Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (12): 1890-1899.DOI: 10.16258/j.cnki.1674-5906.2025.12.006
• Original article [Ecology] • Previous Articles Next Articles
GUAN Jinshun1(
), JIANG Xinyu2,*(
), CHENG Jiong2, CHEN Sanxiong1,*(
), YU Shiqin3
Received:2025-03-12
Online:2025-12-18
Published:2025-12-10
官金顺1(
), 蒋新宇2,*(
), 程炯2, 陈三雄1,*(
), 余世钦3
通讯作者:
*E-mail:Chensanxiong@zhku.edu.cn;xyjiang@soil.gd.cn
作者简介:官金顺(1997年生),男,硕士研究生,研究方向为植被恢复与地力维持。E-mail: 1902389795@qq.com
基金资助:CLC Number:
GUAN Jinshun, JIANG Xinyu, CHENG Jiong, CHEN Sanxiong, YU Shiqin. Study on the Enhancement of Carbon and Nitrogen Retention in Rare Earth Tailings Soil by Microalgae[J]. Ecology and Environmental Sciences, 2025, 34(12): 1890-1899.
官金顺, 蒋新宇, 程炯, 陈三雄, 余世钦. 藻液添加提升稀土尾矿砂土壤碳氮固持能力[J]. 生态环境学报, 2025, 34(12): 1890-1899.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.12.006
| w(全氮)/ (g·kg−1) | w(溶解性有机碳)/ (mg·kg−1) | w(总有机碳)/ (g·kg−1) | 土壤 pH | 土壤容重/ (g·cm−3) | 砂粒占比/% | 粉粒占比/% | 黏粒占比/% |
|---|---|---|---|---|---|---|---|
| 0.050 | 42.600 | 1.530 | 4.920 | 1.530 | 58.1 | 41.5 | 0.402 |
Table 1 Background values of the tailings sand soil for testing
| w(全氮)/ (g·kg−1) | w(溶解性有机碳)/ (mg·kg−1) | w(总有机碳)/ (g·kg−1) | 土壤 pH | 土壤容重/ (g·cm−3) | 砂粒占比/% | 粉粒占比/% | 黏粒占比/% |
|---|---|---|---|---|---|---|---|
| 0.050 | 42.600 | 1.530 | 4.920 | 1.530 | 58.1 | 41.5 | 0.402 |
| 检测指标 | 处理 | 背景值/ (g·kg−1) | 藻液施加量/ (g·kg−1) | 净增加量/ (g·kg−1) |
|---|---|---|---|---|
| 有机碳 | 活性微藻 | 1.530 | 1.556 | 1.476b |
| 灭活微藻 | 1.530 | 1.556 | 1.832a | |
| 对照试验 | 1.530 | 0 | 0.285c | |
| 总氮 | 活性微藻 | 0.050 | 0.100 | 0.564a |
| 灭活微藻 | 0.050 | 0.100 | 0.415b | |
| 对照试验 | 0.050 | 0 | 0.068c |
Table 2 Analysis of net increase in soil organic carbon (a) and total nitrogen (b)
| 检测指标 | 处理 | 背景值/ (g·kg−1) | 藻液施加量/ (g·kg−1) | 净增加量/ (g·kg−1) |
|---|---|---|---|---|
| 有机碳 | 活性微藻 | 1.530 | 1.556 | 1.476b |
| 灭活微藻 | 1.530 | 1.556 | 1.832a | |
| 对照试验 | 1.530 | 0 | 0.285c | |
| 总氮 | 活性微藻 | 0.050 | 0.100 | 0.564a |
| 灭活微藻 | 0.050 | 0.100 | 0.415b | |
| 对照试验 | 0.050 | 0 | 0.068c |
| 检测指标 | 处理 | 粗颗粒态 质量分数/ (g·kg−1) | 细颗粒态 质量分数/ (g·kg−1) | 矿物结合态 质量分数/ (g·kg−1) |
|---|---|---|---|---|
| 有机碳 | 活性微藻 | 2.080b | 1.177a | 1.633a |
| 灭活微藻 | 2.470a | 0.977a | 1.507a | |
| 对照试验 | 1.090c | 0.450b | 0.647b | |
| 总氮 | 活性微藻 | 0.350a | 0.157a | 0.247a |
| 灭活微藻 | 0.260b | 0.137a | 0.197b | |
| 对照试验 | 0.053c | 0.027b | 0.063c |
Table 3 Variations in carbon and nitrogen fractions of tailings sand soil under microalgae amendment
| 检测指标 | 处理 | 粗颗粒态 质量分数/ (g·kg−1) | 细颗粒态 质量分数/ (g·kg−1) | 矿物结合态 质量分数/ (g·kg−1) |
|---|---|---|---|---|
| 有机碳 | 活性微藻 | 2.080b | 1.177a | 1.633a |
| 灭活微藻 | 2.470a | 0.977a | 1.507a | |
| 对照试验 | 1.090c | 0.450b | 0.647b | |
| 总氮 | 活性微藻 | 0.350a | 0.157a | 0.247a |
| 灭活微藻 | 0.260b | 0.137a | 0.197b | |
| 对照试验 | 0.053c | 0.027b | 0.063c |
| [1] |
ABINANDAN S, SUBASHCHANDRABOSE S R, VENKATESWARLU K, et al., 2019. Soil microalgae and cyanobacteria: The biotechnological potential in the maintenance of soil fertility and health[J]. Critical Reviews in Biotechnology, 39(8): 981-998.
DOI PMID |
| [2] | BRUSSAARD L, KOOISTRA M J, 1993. Soil Structure/soil Biota Interrelationships[M]. Amsterdam: Elsevier: 449-457. |
| [3] |
BOWKER M A, MAESTRE F T, ELDRIDGE D, et al., 2014. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology[J]. Biodiversity and Conservation, 23: 1619-1637.
DOI URL |
| [4] |
COTRUFO F M, SOONG L J, HORTON J A, et al., 2019. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 8: 776-779.
DOI |
| [5] |
ELLIOTT E, 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 50(3): 627-633.
DOI URL |
| [6] |
FIERER N, SCHIMEL J P, HOLDEN P A, 2003. Influence of drying-rewetting frequency on soil bacterial community structure[J]. Microbial Ecology, 45: 63-71.
DOI PMID |
| [7] |
HU Y L, DENG Q, KÄTTERER T, et al., 2024. Depth-dependent responses of soil organic carbon under nitrogen deposition[J]. Global Change Biology, 30(3): e17247.
DOI URL |
| [8] |
JASSEY V E, WALCKER R, KARDOL P, et al., 2022. Contribution of soil algae to the global carbon cycle[J]. New Phytologist, 234(1): 64-76.
DOI PMID |
| [9] |
KLEBER M, SOLLINS P, SUTTON R, et al., 2007. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 85(1): 9-24.
DOI URL |
| [10] |
LAN S B, WU L, YANG H J, et al., 2017. A new biofilm based microalgal cultivation approach on shifting sand surface for desert cyanobacterium Microcoleus vaginatus[J]. Bioresource Technology, 238: 602-608.
DOI PMID |
| [11] |
LAVALLEE J M, SOONG J L, COTRUFO M F, 2020. Conceptualizing soil organic matter into particulate and mineral-associated forms[J]. Global Change Biology, 26(1): 261-273.
DOI URL |
| [12] |
LUCAS M, SCHLÜTER S, VOGEL H J, et al., 2019. Soil structure formation along an agricultural chronosequence[J]. Geoderma, 350: 61-72.
DOI |
| [13] |
ROBERTSON G P, KLINGENSMITH K M, KLUG M J, et al., 1997. Soil resources, microbial activity, and primary production acrossan agricultural ecosystem[J]. Ecological Applications, 7(1): 158-170.
DOI URL |
| [14] |
SHANTHAKUMAR S, ABINANDAN S, VENKATESWARLU K, et al., 2021. Algalization of acid soils with acid-tolerant strains: Improvement in pH, carbon content, exopolysaccharides, indole acetic acid and dehydrogenase activity[J]. Land Degradation & Development, 32(11): 3157-3166.
DOI URL |
| [15] |
SIX J, BOSSUYT H, DEGRYZE S, et al., 2004. A history of research on the link between aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 79(1): 7-31.
DOI URL |
| [16] |
SYERS J K, SPRINGETT J A, 1984. Earthworms and soil fertility[J]. Plant and Soil, 76(1): 93-104.
DOI URL |
| [17] | TAN W F, XU Y, SHI Z H, et al., 2023. The formation process and stabilization mechanism of soil aggregates driven by binding materials[J]. Acta Pedologica Sinica, 60(5): 1297-1308. |
| [18] |
XIONG K, JIANK X Y, HUANG S Q, et al., 2024. Variations in iron-bound organic carbon in soils along an altitude gradient and influencing factors in a subtropical mountain ecosystem of southern China[J]. Journal of Soils and Sediments, 24(9): 3180-3194.
DOI |
| [19] |
YU M X, WANG Y P, DENG Q, et al., 2024. Soil acidification enhanced soil carbon sequestration through increased mineral protection[J]. Plant and Soil, 503(1-2): 529-544.
DOI |
| [20] |
ZHOU Y, CUI X C, WU B B, et al., 2024. Microalgal extracellular polymeric substances (EPS) and their roles in cultivation, biomass harvesting, and bioproducts extraction[J]. Bioresource Technology, 406: 131054.
DOI URL |
| [21] |
ZANG H D, MEHMOOD I, KUZYAKOV Y, et al., 2024. Not all soil carbon is created equal: Labile and stable pools under nitrogen input[J]. Global Change Biology, 30(7): e17405.
DOI URL |
| [22] | 陈宗定, 许春雪, 安子怡, 等, 2019. 土壤碳赋存形态及分析方法研究进展[J]. 岩矿测试, 38(2): 233-244. |
| CHEN Z D, XU C X, AN Z Y, et al., 2019. Research progress on soil carbon occurrence forms and analytical methods[J]. Rock and Mineral Analysis, 38(2): 233-244. | |
| [23] | 陈同, 赵远, 彭成荣, 等, 2024. 单细胞水平解析土壤固氮鱼腥藻的碳氮固存过程研究进展[J]. 微生物学报, 64(6): 1721-1734. |
| CHEN T, ZHAO Y, PENG C R, et al., 2024. Research progress on carbon and nitrogen sequestration processes in soil nitrogen-fixing Anabaena at the single-cell level[J]. Acta Microbiologica Sinica, 64(6): 1721-1734. | |
| [24] | 邓帅, 李双俊, 宋春风, 等, 2018. 微藻光合固碳效能研究: 进展、挑战和解决路径[J]. 化工进展, 37(3): 928-937. |
| DENG S, LI S J, SONG C F, et al., 2018. Research on microalgal photosynthetic carbon fixation efficiency: Progress, challenges, and solutions[J]. Chemical Industry and Engineering Progress, 37(3): 928-937. | |
| [25] |
郭强, 韩子琛, 夏允, 等, 2024. 土壤微生物固碳机理及其影响因素研究进展[J]. 植物生态学报, 48(11): 1406-1421.
DOI |
|
GUO Q, HAN Z C, XIA Y, et al., 2024. Research progress on the mechanism of soil microbial carbon fixation and its influencing factors[J]. Chinese Journal of Plant Ecology, 48(11): 1406-1421.
DOI URL |
|
| [26] | 国家林业局, 1999. 森林土壤颗粒组成(机械组成)的测定: LY/T 1225—1999[S]. 北京: 中国标准出版社. |
| State Forestry Administration, 1999. Determination of forest soil particle-size composition (mechanical composition): LY/T 1225—1999[S]. Beijing: China Standards Press. | |
| [27] | 黄尚书, 方巍, 高磊, 等, 2023. 植物修复模式对离子型稀土堆浸尾矿土壤入渗特性的影响[J]. 湖南农业科学, 553(4): 55-60. |
| HUANG S S, FANG W, GAO L, et al., 2023. Effects of phytoremediation models on soil infiltration characteristics of ionic rare earth heap leaching tailings[J]. Hunan Agricultural Sciences, 553(4): 55-60. | |
| [28] | 李清毅, 张国民, 王新烨, 等, 2024. 微藻在蓝碳中的作用机制及影响因素[J]. 安徽农业科学, 52(3): 71-76. |
| LI QY, ZHANG G M, WANG X H, et al., 2024. Mechanism and influencing factors of microalgae in blue carbon[J]. Anhui Agricultural Sciences, 52(3): 71-76. | |
| [29] | 李莎莎, 汪礼明, 熊子良, 等, 2024. 粤北左坑离子吸附型稀土矿床含矿岩体地球化学特征与稀土元素迁移-富集机理[J]. 大地构造与成矿学, 48(2): 259-273. |
| LI S S, WANG L M, XIONG Z L, et al., 2024. Geochemical characteristics of ore-bearing rocks and migration-enrichment mechanism of rare earth elements in the Zuokeng ion-adsorption type rare earth deposit, northern Guangdong[J]. Geotectonica et Metallogenia, 48(2): 259-273. | |
| [30] | 李忠意, 2012. 重庆涪陵榨菜种植区土壤酸化特征及其改良研究[D]. 重庆: 西南大学. |
| LI Z Y, 2012. Characteristics of soil acidification and its improvement in the Fuling mustard planting area of Chongqing[D]. Chongqing: Southwest University. | |
| [31] | 李欢, 王艳玲, 殷丹, 等, 2022. 水稻秸秆/根系添加对稻田红壤发生层颗粒态及矿物结合态有机碳的影响[J]. 土壤通报, 53(2): 384-391. |
| LI H, WANG Y L, YIN D, et al., 2022. Effects of rice straw and root addition on particulate and mineral-associated organic carbon in the horizons of paddy red soil[J]. Chinese Journal of Soil Science, 53(2): 384-391. | |
| [32] |
李景, 吴会军, 武雪萍, 等, 2021. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量[J]. 中国农业科学, 54(2): 334-344.
DOI |
| LI J, WU H J, WU X P, et al., 2021. Long-term no-tillage and subsoiling increased particulate organic carbon and total nitrogen contents in soil aggregates[J]. Scientia Agricultura Sinica, 54(2): 334-344. | |
| [33] | 刘丹, 2023. 微藻对土壤中地衣芽孢杆菌和玉米黑粉菌的影响[D]. 吉林: 北华大学. |
| LIU D, 2023. Effects of microalgae on Bacillus licheniformis and Ustilago maydis in soil[D]. Jilin: Beihua University. | |
| [34] | 倪妍, 黄子玥, 文婕妤, 2023. 微藻生物固碳技术研究概述[J]. 生物学教学, 48(12): 2-5. |
| NI Y, HUANG Z Y, WEN J Y, 2023. Overview of research on microalgae-based biological carbon fixation technology[J]. Biology Teaching, 48(12): 2-5. | |
| [35] | 苏兴雷, 渠晨晨, 康杰, 等, 2024. 微生物驱动土壤矿物结合态有机碳的形成[J]. 科学通报, 69(22): 3327-3338. |
| SU X L QU C C, KANG J, et al., 2024. Microbial-driven formation of mineral-associated organic carbon in soil[J]. Chinese Science Bulletin, 69(22): 3327-3338. | |
| [36] |
宋文婕, 梁誉正, 陶贞, 等, 2023. 微生物介导的土壤有机碳动态研究进展[J]. 地球科学进展, 38(12): 1213-1223.
DOI |
| SONG W J, LIANG Y Z, TAO Z, et al., 2023. Advances in microbial-mediated dynamics of soil organic carbon[J]. Advances in Earth Science, 38(12): 1213-1223. | |
| [37] | 孙贝雯, 公玮, 李月芬, 等, 2023. 塑料污染对农田土壤团聚体稳定性的影响[J]. 农业环境科学学报, 42(5): 1051-1060. |
| SUN B W, GONG W, LI Y F, et al., 2023. Effects of plastic pollution on the stability of farmland soil aggregates[J]. Journal of Agro-Environment Science, 42(5): 1051-1060. | |
| [38] | 唐东山, 卿人韦, 傅华龙, 等, 2003. 利用土壤微藻改良贫瘠土壤的研究[J]. 四川大学学报(自然科学版), 40(2): 352-355. |
| TANG D S, QING R W, FU H L, et al., 2003. Study on the improvement of barren soil using soil microalgae[J]. Journal of Sichuan University (Natural Science Edition), 40(2): 352-355. | |
| [39] | 温春辉, 2017. 离子型稀土矿区土壤中稀土元素对氮化物影响与作用研究[D]. 赣州: 江西理工大学. |
| WEN C H, 2017. Study on the effects and mechanisms of rare earth elements on nitrogen compounds in soils of ionic rare earth mining areas[D]. Ganzhou: Jiangxi University of Science and Technology. | |
| [40] | 张薇, 马金国, 王明国, 2024. 连续堆肥施用对土壤反硝化及固氮微生物的影响[J]. 宁夏农林科技, 65(12): 61-65. |
| ZHANG W, MA J G, WANG M G, 2024. Effects of continuous compost application on soil denitrification and nitrogen-fixing microorganisms[J]. Ningxia Agricultural and Forestry Science and Technology, 65(12): 61-65. | |
| [41] |
张靖洁, 刘珅坤, 唐涛, 等, 2020. 微藻源生物刺激剂的制备及在设施农业中的应用[J]. 生物技术通报, 36(4): 164-174.
DOI |
| ZHANG J J, LIU S K, TANG T, et al., 2020. Preparation of microalgae-derived biostimulants and their application in facility agriculture[J]. Biotechnology Bulletin, 36(4): 164-174. | |
| [42] | 张新平, 2021. 土壤改良和植物对赣南某离子型稀土尾矿联合修复研究[D]. 南昌: 江西农业大学. |
| ZHANG X P, 2021. Study on the combined remediation of soil improvement and plants on ionic rare earth tailings in southern Jiangxi[D]. Nanchang: Jiangxi Agricultural University. | |
| [43] | 中华人民共和国农业部, 2007. 土壤pH的测定: NY/T 1377—2007[S]. 北京: 中国标准出版社. |
| Ministry of Agriculture of the People’s Republic of China, 2007. Determination of soil pH: NY/T 1377—2007[S]. Beijing: China Standards Press. | |
| [44] | 周彩云, 张嵚, 赵小敏, 等, 2019. 赣南某原地浸析稀土尾矿复垦前后土壤质量变化[J]. 农业资源与环境学报, 36(1): 89-95. |
| ZHOU C Y, ZHANG Q, ZHAO X M, et al., 2019. Changes in soil quality before and after reclamation of in-situ leaching rare earth tailings in southern Jiangxi[J]. Journal of Agricultural Resources and Environment, 36(1): 89-95. | |
| [45] | 钟慧祺, 韩佩, 芦骞, 等, 2022. 小球藻液体肥料对3种植物生长促进作用的探究[J]. 生物学杂志, 39(3): 66-71. |
| ZHONG H Q, HAN P, LU Q, et al., 2022. Exploration of the promoting effects of Chlorella liquid fertilizer on the growth of three plant species[J]. Journal of Biology, 39(3): 66-71. |
| [1] | OUYANG Qunwen, GUO Xiaoping, HAO Jiahang, GUO Yu. Vegetation Succession Characteristics of Highway Slope Spraying in Beijing: A Perspective from the Soil Seed Bank [J]. Ecology and Environmental Sciences, 2025, 34(6): 941-949. |
| [2] | WANG Longfei, ZHANG Jiaojiao, WANG Ziyi, CHEN Yudong, LI Yi. Innovation and Practice of Biofilm-based Technology in the Ecological Restoration of Aquatic Systems [J]. Ecology and Environmental Sciences, 2025, 34(4): 653-664. |
| [3] | KONG Xiaoyun, ZHANG Yongkun, LI Runjie, LI Ying, LIN Chengqing, MA Zhanming, XIN Jilin, YANG Xiaoxuan, DANG Yile, ZHAO Jiayi, FENG Lingzheng, ZHOU Yan. Characteristics of Spatial Variation of Organic Carbon in Cultivated Soil Aggregates in Huangshui River Basin and Analysis of Its Driving Factors [J]. Ecology and Environmental Sciences, 2025, 34(11): 1715-1727. |
| [4] | XU Mingyu, YU Longsheng. Soil Improvement Effect of Agricultural and Forestry Waste Organic Materials on Ionic Rare Earth Mine Tailing [J]. Ecology and Environmental Sciences, 2025, 34(1): 126-134. |
| [5] | YE Junhong, LIU Zhenhuan, LIU Ziyu. Scenarios Simulation of Territorial Space Ecological Restoration Zoning in the Pearl River Delta Urban Agglomeration Area [J]. Ecology and Environmental Sciences, 2025, 34(1): 4-12. |
| [6] | FANG Ji, WU Xiao, GONG Qinghua, WEI Zemian, WANG Yingjia. Planning Strategy of Ecological Restoration of Land Space in Southern Coastal Agricultural Counties: Taking Xuwen County as an Example [J]. Ecology and Environmental Sciences, 2024, 33(7): 1019-1026. |
| [7] | SUN Ming, CHEN Yanli, XIE Min, MO Weihua, PAN Lianghao. Changing Characteristics of Gross Primary Production for Typical Sandy Mangrove in Guangxi and Its Response to Meteorological Factors [J]. Ecology and Environmental Sciences, 2024, 33(5): 665-678. |
| [8] | MA Zhiwei, ZHANG Congzhi, ZHAO Zhanhui, WU Qicong, ZHAO Jinhua, CHEN Zhuo, LI Jingwang, ZHANG Nan, XUE Ya, WANG Yaru, LU Yunxuan, ZHANG Jiabao. Research Progress on Soil Health Cultivation Based on Woody Peat [J]. Ecology and Environmental Sciences, 2024, 33(12): 1964-1977. |
| [9] | GAO Xichen, KONG Tao, LI Huasun, LI Duomei, ZHANG Jialiang. Effect of Combined Application Residue after Evaporation, Trichoderma longibrachiatum and Activated Sludge on Physiological Characteristics of Perennial Ryegrass and Soil Microbial Properties in Gangue Hill [J]. Ecology and Environmental Sciences, 2023, 32(9): 1709-1718. |
| [10] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environmental Sciences, 2023, 32(5): 878-888. |
| [11] | ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland [J]. Ecology and Environmental Sciences, 2023, 32(4): 660-667. |
| [12] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environmental Sciences, 2022, 31(8): 1537-1546. |
| [13] | GU Chen, JIA Zhiqing, DU Bobo, HE Lingxianzi, LI Qingxue. Reviews and Prospects of Ecological Restoration Measures for Degraded Grasslands of China [J]. Ecology and Environmental Sciences, 2022, 31(7): 1465-1475. |
| [14] | LIU Xianghong, YIN Qinrui, XIN Jianbao, LIU Wei, XU Xiuquan, HUANG Zhanbin, AN Ruyi. Technology Research Progress and Prospects of Natural Vegetation Restoration and Its Artificial Promotion [J]. Ecology and Environmental Sciences, 2022, 31(7): 1476-1488. |
| [15] | QIN Qin, DUAN Haiqin, SONG Ke, SUN Lijuan, SUN Yafei, ZHOU Bin, XUE Yong. Effect of Conventional Fertilization on the Adsorption-desorption Characteristics and Chemical forms of Cadmium in Soil Water-stable Aggregates [J]. Ecology and Environmental Sciences, 2022, 31(12): 2403-2413. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn