG C C, LIN H H, et al., 2018. In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil[J]. Science of the Total Environment, 619-620:665-671.
DOI URL |
[8] | LEHMANN J, 2002. Biochar (Black Carbon) Stability and Stabilization in Soil[C]// Soil Science: Confronting New Realities in the 21st Century. Bangkok: 7th World Congress of Soil Science: 1-12. |
[9] |
LEHMANN J, DA SILVA JR J P, STEINER C, et al., 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments[J]. Plant and Soil, 249(2):343-357.
DOI URL |
[10] | LEHMANN J, JOSEPH S, 2009. Biochar for environmental management: Science and technology. Earthscan. |
[11] |
MOLLER A L B, PEDAS P, ANDERSEN B, et al., 2011. Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium[J]. Plant Cell and Environment, 34(12):2024-2037.
DOI URL |
[12] |
PAN X, BAQUY M A A, GUAN P, et al., 2020. Effect of soil acidification on the growth and nitrogen use efficiency of maize in Ultisols[J]. Journal of Soils and Sediments, 20(3):1435-1445.
DOI URL |
[13] |
SANCHEZ P A, VILLACHIA J H, BANDY D E, 1983. Soil fertility dynamics after clearing tropical rainforest in Peru[J]. Soil Science Society of America Journal, 47(6):1171-1178.
DOI URL |
[14] |
SUI Y H, GAO J P, LIU C H, et al., 2016. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China[J]. Science of the Total Environment, 544:203-210.
DOI URL |
[15] |
VAN ZWIETEN L, KIMBER S, MORRIS S, et al., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 327:235-246.
DOI URL |
[16] |
WANG Z, WANG Z, LUO Y, et al., 2020. Biochar increases 15N fertilizer retention and indigenous soil N uptake in a cotton-barley rotation system[J]. Geoderma, DOI: 10.1016/j.geoderma.2019.113944.
DOI |
[17] |
YU J J, HU H C, WU X D, et al., 2020. Coupling of biochar-mediated absorption and algal-bacterial system to enhance nutrients recovery from swine wastewater[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2019.134935.
DOI |
[18] | 包立, 刘惠见, 邓洪, 等, 2018. 玉米秸秆生物炭对滇池流域大棚土壤磷素利用和小白菜生长的影响[J]. 土壤学报, 55(4):815-825. |
BAO L, LIU H J, DENG H, et al., 2018. Effect of Straw Biochar on Utilization of Soil Phosphorus and Growth of Bok Choi in Greenhouse in Dianchi Lake Basin[J]. Acta Pedologica Sinica, 55(4):815-825. | |
[19] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2000. Soil agrochemical analysis [M]. Beijing: China Agricultural Press. | |
[20] | 陈温福, 张伟明, 孟军, 2014. 生物炭与农业环境研究回顾与展望[J]. 农业环境科学学报, 33(5):821-828. |
CHEN W F, ZHANG W M, MENG J, 2014. Biochar and Agro- ecological Environment: Review and Prospect[J]. Journal of Agro- Environment Science, 33(5):821-828. | |
[21] | 程效义, 孟军, 黄玉威, 等, 2016. 生物炭对玉米根系生长和氮素吸收及产量的影响[J]. 沈阳农业大学学报, 47(2):218-223. |
CHENG X Y, MENG J, HUANG Y W, et al., 2016. Effect of Biochar on Root Growth, Absorption of Nitrogen and Maize Yield[J]. Journal of Shenyang Agricultural University, 47(2):218-223. | |
[22] | 盖霞普, 刘宏斌, 翟丽梅, 等, 2015. 玉米秸秆生物炭对土壤无机氮素淋失风险的影响研究[J]. 农业环境科学学报, 4(2):310-318. |
GAI X P, LIU H B, ZHAI LM, et al., 2015. Effects of Corn-Stalk Biochar on Inorganic Nitrogen Leaching from Soil[J]. Journal of Agro-Environment Science, 4(2):310-318. | |
[23] | 高祥照, 马文奇, 崔勇, 等, 2000. 我国耕地土壤养分变化与肥料投入状况[J]. 植物营养与肥料学报, 6(4):363-369. |
GAO X Z, MA W Q, CUI Y, et al., 2000. Changes of soil nutrient contents and input of nutrients in arable of China[J]. Plant Nutrition and Fertilizer Science, 6(4):363-369. | |
[24] | 郭俊娒, 2015. 不同施肥模式对东北春玉米氮素利用与农田温室气体排放的影响[D]. 北京: 中国农业科学院. |
GUO J M, 2015. Effect of Fertilizer Application Models on High Efficient Use of Nitrogen and Greenhouse Gases Emission in Spring Maize in Northeast China [D]. Beijing: Chinese Academy of Agricultural Sciences. | |
[25] | 蒋健, 王宏伟, 刘国玲, 等, 2015. 生物炭对玉米根系特性及产量的影响[J]. 玉米科学, 23(4):62-66. |
JIANG J, WANG H W, LIU G L, et al., 2015. Effect of Biochar on Root Characteristics and Yield in Maize[J]. Journal of Maize Sciences, 23(4):62-66. | |
[26] | 巨晓棠, 谷保静, 2014. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 20(4):783-795. |
JU X T, GU B J, 2014. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 20(4):783-795. | |
[27] | 刘赛男, 高尚, 程效义, 等, 2019. 玉米秸秆生物炭对秸秆腐熟进程、养分含量和CO2排放量的影响[J]. 应用生态学报, 30(4):1312-1318. |
LIU S N, GAO S, CHENG X Y, et al., 2019. Effects of corn straw biochar on process, nutrient content, and CO2 emissions of corn straw decomposition[J]. Chinese Journal of Applied Ecology, 30(4):1312-1318. | |
[28] | 刘悦, 黎子涵, 邹博, 等, 2017. 生物炭影响作物生长及其与化肥混施的增效机制研究进展[J]. 应用生态学报, 28(3):1030-1038. |
LIU Y, LI Z H, ZOU B, et al., 2017. Research progress in effects of biochar application on crop growth and synergistic mechanism of biochar with fertilizer[J]. Chinese Journal of Applied Ecology, 28(3):1030-1038. | |
[29] | 孟繁昊, 高聚林, 于晓芳, 等, 2018. 生物炭配施氮肥改善表层土壤生物化学性状研究[J]. 植物营养与肥料学报, 24(5):1214-1226. |
MENG F H, GAO J L, YU X F, et al., 2018. Inprovent of biochemical property of surface soil by combined application of biochar with nitrogen fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 24(5):1214-1226. | |
[30] | 孟繁昊, 于晓芳, 王志刚, 等, 2020. 生物炭配施氮肥对土壤物理性质及春玉米产量的影响[J]. 玉米科学, 28(1):142-150. |
MENG F H, YU X F, WANG Z G, et al., 2020. Effects of Physical Property of Soil and Yield of Spring Corn by Combined Application of Biochar and Nitrogen[J]. Journal of Maize Sciences, 28(1):142-150. | |
[31] | 孟军, 张伟明, 王绍斌, 等, 2011. 农林废弃物炭化还田技术的发展与前景[J]. 沈阳农业大学学报, 42(4):387-392. |
MENG J, ZHANG W M, WANG S B, et al., 2011. Development and Prospect of Carbonization and Returning Technology of Agro-forestry Residue[J]. Journal of Shenyang Agricultural University, 42(4):387-392. | |
[32] | 尚杰, 耿增超, 王月玲, 等, 2016. 施用生物炭对(土娄)土微生物量碳、氮及酶活性的影响[J]. 中国农业科学, 49(6):1142-1151. |
SHANG J, GENG Z C, WANG Y L, et al., 2016. Effect of Biochar Amendment on Soil Microbial Biomass Carbon and Nitrogen and Enzyme Activity in Tier Soils[J]. Scientia Agricultura Sinica, 49(6):1142-1151. | |
[33] |
孙宁婷, 王小燕, 周豪, 等, 2021. 生物质炭种类与混施深度对紫色土水分运移和氮磷流失的影响[J]. 土壤学报, DOI: 10.11766/ trxb202008130360.
DOI |
SUN N T, WANG X Y, ZHOU H, et al., 2021. Effects of Kind and Incorporation Depth of Biochars on Water Movement and Nitrogen and Phosphorus Loss in Purple Soil[J]. Acta Pedologica Sinica, DOI: 10.11766/trxb202008130360.
DOI |
|
[34] | 肖焱波, 李隆, 张福锁, 2005. 用同位素15N直接法和间接法研究小麦/蚕豆间作中根系相互作用对种间竞争及氮转移的影响[C]. 贵州省自然科学优秀学术论文集. |
XIAO Y B, LI L, ZHANG F S, 2005. Effects of Root Interaction on Interspecific Competition and Nitrogen Transfer in Wheat/Broad Bean Intercropping with Isotope 15N[C]. Guizhou Province Natural Science Excellent Memoirs. | |
[35] | 谢祖彬, 刘琦, 许燕萍, 等, 2011. 生物炭研究进展及其研究方向[J]. 土壤, 43(6):857-861. |
XIE Z B, LIU Q, XU Y P, et al., 2011. Advances and Perspectives of Biochar Research[J]. Soils, 43(6):857-861. | |
[36] | 战秀梅, 彭靖, 王月, 等, 2015. 生物炭及炭基肥改良棕壤理化性状及提高花生产量的作用[J]. 植物营养与肥料学报, 21(6):1633-1641. |
ZHAN X M, PENG J, WANG Y, et al., 2015. Influences of application of biochar and biochar-based fertilizer on brown soil physiochemical properties and peanut yields[J]. Journal of Plant Nutrition and Fertilizer, 21(6):1633-1641. | |
[37] | 张卫峰, 马林, 黄高强, 等, 2013. 中国氮肥发展、贡献和挑战[J]. 中国农业科学, 46(15):3161-3171. |
ZHANG W F, MA L, HUANG G Q, et al., 2013. The Development and Contribution of Nitrogenous Fertilizer in China and Challenges Faced by the Country[J]. Scientia Agricultura Sinica, 46(15):3161-3171. | |
[38] | 赵兰坡, 王鸿斌, 刘会青, 等, 2006. 松辽平原玉米带黑土肥力退化机理研究[J]. 土壤学报, 43(1):79-84. |
ZHAO L P, WANG H B, LIU H Q, et al., 2006. Mechanism of fertility degradation of black soil in corn belt of Songliao Plain[J]. Acta Pedologica Sinica, 43(1):79-84. | |
[39] | 朱倩, 姚兴东, 单玉姿, 等, 2019. 生物炭对R2期大豆根系生长和氮磷吸收利用的影响[J]. 沈阳农业大学学报, 50(4):385-391. |
ZHU Q, YAO X D, SHAN Y Z, et al., 2019. Effects of Biochar on Root Growth at R2 Stage, and Nitrogen, Phosphorus Uptake and Utilization of Soybean[J]. Journal of Shenyang Agricultural University, 50(4):385-391. | |
[40] | 朱艳, 肖清波, 奚永兰, 等, 2020. 改性生物炭制备条件对磷吸附性能的影响[J]. 生态环境学报, 29(9):1897-1903. |
ZHU Y, XIAO Q B, XI Y L, et al., 2020. Effect of Preparation Conditions on the Phosphorus Adsorption Capacities of Modified Biochar[J]. Ecology and Environmental Sciences, 29(9):1897-1903. |
[1] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[2] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[3] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[4] | ZHANG Beier, WU Jianqiang, WANG Min, XIONG Lijun, TAN Juan, SHEN Cheng, HUANG Botao, HUANG Shenfa. Evaluation of Soil Health in Different Arable Land Ecological Conservation Projects [J]. Ecology and Environment, 2023, 32(2): 388-396. |
[5] | CUI Yuanyuan, ZHANG Zhengyun, LIU Peng, ZHANG Yunchun, ZHANG Qiaoying. Morphological Characteristics and Fractal Dimension of Brassia chinensis Root System under Cadmium and Polyethylene Microplastic Stress [J]. Ecology and Environment, 2023, 32(1): 158-165. |
[6] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[7] | YOU Hongjian, ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune. Effects of Earthworm in-situ Composting and Biochar on Cucumber Root-knot Nematodes and Rhizosphere Microorganisms [J]. Ecology and Environment, 2023, 32(1): 99-109. |
[8] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[9] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[10] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[11] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[12] | XIA Enlong, NONG Junqing, WEI Songpo, LIU Xizhen, LIU Guanglu. Changes in Soil Nutrient Characteristics in Moso Bamboo Forest Expanding into Broadleaved Forest [J]. Ecology and Environment, 2022, 31(6): 1110-1117. |
[13] | LIU Xiaohong, LIU Liuqingqing, LI Min, LIU Qiang, CAO Dongdong, ZHENG Hao, LUO Xianxiang. Effects of Polyethylene Microplastics with Different Particle Sizes on Seed Germination and Seedling Growth of Maize and Cucumber [J]. Ecology and Environment, 2022, 31(6): 1263-1271. |
[14] | ZHANG Huiqi, LI Zizhong, QI Yan. Effects of Corn Straw-based Biochar Amount on Pores and Water Holding Capacity of Sandy Soil [J]. Ecology and Environment, 2022, 31(6): 1272-1277. |
[15] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn