Ecology and Environment ›› 2024, Vol. 33 ›› Issue (5): 665-678.DOI: 10.16258/j.cnki.1674-5906.2024.05.001
• Research Article [Ecology] • Next Articles
SUN Ming1(), CHEN Yanli1,*(
), XIE Min2, MO Weihua1, PAN Lianghao3
Received:
2023-07-11
Online:
2024-05-18
Published:
2024-06-27
孙明1(), 陈燕丽1,*(
), 谢敏2, 莫伟华1, 潘良浩3
通讯作者:
* 陈燕丽。E-mail: 作者简介:
孙明(1986年生),男,高级工程师,硕士,主要从事生态遥感应用研究。E-mail: 517073708@qq.com
基金资助:
CLC Number:
SUN Ming, CHEN Yanli, XIE Min, MO Weihua, PAN Lianghao. Changing Characteristics of Gross Primary Production for Typical Sandy Mangrove in Guangxi and Its Response to Meteorological Factors[J]. Ecology and Environment, 2024, 33(5): 665-678.
孙明, 陈燕丽, 谢敏, 莫伟华, 潘良浩. 广西典型沙生红树林总初级生产力变化特征及其对气象因子的响应[J]. 生态环境学报, 2024, 33(5): 665-678.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.05.001
自变量 | 相关系数 | 直接通径系数 | 间接通径系数 | 间接作用途径 |
---|---|---|---|---|
Rpa | 0.675 | 0.520 | 0.022 | Rpa→DVP→GPP |
0.335 | Rpa→ ta→GPP | |||
−0.203 | Rpa→ts5→GPP | |||
DVP | 0.482 | 0.034 | 0.332 | DVP→Rpa→GPP |
0.255 | DVP→ ta→GPP | |||
−0.139 | DVP→ts5→GPP | |||
ta | 0.556 | 0.522 | 0.334 | ta→Rpa→GPP |
0.017 | ta→DVP→GPP | |||
−0.317 | ta→ts5→GPP | |||
ts5 | 0.506 | −0.330 | 0.319 | ts5→Rpa→GPP |
0.014 | ts5→DVP→GPP | |||
0.502 | ts5→ta→GPP |
Table 1 Direct and indirect path coefficients of GPP
自变量 | 相关系数 | 直接通径系数 | 间接通径系数 | 间接作用途径 |
---|---|---|---|---|
Rpa | 0.675 | 0.520 | 0.022 | Rpa→DVP→GPP |
0.335 | Rpa→ ta→GPP | |||
−0.203 | Rpa→ts5→GPP | |||
DVP | 0.482 | 0.034 | 0.332 | DVP→Rpa→GPP |
0.255 | DVP→ ta→GPP | |||
−0.139 | DVP→ts5→GPP | |||
ta | 0.556 | 0.522 | 0.334 | ta→Rpa→GPP |
0.017 | ta→DVP→GPP | |||
−0.317 | ta→ts5→GPP | |||
ts5 | 0.506 | −0.330 | 0.319 | ts5→Rpa→GPP |
0.014 | ts5→DVP→GPP | |||
0.502 | ts5→ta→GPP |
[1] | ALONGI D M, 2012. Carbon sequestration in mangrove forests[J]. Carbon Management, 3(3): 313-322. |
[2] | ALONGI D M, 2014. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science, 6(1): 195-219. |
[3] | BALDOCCHI D, FINNIGAN J, WILSON K, et al., 2000. On measuring net ecosystem carbon exchange over tall vegetation on complex terrain[J]. Boundary-Layer Meteorology, 96: 257-291. |
[4] | BENDIG J, YU K, AASEN H, et al., 2015. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley[J]. International Journal of Applied Earth Observation and Geoinformation, 39: 79-87. |
[5] | BURROWS D W, 2003. The role of insect leaf herbivory on the mangroves Avicennia marina and Rhizophora stylosa[D]. James Cook University:81-84. |
[6] | CAMPBELL J, BERRY J, SEIBT U, et al., 2017. Large historical growth in global terrestrial gross primary production[J]. Nature, 544: 84-87. |
[7] | CHEN Y L, FANG S B, SUN M, et al., 2022. Mangrove growth monitoring based on camera visible images: A case study on typical mangroves in Guangxi[J]. Frontiers in Earth Science, 9: 771753. |
[8] |
CLARKE P J, ALLAWAY W G, 1993. The regeneration niche of the grey mangrove (Avicennia marina): Effects of salinity, light and sediment factors on establishment, growth and survival in the field[J]. Oecologia, 93: 548-556.
DOI PMID |
[9] | COHEN-SHACHAM E, ANDRADE A, DALTON J, et al., 2019. Core principles for successfully implementing and upscaling Nature based Solutions[J]. Environmental Science & Policy, 98: 20-29. |
[10] | GARRATT J R, 1975. Limitation of the eddy correlation technique for determination of turbulent fluxes near the surface[J]. Bound Layer Meteorology, 8: 255-259. |
[11] |
KNAPP A K, CIAIS P, SMITH M D, 2017. Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change[J]. New Phytologist, 214(1): 41-47.
DOI PMID |
[12] | LUO Y Q, SHERRY R, ZHOU X H, et al., 2009. Terrestrial carbon-cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest[J]. Global Change Biology Bioenergy, 1(1): 62-74. |
[13] | MCCARTHY J K, DWYER J M, MOKANY K, 2020. Direct climate effects are more influential than functional composition in determining future gross primary productivity[J]. Landscape Ecology, 35(4): 969-984. |
[14] | MCLEOD E, CHMURA G L, BOUILLON S, et al., 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 9(10): 535-588. |
[15] | REICHSTEIN M, FALGE E, BALDOCCHI D, et al., 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm[J]. Global Change Biology, 11(9): 1424-1439. |
[16] | WANG C L, ZHAO X S, CHEN X Y, et al., 2023. Variations in CO2 and CH4 exchange in response to multiple biophysical factors from a mangrove wetland park in southeastern China[J]. Atmosphere, 14(5): 805. |
[17] | WEBB E K, PEARMAN G I, LEUNING R G, 1980. Correction of flux measurements for density effects due to heat and water-vapor transfer[J]. Quarterly Journal of the Royal Meteorological Society, 106(447): 85-100. |
[18] | WU C Y, NIU Z, GAO S, 2010. Gross primary production estimation from MODIS data with vegetation index and photosynthetically active radiation in maize[J]. Journal of Geophysical Research: Atmospheres, 115(D12): 1-11. |
[19] | ZHANG Y J, XU M, CHEN H, et al., 2009. Global pattern of NPP to GPP ratio derived from MODIS data: Effects of ecosystem type, geographical location and climate[J]. Global Ecology and Biogeography, 18(3): 280-290. |
[20] | ZHOU H C, WEI S D, ZENG Q, et al., 2010. Nutrient and caloric dynamics in Avicennia marina leaves at different developmental and decay stages in Zhangjiang River Estuary, China[J]. Estuarine, Coastal and Shelf Science, 87(1): 21-26. |
[21] | 安相, 2017. 陕北黄土丘陵区草地生态系统碳通量及其影响因素研究[D]. 咸阳: 西北农林科技大学: 7-47. |
AN X, 2019. The influence factors of carbon flux of grassland in the loess hilly region of northern Shaanxi[D]. Xianyang: Northwest A & F University: 7-47. | |
[22] |
柴曦, 李英年, 段呈, 等, 2018. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 42(1): 6-19.
DOI |
CHAI X, LI Y N, DUAN C, et al., 2018. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau[J]. Chinese Journal of Plant Ecology, 42(1): 6-19.
DOI |
|
[23] | 陈卉, 2013. 中国两种亚热带红树林生态系统的碳固定、掉落物分解及其同化过程[D]. 厦门: 厦门大学:16-17. |
CHEN H, 2013. Carbon sequestration, litter decomposition and consumption in two subtropical mangrove ecosystems of China[D]. Xiamen University:16-17. | |
[24] | 陈顺洋, 安文硕, 陈彬, 等, 2021. 红树林生态修复固碳效果的主要影响因素分析[J]. 应用海洋学学报, 40(1): 34-42. |
CHEN S Y, AN W S, CHEN B, et al., 2021. Decisive factors impacting the carbon sequestration in mangrove ecological restoration[J]. Journal of Applied Oceanography, 40(1): 34-42. | |
[25] | 陈燕丽, 莫建飞, 莫伟华, 等, 2023. 一种红树林冠层可见光图像指数特征分析方法及系统: 中国, CN115063437B[P]. 2023-04-28. |
CHEN Y L, MO J F, MO W H, et al., 2023. Mangrove forest canopy visible light image index characteristic analysis method and system: China, CN115063437B[P]. 2023-04-28. | |
[26] |
陈银萍, 牛亚毅, 李伟, 等, 2019. 科尔沁沙地自然恢复沙质草地生态系统碳通量特征[J]. 高原气象, 38(3): 650-659.
DOI |
CHEN Y P, NIU Y Y, LI W, et al., 2019. Characteristics of carbon flux in sandy grassland ecosystem under natural restoration in Horqin sandy land[J]. Plateau Meteorology, 38(3): 650-659.
DOI |
|
[27] |
但新球, 廖宝文, 吴照柏, 等, 2016. 中国红树林湿地资源、保护现状和主要威胁[J]. 生态环境学报, 25(7): 1237-1243.
DOI |
DAN X Q, LIAO B W, WU Z B, et al., 2016. Resources, conservation status and main threats of mangrove wetlands in China[J]. Ecology and Environmental Sciences, 25(7): 1237-1243. | |
[28] | 董滢, 2020. 红树林生态系统CO2通量及其对气候变化的响应[D]. 厦门: 厦门大学:41-63. |
DONG Y, 2020. The carbon dioxide flux in mangrove forest ecosystem and its responses to climate change[D]. Xiamen: Xiamen University:41-63. | |
[29] | 杜家菊, 陈志伟, 2010. 使用SPSS线性回归实现通径分析的方法[J]. 生物学通报, 45(2): 4-6. |
DU J J, CHEN Z W, 2010. Path analysis using SPSS linear regression[J]. Bulletin of Biology, 45(2): 4-6. | |
[30] | 范航清, 邱广龙, 2004. 中国北部湾白骨壤红树林的虫害与研究对策[J]. 广西植物, 24(6): 558-562. |
FAN H Q, QIU G L, 2004. Insect pests of Avicennia marina mangroves along the coast of Beibu Gulf China and the research strategies[J]. Guihaia, 24(6): 558-562. | |
[31] | 方精云, 柯金虎, 唐志尧, 等, 2001. 生物生产力的 “4P” 概念、估算及其相互关系[J]. 植物生态学报, 25(4): 414-419. |
FANG J Y, KE J H, TANG Z Y, et al., 2001. Implications and estimations of four terrestrial productivity parameters[J]. Acta Phytoecologica Sinica, 25(4): 414-419. | |
[32] | 何斌源, 范航清, 王瑁, 等, 2007. 中国红树林湿地物种多样性及其形成[J]. 生态学报, 27(11): 4859-4870. |
HE B Y, FAN H Q, WANG M, et al., 2007. Species diversity in mangrove wetlands of China and its causation analyses[J]. Acta Ecologica Sinica, 27(11): 4859-4870. | |
[33] | 贺炬成, 2021. 广东省红树林湿地生态系统碳汇研究综述[J]. 中国林业产业 (12): 54-57. |
HE J C, 2021. Review on carbon sink of mangrove wetland ecosystem in Guangdong Province[J]. China Forestry Industry (12): 54-57. | |
[34] | 胡杰龙, 2015. 红树林土壤温室气体的排放规律及影响因素研究[D]. 海口: 海南师范大学: 40-42. |
HU J L, 2015. The regular pattern and influence factors of GHG (Green Gas) emissions from mangrove soil in Hainan Dongzhaigang[D]. Haikou: Hainan Normal University: 40-42. | |
[35] | 李菊艳, 赵成义, 闫映宇, 等, 2014. 不同盐分梯度下胡杨幼苗的光合——光响应特征[J]. 干旱区研究, 31(4): 728-733. |
LI J Y, ZHAO C Y, YAN Y Y, et al., 2014. Response of populus euphratica seedlings to photosynthesis-light under salt stress[J]. Arid Zone Research, 31(4): 728-733. | |
[36] | 李婷婷, 2021. 泉州湾湿地白骨壤生物学特性及生态学特征调查[J]. 安徽农学通报, 27(11): 141-142. |
LI T T, 2021. Investigation on biological and ecological characteristics of Avicennia marina in Quanzhou Bay wetland[J]. Anhui Agricultural Science Bulletin, 27(11): 141-142. | |
[37] | 林鹏, 1997. 中国红树林生态系统[M]. 北京: 科学出版社:34-53. |
LIN P, 1997. Mangrove ecosystem in China[M]. Beijing: China Science Publishing & Media Ltd.: 34-53. | |
[38] | 林珮文, 2019. 潮汐对红树林湿地水热平衡和碳通量的影响——以福建漳江口红树林湿地为例[D]. 厦门: 厦门大学: 48-65. |
LIN P W, 2019. Influence of tides on water-heat balance and carbon fluxes in mangrove wetland: A case study of mangrove wetland in Zhangjiang estuary, Fujian province[D]. Xiamen: Xiamen University: 48-65. | |
[39] | 刘玉莉, 2018. 两种典型竹林生态系统碳收支动态及驱动力分析[D]. 杭州: 浙江农林大学: 13-94. |
LIU Y L, 2018. Analysis of the dynamics and driving forces of carbon budget in two typical bamboo (Phyllostachys edulis and Phyllostachys prraecox) forest ecosystems[D]. Hangzhou: Zhejiang A & F University: 13-94. | |
[40] | 邱广龙, 2005. 红树植物白骨壤繁殖生态研究与果实品质分析[D]. 南宁: 广西大学: 16. |
QIU G L, 2005. Research on reproductive ecology and analysis on fruit quality of mangrove Avicennia marina[D]. Nanning: Guangxi University: 16. | |
[41] | 沈志君, 2018. 红树植物白骨壤的抗虫及耐盐机制研究[D]. 厦门: 厦门大学: 1-6. |
SHEN Z J, 2018. Mechanism of herbivorous insect resistance and salt tolerance in mangrove plant Avicennia marina [D]. Xiamen: Xiamen University: 1-6. | |
[42] | 申冲, 王春林, 赵晓松, 等, 2022. 人工红树林碳通量变化特征及其影响因素分析[J]. 南京信息工程大学学报(自然科学版), 14(1): 11-20. |
SHENG C, WANG C L, ZHAO X S, et al., 2022. Variations and controlling factors of carbon fluxes from a restored mangrove wetland[J]. Journal of Nanjing University Science & Technology (Natural Science Edition), 14(1): 11-20. | |
[43] | 孙辰阳, 2021. 福建漳江口红树林湿地碳温室气体通量源汇特征及环境控制[D]. 厦门: 厦门大学: 12. |
SUN C Y, 2021. Source and sink characteristics of carbon-based greenhouse gas fluxes and environmental controls in mangrove wetland in Zhangjiang estuary of Fujian province[D]. Xiamen: Xiamen University: 12. | |
[44] | 孙明, 莫伟华, 谢敏, 等, 2021. 广西红树林净生态系统碳交换变化特征及影响因子研究[J]. 生态与农村环境学报, 37(7): 909-916. |
SUN M, MO W H, XIE M, et al., 2021. Characteristics of net ecosystem carbon exchange and its influence factors over the mangrove in Guangxi[J]. Journal of Ecology and Rural Environment, 37(7): 909-916. | |
[45] | 王杰帅, 2020. 基于涡度法的西南丘陵区森林碳通量观测研究——以重庆缙云山为例[D]. 北京: 北京林业大学: 9-57. |
WANG J S, 2020. Research on forest carbon flux observation in southwest hilly region based on eddy correlation method-take Chongqing Jinyun mountain as an example[D]. Beijing: Beijing Forestry University: 9-57. | |
[46] | 王法明, 唐剑武, 叶思源, 等, 2021. 中国滨海湿地的蓝色碳汇功能及碳中和对策[J]. 中国科学院院刊, 36(3): 241-251. |
WANG F M, TANG J W, YE S Y, et al., 2021. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Bulletin of the Chinese Academy of Sciences, 36(3): 241-251. | |
[47] |
王介民, 王维真, 奥银焕, 等, 2007. 复杂条件下湍流通量的观测与分析[J]. 地球科学进展, 22(8): 791-797.
DOI |
WANG J M, WANG W Z, AO Y H, et al., 2007. Turbulence flux measurements under complicated conditions[J]. Advances in Earth Science, 22(8): 791-797. | |
[48] | 王涛, 邓正苗, 谢永宏, 等, 2023. 2014-2016年洞庭湖湿地南荻生态系统二氧化碳通量观测数据集[J]. 中国科学数据 (中英文网络版), 8(2): 26-35. |
WANG T, DENG Z M, XIE Y H, et al., 2023. A dataset of carbon dioxide flux observation of the Miscanthus sacchariflorus ecosystem of Dongting Lake Wetland from 2014 to 2016[J]. China Scientific Data, 8(2): 26-35. | |
[49] | 王文卿, 林鹏, 2003. 九龙江口红树植物叶片热值的季节变化及物候学的研究[J]. 海洋学报 (中文版), 25(S2): 214-220. |
WANG W Q, LIN P, 2003. Study on the phenology and seasonal dynamics of calorific values of the leaves of mangroves in Jiulong estuary[J]. Acta Oceanologica Sinica, 25(S2): 214-220. | |
[50] | 王雪, 2022. 长白山区泥炭沼泽湿地二氧化碳排放动态及主要影响因素研究[D]. 长春: 东北师范大学: 27-62. |
WANG X, 2022. Study on the dynamics and the main influencing factors of CO2 emission in a Changbai Mountain peatland[D]. Changchun: Northeast Normal University: 27-62. | |
[51] | 王雄, 张翀, 李强, 2023. 黄土高原植被覆盖与水热时空通径分析[J]. 生态学报, 43(2): 719-730. |
WANG X, ZHANG C, LI Q, 2023. Path analysis between vegetation coverage and climate factors in the Loess Plateau[J]. Acta Ecologica Sinica, 43(2): 719-730. | |
[52] |
王永志, 刘胜林, 2021. 黄河三角洲芦苇湿地生态系统碳通量动态特征及其影响因素[J]. 生态环境学报, 30(5): 949-956.
DOI |
WANG Y Z, LIU S L, 2021. Dynamic characteristics and influencing factors of carbon and water flux in reed wetland ecosystem in the Yellow River delta[J]. Ecology and Environmental Sciences, 30(5): 949-956. | |
[53] |
席振华, 王玉阳, 马耀明, 等, 2023. 珠峰北坡高寒灌丛草原生长季碳、水通量特征分析[J]. 高原气象: 42(4): 887-898.
DOI |
XI Z H, WANG Y Y, MA Y M, et al., 2023. Characteristics of carbon and water fluxes over the alpine shrub steppe ecosystem during growing season on the northern slope of Qomolangma Region[J]. Plateau Meteorology, 42(4): 887-898.
DOI |
|
[54] | 许洁, 2020. 西北干旱农田生态系统水碳通量特征及模拟研究[D]. 兰州: 兰州大学: 9-43. |
XU J, 2020. Research on the characteristics and modeling of water and carbon fluxes in an arid farmland ecosystem in Northwest China[D]. Lanzhou: Lanzhou University: 9-43. | |
[55] | 严燕儿, 2009. 基于遥感模型和地面观测的河口湿地碳通量研究[D]. 上海: 复旦大学: 4-6. |
YAN Y E, 2009. Carbon flux in an enstuarine wetland estimated by remote sensing model and ground-based observations[D]. Shanghai: Fudan University: 4-6. | |
[56] | 杨昊翔, 2020. 红树林生态系统碳通量特征分析及总初级生产力遥感估算[D]. 北京: 中国科学院大学: 39-40. |
YANG H X, 2020. Carbon flux analysis and remote sensing of gross primary production estimation in the mangrove ecosystem[D]. Beijing: University of Chinese Academy of Sciences: 39-40. | |
[57] | 于贵瑞, 孙小敏, 2017. 陆地生态系统通量观测的原理与方法[M]. 第2版. 北京: 高等教育出版社: 51. |
YU G R, SUN X M, 2017. Principles of flux measurement in terrestrial ecosystems[M]. 2nd ed. Beijing: Higher Education Press: 51. | |
[58] | 张扬, 2021. 干旱绿洲区葡萄农田碳收支过程研究[D]. 兰州: 兰州大学: 27. |
ZHANG Y, 2021. Study on carbon budget process of grape farmland in arid oasis region[D]. Lanzhou: Lanzhou University: 27. | |
[59] | 郑夏婉, 2019. 中国东南部红树林CO2和CH4排放通量及其控制因子研究[D]. 北京: 清华大学: 9-59. |
ZHENG X W, 2019. Studies on emission of CO2and CH4 from mangrove wetlands in Southeastern China and their controlling factors[D]. Beijing: Tsinghua University: 9-59. | |
[60] | 周云轩, 田波, 黄颖, 等, 2016. 我国海岸带湿地生态系统退化成因及其对策[J]. 中国科学院院刊, 31(10): 1157-1166. |
ZHOU Y X, TIAN B, HUANG Y, et al., 2016. Degradation of coastal wetland ecosystem in China: Drivers, impacts, and strategies[J]. Bulletin of the Chinese Academy of Sciences, 31(10): 1157-1166. | |
[61] | 朱志鹍, 张翼翱宇, 2023. 高寒荒漠草地碳通量特征及其影响因素[J]. 山东建筑大学学报, 38(3): 108-115. |
ZHU Z K, ZHANG Y A Y, 2023. Characteristics and influence factors of carbon flux in an alpine desert grassland[J]. Journal of Shandong Jianzhu University, 38(3): 108-115. |
[1] | CAO Xiaoai, ZHANG Rui, WEN Yunhao, WANG Jian, XU Zhichao, TIAN Yating, WANG Lixin, LIU Huamin. Effect of Spring Freeze-thaw Process on Soil Enzyme Activities in Riparian Wetland [J]. Ecology and Environment, 2024, 33(2): 212-221. |
[2] | JIANG Tiantian, YANG Chun, LIAO Wei, HU Li, LIU Huanyao, REN Bo, LI Xiaoma. Path Analysis of the Urban Greenspace Landscape Pattern Impacts on Land Surface Temperature: A Case Study in Changsha [J]. Ecology and Environment, 2023, 32(1): 18-25. |
[3] | LUO Songying, LI Qiuxia, QIU Jinkun, DENG Suyan, LI Yifeng, CHEN Bishan. Speciation Characteristics, Migration and Transformation of Heavy Metals in Mangrove Soil-plant System in Nansan Island [J]. Ecology and Environment, 2022, 31(7): 1409-1416. |
[4] | YE Jinyu, YU Haoqi, LIAO Baowen, YOU Yilai, LIU Xinke, LIN Shouming, YANG Daode, HU Huijian. The Species Assemblage of Avian Community: A Case Study of the Avian Community Structure Change after the Mangrove Restoration in Qi'ao Island Natural Reserve, Zhuhai, Guangdong, China [J]. Ecology and Environment, 2022, 31(2): 265-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn